Abstract

Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ballistic imaging of diesel sprays using a picosecond laser: characterization and demonstration

Sean P. Duran, Jason M. Porter, and Terence E. Parker
Appl. Opt. 54(7) 1743-1750 (2015)

Light sheet fluorescence microscopic imaging for the primary breakup of diesel and gasoline sprays with real-world fuels

Alexander Durst, Michael Wensing, and Edouard Berrocal
Appl. Opt. 57(10) 2704-2714 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. D. O’Keefe, W. W. Wrinkle, and C. N. Scully, “Supersonic liquid jets,” Nature 213, 23–25 (1967).
    [Crossref]
  2. K. K. Kuo, Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena (American Institute of Aeronautics and Astronautics, 1996).
  3. H. Herman, “Plasma spray deposition processes,” MRS Bull. 13, 60–67 (1988).
  4. R. A. Tikhomirov, V. F. Babanin, E. N. Petukhov, I. D. Starikov, and V. A. Kovalev, High-pressure Jetcutting (Amer Society of Mechanical, 1992).
  5. T. Ménard, S. Idlahcen, J.-B. Blaisot, C. Rozé, A. Berlemont, T. Girasole, and L. Méès, “Numerical simulation of optical diagnostics and comparisons to experiments,” in “Int. Conf. Multiph. Flow,” (2010), pp. 1–7.
  6. W. D. Bachalo and M. J. Houser, “Phase/Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23, 583 (1984).
    [Crossref]
  7. G. A. Ruff, L. P. Bernal, and G. M. Faeth, “Structure of the near-injector region of nonevaporating pressure-atomized sprays,” J. Propuls. Power 7, 221–230 (1991).
    [Crossref]
  8. L. Arnone, F. Beretta, A. Tregrossi, A. D’Alessio, and F. Ossler, “Ensemble and time resolved light scattering measurements in isothermal and burning heavy oil sprays,” Symp. Combust. 24, 1549–1555 (1992).
    [Crossref]
  9. M. Linne, “Imaging in the optically dense regions of a spray: A review of developing techniques,” Prog. Energy Combust. Sci. 39, 403–440 (2013).
    [Crossref]
  10. Y. Yue, C. F. Powell, R. Poola, J. Wang, and J. K. Schaller, “Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption,” At. Sprays 11, 471–490 (2001).
    [Crossref]
  11. A. G. MacPhee, “X-ray imaging of shock waves generated by high-pressure fuel sprays,” Science 295, 1261–1263 (2002).
    [Crossref] [PubMed]
  12. Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
    [Crossref]
  13. K.-S. Im, K. Fezzaa, Y. J. Wang, X. Liu, J. Wang, and M.-C. Lai, “Particle tracking velocimetry using fast x-ray phase-contrast imaging,” Appl. Phys. Lett. 90, 091919 (2007).
    [Crossref]
  14. S. Moon, Y. Gao, J. Wang, K. Fezzaa, and T. Tsujimura, “Near-field dynamics of high-speed diesel sprays: Effects of orifice inlet geometry and injection pressure,” Fuel 133, 299–309 (2014).
    [Crossref]
  15. S. Moon, K. Komada, K. Sato, H. Yokohata, Y. Wada, and N. Yasuda, “Ultrafast X-ray study of multi-hole GDI injector sprays: Effects of nozzle hole length and number on initial spray formation,” Exp. Therm. Fluid Sci. 68, 68–81 (2015).
    [Crossref]
  16. S. Moon, Y. Gao, S. Park, J. Wang, N. Kurimoto, and Y. Nishijima, “Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection,” Fuel 150, 112–122 (2015).
    [Crossref]
  17. M. Linne, “Analysis of X-ray phase contrast imaging in atomizing sprays,” Exp. Fluids 52, 1201–1218 (2012).
    [Crossref]
  18. M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43, 5100 (2004).
    [Crossref] [PubMed]
  19. M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40, 836–846 (2006).
    [Crossref]
  20. J. B. Schmidt, Z. D. Schaefer, T. R. Meyer, S. Roy, S. a. Danczyk, and J. R. Gord, “Ultrafast time-gated ballistic-photon imaging and shadowgraphy in optically dense rocket sprays,” Appl. Opt. 48, B137 (2009).
    [Crossref] [PubMed]
  21. M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49, 911–923 (2010).
    [Crossref]
  22. D. Sedarsky, J. Gord, C. Carter, T. Meyer, and M. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34, 2748 (2009).
    [Crossref] [PubMed]
  23. H. Purwar, S. Idlahcen, C. Rozé, D. Sedarsky, and J.-B. Blaisot, “Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22, 15778–15790 (2014).
    [Crossref] [PubMed]
  24. S. P. Duran, J. M. Porter, and T. E. Parker, “Ballistic imaging of diesel sprays using a picosecond laser: characterization and demonstration,” Appl. Opt. 54, 1743 (2015).
    [Crossref]
  25. S. P. Duran, J. M. Porter, and T. E. Parker, “Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air,” Exp. Fluids 56, 1–12 (2015).
    [Crossref]
  26. C. Badock, R. Wirth, A. Fath, and A. Leipertz, “Investigation of cavitation in real size diesel injection nozzles,” Int. J. Heat Fluid Flow 20, 538–544 (1999).
    [Crossref]
  27. C. Crua, M. R. Heikal, and M. R. Gold, “Microscopic imaging of the initial stage of diesel spray formation,” Fuel 157, 140–150 (2015).
    [Crossref]
  28. C. Willert, S. Freitag, and C. Hassa, “High speed imaging of fuel spray using a low-cost illumination source,” in “ILASS 2008,” (Como Lake, Italy, 2008), September, pp. 8–10.
  29. D. Birch, C. McGuiness, K. Sagoo, and D. McLoskey, “A new sub-nanosecond LED at 280 nm: application to protein fluorescence,” Meas. Sci. Technol. 15, 19–22 (2004).
    [Crossref]
  30. C. Lecaplain, M. Baumgartl, T. Schreiber, and A. Hideur, “On the mode-locking mechanism of a dissipative-soliton fiber oscillator,” Opt. Express 19, 26742 (2011).
    [Crossref]
  31. M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, “Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing,” Opt. Express 20, 21010 (2012).
    [Crossref] [PubMed]
  32. C. Schaschke, I. Fletcher, and N. Glen, “Density and viscosity measurement of diesel fuels at combined high pressure and elevated temperature,” Processes 1, 30–48 (2013).
    [Crossref]
  33. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man. Cybern. 9, 62–66 (1979).
    [Crossref]
  34. D. Sedarsky, S. Idlahcen, C. Rozé, and J.-B. Blaisot, “Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery,” Exp. Fluids 54, 1451 (2013).
    [Crossref]

