Abstract

In this paper, a new approach to computing the deviation of wood grain is proposed. To do this, the thermal conduction properties of timber are used (higher conduction in the fiber direction). Exciting the surface of the wood with a laser and capturing the thermal conduction using a thermal camera, an ellipse can be observed. Using a method similar to the tracheid effect, it is possible to extract information from this ellipse, such as the slope of grain and the presence of knots. With this method it is therefore possible to extend the mechanical model (assessing the mechanical properties of timber) to take certain singularities into account. Using this approach, the slope of grain can be estimated for any wood species, either hardwood or softwood, which was not possible with the existing tracheid effect.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy

Ryunosuke Kitamura, Tetsuya Inagaki, and Satoru Tsuchikawa
Opt. Express 24(4) 3999-4009 (2016)

Light propagation in dry and wet softwood

Alwin Kienle, Cosimo D’Andrea, Florian Foschum, Paola Taroni, and Antonio Pifferi
Opt. Express 16(13) 9895-9906 (2008)

Heat dissipation performance of a high-brightness LED package assembly using high-thermal conductivity filler

K. C. Yung, H. Liem, and H. S. Choy
Appl. Opt. 52(35) 8484-8493 (2013)

References

  • View by:
  • |
  • |
  • |

  1. EN 338, “Structural timber-Strength classes,” (2009).
  2. EN 14081–1, “Strength graded structural timber with rectangular cross section-part 1: general requirements,” (2011).
  3. EN 14081–2, “Strength graded structural timber with rectangular cross section-part 2: machine grading; additional requirements for initial type testing,” (2013).
  4. EN 14081–3, “Strength graded structural timber with rectangular cross section-part 3: machine grading; additional requirements for factory production control,” (2012).
  5. EN 14081–4, “Strength graded structural timber with rectangular cross section-part 4: machine grading; grading machine settings for machine controlled systems,” (2009).
  6. B. Rajeshwar, D. Bender, D. Bray, and K. McDonald, “An ultrasonic technique for predicting tensile strength of southern pine lumber,” Trans. Am. Soc. Agri. Eng. 40(4), 1153–1159 (1997).
    [Crossref]
  7. T. Biechele, Y. H. Chui, and M. Gong, “Comparison of NDE techniques for assessing mechanical properties of unjointed and finger-jointed lumber,” Holzforschung 65(3), 397–401 (2011).
    [Crossref]
  8. A. Olsson, J. Oscarsson, M. Johansson, and B. Kallsner, “Prediction of timber bending strength on basis of bending stiffness and material homogeneity assessed from dynamic excitation,” Wood Sci. Technol. 46(4), 667–683 (2012).
    [Crossref]
  9. G. Roblot, L. Bleron, F. Mériaudeau, and R. Marchal, “Automatic computation of the knot area ratio for machine strength grading of douglas-fir and spruce timber,” Eur. J. Environ. Civil Eng. 14(10), 1317–1332 (2010).
    [Crossref]
  10. J. K. Oh, K. Shim, K. M. Kim, and J. J. Lee, “Quantification of knots in dimension lumber using a single-pass X-ray radiation,” J. Wood Sci. 55(4), 264–272 (2009).
    [Crossref]
  11. M. Hu, M. Johansson, A. Olsson, J. Oscarsson, and B. Enquist, “Local variation of modulus of elasticity in timber determined on the basis of non-contact deformation measurement and scanned fibre orientation,” Eur. J. Wood Wood Prod 73(1), 17–27 (2015).
    [Crossref]
  12. J. Viguier, A. Jehl, R. Collet, L. Bleron, and F. Meriaudeau, “Improving strength grading of timber by grain angle measurement and mechanical modeling,” Wood Mater. Sci. Eng. 10(1), 1–12 (2015).
    [Crossref]
  13. R. Bergman, Z. Cai, C. Carll, C. Clausen, M. Dietenberger, R. Falk, C. Frihart, S. Glass, C. Hunt, and R. Ibach, “Wood handbook: wood as an engineering material,” in Forest Products Laboratory (2010).
  14. J. Nyström, “Automatic measurement of fiber orientation in softwoods by using the Tracheid effect,” Comput. Electron. Agric. 41(1–3), 91–99 (2003).
    [Crossref]
  15. S. Simonaho, J. Palviainen, Y. Tolonen, and R. Silvennoinen, “Determination of wood grain direction from laser light scattering pattern,” Opt. Lasers Eng. 41(1), 95–103 (2004).
    [Crossref]
  16. J. Zhou and J. Shen, “Ellipse detection and phase demodulation for wood grain orientation measurement based on the Tracheid effect,” Opt. Lasers Eng. 39(1), 73–89 (2003).
    [Crossref]
  17. F. F. P. Kollmann and W. A. Côté, “Principles of Wood Science and Technology,” (Springer-Verlag, 1968).
  18. T. Maku, “Studies on the heat conduction in wood,” Wood Res. 13, 1–79 (1954).
  19. H. C. Fernandes and X. Maldague, “Fiber orientation assessment in complex shaped parts reinforced with carbon fiber using infrared thermography,” Quantum Infrared Thermography J. 12(1), 1–16 (2015).
  20. A. Bajard, O. Aubreton, Y. Bokhabrine, B. Verney, G. Eren, A. Erçil, and F. Truchetet, “3D Scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 0091 (2012).
    [Crossref]
  21. A. Olsson, J. Oscarsson, E. Serrano, B. Källsner, M. Johansson, and B. Enquist, “Prediction of timber bending strength and in-member cross-sectional stiffness variation on the basis of local wood fibre orientation,” Eur. J. Wood Wood Prod 71(3), 319–333 (2013).
    [Crossref]