2015 (5)

S. Moon, K. Komada, K. Sato, H. Yokohata, Y. Wada, and N. Yasuda, “Ultrafast X-ray study of multi-hole GDI injector sprays: Effects of nozzle hole length and number on initial spray formation,” Exp. Therm. Fluid Sci. 68, 68–81 (2015).
[Crossref]

S. Moon, Y. Gao, S. Park, J. Wang, N. Kurimoto, and Y. Nishijima, “Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection,” Fuel 150, 112–122 (2015).
[Crossref]

S. P. Duran, J. M. Porter, and T. E. Parker, “Ballistic imaging of diesel sprays using a picosecond laser: characterization and demonstration,” Appl. Opt. 54, 1743 (2015).
[Crossref]

S. P. Duran, J. M. Porter, and T. E. Parker, “Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air,” Exp. Fluids 56, 1–12 (2015).
[Crossref]

C. Crua, M. R. Heikal, and M. R. Gold, “Microscopic imaging of the initial stage of diesel spray formation,” Fuel 157, 140–150 (2015).
[Crossref]

2014 (2)

H. Purwar, S. Idlahcen, C. Rozé, D. Sedarsky, and J.-B. Blaisot, “Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22, 15778–15790 (2014).
[Crossref] [PubMed]

S. Moon, Y. Gao, J. Wang, K. Fezzaa, and T. Tsujimura, “Near-field dynamics of high-speed diesel sprays: Effects of orifice inlet geometry and injection pressure,” Fuel 133, 299–309 (2014).
[Crossref]

2013 (3)

M. Linne, “Imaging in the optically dense regions of a spray: A review of developing techniques,” Prog. Energy Combust. Sci. 39, 403–440 (2013).
[Crossref]

C. Schaschke, I. Fletcher, and N. Glen, “Density and viscosity measurement of diesel fuels at combined high pressure and elevated temperature,” Processes 1, 30–48 (2013).
[Crossref]

D. Sedarsky, S. Idlahcen, C. Rozé, and J.-B. Blaisot, “Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery,” Exp. Fluids 54, 1451 (2013).
[Crossref]

2012 (2)

2011 (1)

2010 (1)

M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49, 911–923 (2010).
[Crossref]

2009 (2)

2008 (1)

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[Crossref]

2007 (1)

K.-S. Im, K. Fezzaa, Y. J. Wang, X. Liu, J. Wang, and M.-C. Lai, “Particle tracking velocimetry using fast x-ray phase-contrast imaging,” Appl. Phys. Lett. 90, 091919 (2007).
[Crossref]

2006 (1)

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40, 836–846 (2006).
[Crossref]

2004 (2)

M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43, 5100 (2004).
[Crossref] [PubMed]

D. Birch, C. McGuiness, K. Sagoo, and D. McLoskey, “A new sub-nanosecond LED at 280 nm: application to protein fluorescence,” Meas. Sci. Technol. 15, 19–22 (2004).
[Crossref]

2002 (1)

A. G. MacPhee, “X-ray imaging of shock waves generated by high-pressure fuel sprays,” Science 295, 1261–1263 (2002).
[Crossref] [PubMed]

2001 (1)

Y. Yue, C. F. Powell, R. Poola, J. Wang, and J. K. Schaller, “Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption,” At. Sprays 11, 471–490 (2001).
[Crossref]

1999 (1)

C. Badock, R. Wirth, A. Fath, and A. Leipertz, “Investigation of cavitation in real size diesel injection nozzles,” Int. J. Heat Fluid Flow 20, 538–544 (1999).
[Crossref]

1992 (1)

L. Arnone, F. Beretta, A. Tregrossi, A. D’Alessio, and F. Ossler, “Ensemble and time resolved light scattering measurements in isothermal and burning heavy oil sprays,” Symp. Combust. 24, 1549–1555 (1992).
[Crossref]

1991 (1)

G. A. Ruff, L. P. Bernal, and G. M. Faeth, “Structure of the near-injector region of nonevaporating pressure-atomized sprays,” J. Propuls. Power 7, 221–230 (1991).
[Crossref]

1988 (1)

H. Herman, “Plasma spray deposition processes,” MRS Bull. 13, 60–67 (1988).

1984 (1)

W. D. Bachalo and M. J. Houser, “Phase/Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23, 583 (1984).
[Crossref]

1979 (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man. Cybern. 9, 62–66 (1979).
[Crossref]

1967 (1)

J. D. O’Keefe, W. W. Wrinkle, and C. N. Scully, “Supersonic liquid jets,” Nature 213, 23–25 (1967).
[Crossref]

Abreu-Afonso, J.

Arnone, L.

L. Arnone, F. Beretta, A. Tregrossi, A. D’Alessio, and F. Ossler, “Ensemble and time resolved light scattering measurements in isothermal and burning heavy oil sprays,” Symp. Combust. 24, 1549–1555 (1992).
[Crossref]

Babanin, V. F.

R. A. Tikhomirov, V. F. Babanin, E. N. Petukhov, I. D. Starikov, and V. A. Kovalev, High-pressure Jetcutting (Amer Society of Mechanical, 1992).

Bachalo, W. D.

W. D. Bachalo and M. J. Houser, “Phase/Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23, 583 (1984).
[Crossref]

Badock, C.

C. Badock, R. Wirth, A. Fath, and A. Leipertz, “Investigation of cavitation in real size diesel injection nozzles,” Int. J. Heat Fluid Flow 20, 538–544 (1999).
[Crossref]

Baumgartl, M.

Beretta, F.

L. Arnone, F. Beretta, A. Tregrossi, A. D’Alessio, and F. Ossler, “Ensemble and time resolved light scattering measurements in isothermal and burning heavy oil sprays,” Symp. Combust. 24, 1549–1555 (1992).
[Crossref]

Berlemont, A.

T. Ménard, S. Idlahcen, J.-B. Blaisot, C. Rozé, A. Berlemont, T. Girasole, and L. Méès, “Numerical simulation of optical diagnostics and comparisons to experiments,” in “Int. Conf. Multiph. Flow,” (2010), pp. 1–7.

Bernal, L. P.

G. A. Ruff, L. P. Bernal, and G. M. Faeth, “Structure of the near-injector region of nonevaporating pressure-atomized sprays,” J. Propuls. Power 7, 221–230 (1991).
[Crossref]

Birch, D.

D. Birch, C. McGuiness, K. Sagoo, and D. McLoskey, “A new sub-nanosecond LED at 280 nm: application to protein fluorescence,” Meas. Sci. Technol. 15, 19–22 (2004).
[Crossref]

Blaisot, J.-B.

H. Purwar, S. Idlahcen, C. Rozé, D. Sedarsky, and J.-B. Blaisot, “Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22, 15778–15790 (2014).
[Crossref] [PubMed]

D. Sedarsky, S. Idlahcen, C. Rozé, and J.-B. Blaisot, “Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery,” Exp. Fluids 54, 1451 (2013).
[Crossref]

T. Ménard, S. Idlahcen, J.-B. Blaisot, C. Rozé, A. Berlemont, T. Girasole, and L. Méès, “Numerical simulation of optical diagnostics and comparisons to experiments,” in “Int. Conf. Multiph. Flow,” (2010), pp. 1–7.

Carter, C.

M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49, 911–923 (2010).
[Crossref]

D. Sedarsky, J. Gord, C. Carter, T. Meyer, and M. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34, 2748 (2009).
[Crossref] [PubMed]

Crua, C.

C. Crua, M. R. Heikal, and M. R. Gold, “Microscopic imaging of the initial stage of diesel spray formation,” Fuel 157, 140–150 (2015).
[Crossref]

D’Alessio, A.

L. Arnone, F. Beretta, A. Tregrossi, A. D’Alessio, and F. Ossler, “Ensemble and time resolved light scattering measurements in isothermal and burning heavy oil sprays,” Symp. Combust. 24, 1549–1555 (1992).
[Crossref]

Danczyk, S. a.

Dietzek, B.

Díez, A.

Duran, S. P.

S. P. Duran, J. M. Porter, and T. E. Parker, “Ballistic imaging of diesel sprays using a picosecond laser: characterization and demonstration,” Appl. Opt. 54, 1743 (2015).
[Crossref]

S. P. Duran, J. M. Porter, and T. E. Parker, “Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air,” Exp. Fluids 56, 1–12 (2015).
[Crossref]

Faeth, G. M.

G. A. Ruff, L. P. Bernal, and G. M. Faeth, “Structure of the near-injector region of nonevaporating pressure-atomized sprays,” J. Propuls. Power 7, 221–230 (1991).
[Crossref]

Fath, A.

C. Badock, R. Wirth, A. Fath, and A. Leipertz, “Investigation of cavitation in real size diesel injection nozzles,” Int. J. Heat Fluid Flow 20, 538–544 (1999).
[Crossref]

Fezzaa, K.

S. Moon, Y. Gao, J. Wang, K. Fezzaa, and T. Tsujimura, “Near-field dynamics of high-speed diesel sprays: Effects of orifice inlet geometry and injection pressure,” Fuel 133, 299–309 (2014).
[Crossref]

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[Crossref]

K.-S. Im, K. Fezzaa, Y. J. Wang, X. Liu, J. Wang, and M.-C. Lai, “Particle tracking velocimetry using fast x-ray phase-contrast imaging,” Appl. Phys. Lett. 90, 091919 (2007).
[Crossref]

Fletcher, I.

C. Schaschke, I. Fletcher, and N. Glen, “Density and viscosity measurement of diesel fuels at combined high pressure and elevated temperature,” Processes 1, 30–48 (2013).
[Crossref]

Freitag, S.

C. Willert, S. Freitag, and C. Hassa, “High speed imaging of fuel spray using a low-cost illumination source,” in “ILASS 2008,” (Como Lake, Italy, 2008), September, pp. 8–10.

Gao, Y.

S. Moon, Y. Gao, S. Park, J. Wang, N. Kurimoto, and Y. Nishijima, “Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection,” Fuel 150, 112–122 (2015).
[Crossref]

S. Moon, Y. Gao, J. Wang, K. Fezzaa, and T. Tsujimura, “Near-field dynamics of high-speed diesel sprays: Effects of orifice inlet geometry and injection pressure,” Fuel 133, 299–309 (2014).
[Crossref]

Girasole, T.

T. Ménard, S. Idlahcen, J.-B. Blaisot, C. Rozé, A. Berlemont, T. Girasole, and L. Méès, “Numerical simulation of optical diagnostics and comparisons to experiments,” in “Int. Conf. Multiph. Flow,” (2010), pp. 1–7.

Glen, N.

C. Schaschke, I. Fletcher, and N. Glen, “Density and viscosity measurement of diesel fuels at combined high pressure and elevated temperature,” Processes 1, 30–48 (2013).
[Crossref]

Gold, M. R.

C. Crua, M. R. Heikal, and M. R. Gold, “Microscopic imaging of the initial stage of diesel spray formation,” Fuel 157, 140–150 (2015).
[Crossref]

Gord, J.

M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49, 911–923 (2010).
[Crossref]

D. Sedarsky, J. Gord, C. Carter, T. Meyer, and M. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34, 2748 (2009).
[Crossref] [PubMed]

Gord, J. R.

Gottschall, T.

Hall, T.

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40, 836–846 (2006).
[Crossref]

Hassa, C.

C. Willert, S. Freitag, and C. Hassa, “High speed imaging of fuel spray using a low-cost illumination source,” in “ILASS 2008,” (Como Lake, Italy, 2008), September, pp. 8–10.

Heikal, M. R.

C. Crua, M. R. Heikal, and M. R. Gold, “Microscopic imaging of the initial stage of diesel spray formation,” Fuel 157, 140–150 (2015).
[Crossref]

Herman, H.

H. Herman, “Plasma spray deposition processes,” MRS Bull. 13, 60–67 (1988).

Hideur, A.

Houser, M. J.

W. D. Bachalo and M. J. Houser, “Phase/Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23, 583 (1984).
[Crossref]

Hung, D. L. S.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[Crossref]

Idlahcen, S.

H. Purwar, S. Idlahcen, C. Rozé, D. Sedarsky, and J.-B. Blaisot, “Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22, 15778–15790 (2014).
[Crossref] [PubMed]

D. Sedarsky, S. Idlahcen, C. Rozé, and J.-B. Blaisot, “Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery,” Exp. Fluids 54, 1451 (2013).
[Crossref]

T. Ménard, S. Idlahcen, J.-B. Blaisot, C. Rozé, A. Berlemont, T. Girasole, and L. Méès, “Numerical simulation of optical diagnostics and comparisons to experiments,” in “Int. Conf. Multiph. Flow,” (2010), pp. 1–7.

Im, K.-S.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[Crossref]

K.-S. Im, K. Fezzaa, Y. J. Wang, X. Liu, J. Wang, and M.-C. Lai, “Particle tracking velocimetry using fast x-ray phase-contrast imaging,” Appl. Phys. Lett. 90, 091919 (2007).
[Crossref]

Komada, K.

S. Moon, K. Komada, K. Sato, H. Yokohata, Y. Wada, and N. Yasuda, “Ultrafast X-ray study of multi-hole GDI injector sprays: Effects of nozzle hole length and number on initial spray formation,” Exp. Therm. Fluid Sci. 68, 68–81 (2015).
[Crossref]

Kovalev, V. A.

R. A. Tikhomirov, V. F. Babanin, E. N. Petukhov, I. D. Starikov, and V. A. Kovalev, High-pressure Jetcutting (Amer Society of Mechanical, 1992).

Kuo, K. K.

K. K. Kuo, Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena (American Institute of Aeronautics and Astronautics, 1996).

Kurimoto, N.

S. Moon, Y. Gao, S. Park, J. Wang, N. Kurimoto, and Y. Nishijima, “Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection,” Fuel 150, 112–122 (2015).
[Crossref]

Lai, M.-C.

K.-S. Im, K. Fezzaa, Y. J. Wang, X. Liu, J. Wang, and M.-C. Lai, “Particle tracking velocimetry using fast x-ray phase-contrast imaging,” Appl. Phys. Lett. 90, 091919 (2007).
[Crossref]

Lecaplain, C.

Lee, W.-K.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[Crossref]

Leipertz, A.

C. Badock, R. Wirth, A. Fath, and A. Leipertz, “Investigation of cavitation in real size diesel injection nozzles,” Int. J. Heat Fluid Flow 20, 538–544 (1999).
[Crossref]

Limpert, J.

Linne, M.

M. Linne, “Imaging in the optically dense regions of a spray: A review of developing techniques,” Prog. Energy Combust. Sci. 39, 403–440 (2013).
[Crossref]

M. Linne, “Analysis of X-ray phase contrast imaging in atomizing sprays,” Exp. Fluids 52, 1201–1218 (2012).
[Crossref]

M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49, 911–923 (2010).
[Crossref]

D. Sedarsky, J. Gord, C. Carter, T. Meyer, and M. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34, 2748 (2009).
[Crossref] [PubMed]

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40, 836–846 (2006).
[Crossref]

M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43, 5100 (2004).
[Crossref] [PubMed]

Liu, X.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[Crossref]

K.-S. Im, K. Fezzaa, Y. J. Wang, X. Liu, J. Wang, and M.-C. Lai, “Particle tracking velocimetry using fast x-ray phase-contrast imaging,” Appl. Phys. Lett. 90, 091919 (2007).
[Crossref]

MacPhee, A. G.

A. G. MacPhee, “X-ray imaging of shock waves generated by high-pressure fuel sprays,” Science 295, 1261–1263 (2002).
[Crossref] [PubMed]

McGuiness, C.

D. Birch, C. McGuiness, K. Sagoo, and D. McLoskey, “A new sub-nanosecond LED at 280 nm: application to protein fluorescence,” Meas. Sci. Technol. 15, 19–22 (2004).
[Crossref]

McLoskey, D.

D. Birch, C. McGuiness, K. Sagoo, and D. McLoskey, “A new sub-nanosecond LED at 280 nm: application to protein fluorescence,” Meas. Sci. Technol. 15, 19–22 (2004).
[Crossref]

Méès, L.

T. Ménard, S. Idlahcen, J.-B. Blaisot, C. Rozé, A. Berlemont, T. Girasole, and L. Méès, “Numerical simulation of optical diagnostics and comparisons to experiments,” in “Int. Conf. Multiph. Flow,” (2010), pp. 1–7.

Ménard, T.

T. Ménard, S. Idlahcen, J.-B. Blaisot, C. Rozé, A. Berlemont, T. Girasole, and L. Méès, “Numerical simulation of optical diagnostics and comparisons to experiments,” in “Int. Conf. Multiph. Flow,” (2010), pp. 1–7.

Meyer, T.

Meyer, T. R.

Moon, S.

S. Moon, Y. Gao, S. Park, J. Wang, N. Kurimoto, and Y. Nishijima, “Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection,” Fuel 150, 112–122 (2015).
[Crossref]

S. Moon, K. Komada, K. Sato, H. Yokohata, Y. Wada, and N. Yasuda, “Ultrafast X-ray study of multi-hole GDI injector sprays: Effects of nozzle hole length and number on initial spray formation,” Exp. Therm. Fluid Sci. 68, 68–81 (2015).
[Crossref]

S. Moon, Y. Gao, J. Wang, K. Fezzaa, and T. Tsujimura, “Near-field dynamics of high-speed diesel sprays: Effects of orifice inlet geometry and injection pressure,” Fuel 133, 299–309 (2014).
[Crossref]

Nishijima, Y.

S. Moon, Y. Gao, S. Park, J. Wang, N. Kurimoto, and Y. Nishijima, “Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection,” Fuel 150, 112–122 (2015).
[Crossref]

O’Keefe, J. D.

J. D. O’Keefe, W. W. Wrinkle, and C. N. Scully, “Supersonic liquid jets,” Nature 213, 23–25 (1967).
[Crossref]

Ossler, F.

L. Arnone, F. Beretta, A. Tregrossi, A. D’Alessio, and F. Ossler, “Ensemble and time resolved light scattering measurements in isothermal and burning heavy oil sprays,” Symp. Combust. 24, 1549–1555 (1992).
[Crossref]

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man. Cybern. 9, 62–66 (1979).
[Crossref]

Paciaroni, M.

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40, 836–846 (2006).
[Crossref]

M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43, 5100 (2004).
[Crossref] [PubMed]

Park, S.

S. Moon, Y. Gao, S. Park, J. Wang, N. Kurimoto, and Y. Nishijima, “Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection,” Fuel 150, 112–122 (2015).
[Crossref]

Parker, T.

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40, 836–846 (2006).
[Crossref]

Parker, T. E.

S. P. Duran, J. M. Porter, and T. E. Parker, “Ballistic imaging of diesel sprays using a picosecond laser: characterization and demonstration,” Appl. Opt. 54, 1743 (2015).
[Crossref]

S. P. Duran, J. M. Porter, and T. E. Parker, “Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air,” Exp. Fluids 56, 1–12 (2015).
[Crossref]

Petukhov, E. N.

R. A. Tikhomirov, V. F. Babanin, E. N. Petukhov, I. D. Starikov, and V. A. Kovalev, High-pressure Jetcutting (Amer Society of Mechanical, 1992).

Poola, R.

Y. Yue, C. F. Powell, R. Poola, J. Wang, and J. K. Schaller, “Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption,” At. Sprays 11, 471–490 (2001).
[Crossref]

Popp, J.

Porter, J. M.

S. P. Duran, J. M. Porter, and T. E. Parker, “Ballistic imaging of diesel sprays using a picosecond laser: characterization and demonstration,” Appl. Opt. 54, 1743 (2015).
[Crossref]

S. P. Duran, J. M. Porter, and T. E. Parker, “Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air,” Exp. Fluids 56, 1–12 (2015).
[Crossref]

Powell, C. F.

Y. Yue, C. F. Powell, R. Poola, J. Wang, and J. K. Schaller, “Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption,” At. Sprays 11, 471–490 (2001).
[Crossref]

Purwar, H.

Rothhardt, M.

Roy, S.

Rozé, C.

H. Purwar, S. Idlahcen, C. Rozé, D. Sedarsky, and J.-B. Blaisot, “Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22, 15778–15790 (2014).
[Crossref] [PubMed]

D. Sedarsky, S. Idlahcen, C. Rozé, and J.-B. Blaisot, “Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery,” Exp. Fluids 54, 1451 (2013).
[Crossref]

T. Ménard, S. Idlahcen, J.-B. Blaisot, C. Rozé, A. Berlemont, T. Girasole, and L. Méès, “Numerical simulation of optical diagnostics and comparisons to experiments,” in “Int. Conf. Multiph. Flow,” (2010), pp. 1–7.

Ruff, G. A.

G. A. Ruff, L. P. Bernal, and G. M. Faeth, “Structure of the near-injector region of nonevaporating pressure-atomized sprays,” J. Propuls. Power 7, 221–230 (1991).
[Crossref]

Sagoo, K.

D. Birch, C. McGuiness, K. Sagoo, and D. McLoskey, “A new sub-nanosecond LED at 280 nm: application to protein fluorescence,” Meas. Sci. Technol. 15, 19–22 (2004).
[Crossref]

Sato, K.

S. Moon, K. Komada, K. Sato, H. Yokohata, Y. Wada, and N. Yasuda, “Ultrafast X-ray study of multi-hole GDI injector sprays: Effects of nozzle hole length and number on initial spray formation,” Exp. Therm. Fluid Sci. 68, 68–81 (2015).
[Crossref]

Schaefer, Z. D.

Schaller, J. K.

Y. Yue, C. F. Powell, R. Poola, J. Wang, and J. K. Schaller, “Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption,” At. Sprays 11, 471–490 (2001).
[Crossref]

Schaschke, C.

C. Schaschke, I. Fletcher, and N. Glen, “Density and viscosity measurement of diesel fuels at combined high pressure and elevated temperature,” Processes 1, 30–48 (2013).
[Crossref]

Schmidt, J. B.

Schreiber, T.

Scully, C. N.

J. D. O’Keefe, W. W. Wrinkle, and C. N. Scully, “Supersonic liquid jets,” Nature 213, 23–25 (1967).
[Crossref]

Sedarsky, D.

H. Purwar, S. Idlahcen, C. Rozé, D. Sedarsky, and J.-B. Blaisot, “Collinear, two-color optical Kerr effect shutter for ultrafast time-resolved imaging,” Opt. Express 22, 15778–15790 (2014).
[Crossref] [PubMed]

D. Sedarsky, S. Idlahcen, C. Rozé, and J.-B. Blaisot, “Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery,” Exp. Fluids 54, 1451 (2013).
[Crossref]

M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49, 911–923 (2010).
[Crossref]

D. Sedarsky, J. Gord, C. Carter, T. Meyer, and M. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34, 2748 (2009).
[Crossref] [PubMed]

Starikov, I. D.

R. A. Tikhomirov, V. F. Babanin, E. N. Petukhov, I. D. Starikov, and V. A. Kovalev, High-pressure Jetcutting (Amer Society of Mechanical, 1992).

Tikhomirov, R. A.

R. A. Tikhomirov, V. F. Babanin, E. N. Petukhov, I. D. Starikov, and V. A. Kovalev, High-pressure Jetcutting (Amer Society of Mechanical, 1992).

Tregrossi, A.

L. Arnone, F. Beretta, A. Tregrossi, A. D’Alessio, and F. Ossler, “Ensemble and time resolved light scattering measurements in isothermal and burning heavy oil sprays,” Symp. Combust. 24, 1549–1555 (1992).
[Crossref]

Tsujimura, T.

S. Moon, Y. Gao, J. Wang, K. Fezzaa, and T. Tsujimura, “Near-field dynamics of high-speed diesel sprays: Effects of orifice inlet geometry and injection pressure,” Fuel 133, 299–309 (2014).
[Crossref]

Tünnermann, A.

Wada, Y.

S. Moon, K. Komada, K. Sato, H. Yokohata, Y. Wada, and N. Yasuda, “Ultrafast X-ray study of multi-hole GDI injector sprays: Effects of nozzle hole length and number on initial spray formation,” Exp. Therm. Fluid Sci. 68, 68–81 (2015).
[Crossref]

Wang, J.

S. Moon, Y. Gao, S. Park, J. Wang, N. Kurimoto, and Y. Nishijima, “Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection,” Fuel 150, 112–122 (2015).
[Crossref]

S. Moon, Y. Gao, J. Wang, K. Fezzaa, and T. Tsujimura, “Near-field dynamics of high-speed diesel sprays: Effects of orifice inlet geometry and injection pressure,” Fuel 133, 299–309 (2014).
[Crossref]

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[Crossref]

K.-S. Im, K. Fezzaa, Y. J. Wang, X. Liu, J. Wang, and M.-C. Lai, “Particle tracking velocimetry using fast x-ray phase-contrast imaging,” Appl. Phys. Lett. 90, 091919 (2007).
[Crossref]

Y. Yue, C. F. Powell, R. Poola, J. Wang, and J. K. Schaller, “Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption,” At. Sprays 11, 471–490 (2001).
[Crossref]

Wang, Y.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[Crossref]

Wang, Y. J.

K.-S. Im, K. Fezzaa, Y. J. Wang, X. Liu, J. Wang, and M.-C. Lai, “Particle tracking velocimetry using fast x-ray phase-contrast imaging,” Appl. Phys. Lett. 90, 091919 (2007).
[Crossref]

Willert, C.

C. Willert, S. Freitag, and C. Hassa, “High speed imaging of fuel spray using a low-cost illumination source,” in “ILASS 2008,” (Como Lake, Italy, 2008), September, pp. 8–10.

Winkelman, J. R.

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[Crossref]

Wirth, R.

C. Badock, R. Wirth, A. Fath, and A. Leipertz, “Investigation of cavitation in real size diesel injection nozzles,” Int. J. Heat Fluid Flow 20, 538–544 (1999).
[Crossref]

Wrinkle, W. W.

J. D. O’Keefe, W. W. Wrinkle, and C. N. Scully, “Supersonic liquid jets,” Nature 213, 23–25 (1967).
[Crossref]

Yasuda, N.

S. Moon, K. Komada, K. Sato, H. Yokohata, Y. Wada, and N. Yasuda, “Ultrafast X-ray study of multi-hole GDI injector sprays: Effects of nozzle hole length and number on initial spray formation,” Exp. Therm. Fluid Sci. 68, 68–81 (2015).
[Crossref]

Yokohata, H.

S. Moon, K. Komada, K. Sato, H. Yokohata, Y. Wada, and N. Yasuda, “Ultrafast X-ray study of multi-hole GDI injector sprays: Effects of nozzle hole length and number on initial spray formation,” Exp. Therm. Fluid Sci. 68, 68–81 (2015).
[Crossref]

Yue, Y.

Y. Yue, C. F. Powell, R. Poola, J. Wang, and J. K. Schaller, “Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption,” At. Sprays 11, 471–490 (2001).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

K.-S. Im, K. Fezzaa, Y. J. Wang, X. Liu, J. Wang, and M.-C. Lai, “Particle tracking velocimetry using fast x-ray phase-contrast imaging,” Appl. Phys. Lett. 90, 091919 (2007).
[Crossref]

At. Sprays (1)

Y. Yue, C. F. Powell, R. Poola, J. Wang, and J. K. Schaller, “Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption,” At. Sprays 11, 471–490 (2001).
[Crossref]

Exp. Fluids (5)

M. Linne, “Analysis of X-ray phase contrast imaging in atomizing sprays,” Exp. Fluids 52, 1201–1218 (2012).
[Crossref]

S. P. Duran, J. M. Porter, and T. E. Parker, “Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air,” Exp. Fluids 56, 1–12 (2015).
[Crossref]

M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49, 911–923 (2010).
[Crossref]

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40, 836–846 (2006).
[Crossref]

D. Sedarsky, S. Idlahcen, C. Rozé, and J.-B. Blaisot, “Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery,” Exp. Fluids 54, 1451 (2013).
[Crossref]

Exp. Therm. Fluid Sci. (1)

S. Moon, K. Komada, K. Sato, H. Yokohata, Y. Wada, and N. Yasuda, “Ultrafast X-ray study of multi-hole GDI injector sprays: Effects of nozzle hole length and number on initial spray formation,” Exp. Therm. Fluid Sci. 68, 68–81 (2015).
[Crossref]

Fuel (3)

S. Moon, Y. Gao, S. Park, J. Wang, N. Kurimoto, and Y. Nishijima, “Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection,” Fuel 150, 112–122 (2015).
[Crossref]

S. Moon, Y. Gao, J. Wang, K. Fezzaa, and T. Tsujimura, “Near-field dynamics of high-speed diesel sprays: Effects of orifice inlet geometry and injection pressure,” Fuel 133, 299–309 (2014).
[Crossref]

C. Crua, M. R. Heikal, and M. R. Gold, “Microscopic imaging of the initial stage of diesel spray formation,” Fuel 157, 140–150 (2015).
[Crossref]

IEEE Trans. Syst. Man. Cybern. (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man. Cybern. 9, 62–66 (1979).
[Crossref]

Int. J. Heat Fluid Flow (1)

C. Badock, R. Wirth, A. Fath, and A. Leipertz, “Investigation of cavitation in real size diesel injection nozzles,” Int. J. Heat Fluid Flow 20, 538–544 (1999).
[Crossref]

J. Propuls. Power (1)

G. A. Ruff, L. P. Bernal, and G. M. Faeth, “Structure of the near-injector region of nonevaporating pressure-atomized sprays,” J. Propuls. Power 7, 221–230 (1991).
[Crossref]

Meas. Sci. Technol. (1)

D. Birch, C. McGuiness, K. Sagoo, and D. McLoskey, “A new sub-nanosecond LED at 280 nm: application to protein fluorescence,” Meas. Sci. Technol. 15, 19–22 (2004).
[Crossref]

MRS Bull. (1)

H. Herman, “Plasma spray deposition processes,” MRS Bull. 13, 60–67 (1988).

Nat. Phys. (1)

Y. Wang, X. Liu, K.-S. Im, W.-K. Lee, J. Wang, K. Fezzaa, D. L. S. Hung, and J. R. Winkelman, “Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry,” Nat. Phys. 4, 305–309 (2008).
[Crossref]

Nature (1)

J. D. O’Keefe, W. W. Wrinkle, and C. N. Scully, “Supersonic liquid jets,” Nature 213, 23–25 (1967).
[Crossref]

Opt. Eng. (1)

W. D. Bachalo and M. J. Houser, “Phase/Doppler spray analyzer for simultaneous measurements of drop size and velocity distributions,” Opt. Eng. 23, 583 (1984).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Processes (1)

C. Schaschke, I. Fletcher, and N. Glen, “Density and viscosity measurement of diesel fuels at combined high pressure and elevated temperature,” Processes 1, 30–48 (2013).
[Crossref]

Prog. Energy Combust. Sci. (1)

M. Linne, “Imaging in the optically dense regions of a spray: A review of developing techniques,” Prog. Energy Combust. Sci. 39, 403–440 (2013).
[Crossref]

Science (1)

A. G. MacPhee, “X-ray imaging of shock waves generated by high-pressure fuel sprays,” Science 295, 1261–1263 (2002).
[Crossref] [PubMed]

Symp. Combust. (1)

L. Arnone, F. Beretta, A. Tregrossi, A. D’Alessio, and F. Ossler, “Ensemble and time resolved light scattering measurements in isothermal and burning heavy oil sprays,” Symp. Combust. 24, 1549–1555 (1992).
[Crossref]

Other (4)

K. K. Kuo, Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena (American Institute of Aeronautics and Astronautics, 1996).

R. A. Tikhomirov, V. F. Babanin, E. N. Petukhov, I. D. Starikov, and V. A. Kovalev, High-pressure Jetcutting (Amer Society of Mechanical, 1992).

T. Ménard, S. Idlahcen, J.-B. Blaisot, C. Rozé, A. Berlemont, T. Girasole, and L. Méès, “Numerical simulation of optical diagnostics and comparisons to experiments,” in “Int. Conf. Multiph. Flow,” (2010), pp. 1–7.

C. Willert, S. Freitag, and C. Hassa, “High speed imaging of fuel spray using a low-cost illumination source,” in “ILASS 2008,” (Como Lake, Italy, 2008), September, pp. 8–10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup of the fiber master-oscillator power-amplifier (FMOPA). Nomenclature - R-SAM: resonant saturable absorbed mirror; {L1, L2}: biconvex lenses; P1: polarizer; H1: half wave-plate; WDM: wavelength division multiplexer; SM: single mode; LD: Laser diode; FBG: fiber Bragg grating; MM: multi-mode; OC: output coupler; COM: pump and signal combiner; LMA: large mode area; HP-ISO: High power isolator.
Fig. 2
Fig. 2 Autocorrelation trace measured at the FMOPA output. Inset: Optical spectrum measured after the amplifier.
Fig. 3
Fig. 3 Radio-frequency spectrum
Fig. 4
Fig. 4 Schematic of the experimental setup with high-speed video camera in backlight configuration.
Fig. 5
Fig. 5 Spray backlight images obtained using continuous white-light (top, a to e) and ps fiber laser (middle, f to j) illuminations. Optical magnification: 1.1. A zoomed section from the (d)th and (i)th frames are shown at the bottom - left image corresponds to frame (d) (with continuous illumination) and the image on the right corresponds to (i) (with pulsed illumination). The colored curve in images (e) and (j) correspond to the spray boundary extracted using standard image processing tools.
Fig. 6
Fig. 6 (Top) Image of USAF 1951 chart with (left) continuous white-light and (right) ps fiber laser illuminations. Optical magnification: 1.1. (Bottom) Contrast function, C = (Imax − Imin)/(Imax + Imin) with respect to spatial resolution in line pairs/mm. measured for all elements of groups 2, 3 and 4 of the USAF chart.
Fig. 7
Fig. 7 The length of the spray edge (top subplot) estimated from the spray images recorded at different time from the start of the injection (SOI) for continuous white light and ps fiber laser illuminations. The consecutive plots correspond to different threshold values (Th) used for the images binarization, as displayed on the legend. The symbols Thc and Thp indicate different binarization threshold values for continuous and pulsed illuminations respectively, determined independently for each spray image and shown in the bottom subplot.
Fig. 8
Fig. 8 Spray backlight images obtained using ps fiber laser illumination (a to t) at a repetition rate of 80.5 kHz (time between consecutive frames ∆t = 12.41 µs). Optical magnification: 0.63.

Tables (1)

Tables Icon

Table 1 Physical properties of the diesel-like liquid used for recording spray images.

Metrics