2015 (3)

M. Hu, M. Johansson, A. Olsson, J. Oscarsson, and B. Enquist, “Local variation of modulus of elasticity in timber determined on the basis of non-contact deformation measurement and scanned fibre orientation,” Eur. J. Wood Wood Prod 73(1), 17–27 (2015).
[Crossref]

J. Viguier, A. Jehl, R. Collet, L. Bleron, and F. Meriaudeau, “Improving strength grading of timber by grain angle measurement and mechanical modeling,” Wood Mater. Sci. Eng. 10(1), 1–12 (2015).
[Crossref]

H. C. Fernandes and X. Maldague, “Fiber orientation assessment in complex shaped parts reinforced with carbon fiber using infrared thermography,” Quantum Infrared Thermography J. 12(1), 1–16 (2015).

2013 (1)

A. Olsson, J. Oscarsson, E. Serrano, B. Källsner, M. Johansson, and B. Enquist, “Prediction of timber bending strength and in-member cross-sectional stiffness variation on the basis of local wood fibre orientation,” Eur. J. Wood Wood Prod 71(3), 319–333 (2013).
[Crossref]

2012 (2)

A. Bajard, O. Aubreton, Y. Bokhabrine, B. Verney, G. Eren, A. Erçil, and F. Truchetet, “3D Scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 0091 (2012).
[Crossref]

A. Olsson, J. Oscarsson, M. Johansson, and B. Kallsner, “Prediction of timber bending strength on basis of bending stiffness and material homogeneity assessed from dynamic excitation,” Wood Sci. Technol. 46(4), 667–683 (2012).
[Crossref]

2011 (1)

T. Biechele, Y. H. Chui, and M. Gong, “Comparison of NDE techniques for assessing mechanical properties of unjointed and finger-jointed lumber,” Holzforschung 65(3), 397–401 (2011).
[Crossref]

2010 (1)

G. Roblot, L. Bleron, F. Mériaudeau, and R. Marchal, “Automatic computation of the knot area ratio for machine strength grading of douglas-fir and spruce timber,” Eur. J. Environ. Civil Eng. 14(10), 1317–1332 (2010).
[Crossref]

2009 (1)

J. K. Oh, K. Shim, K. M. Kim, and J. J. Lee, “Quantification of knots in dimension lumber using a single-pass X-ray radiation,” J. Wood Sci. 55(4), 264–272 (2009).
[Crossref]

2004 (1)

S. Simonaho, J. Palviainen, Y. Tolonen, and R. Silvennoinen, “Determination of wood grain direction from laser light scattering pattern,” Opt. Lasers Eng. 41(1), 95–103 (2004).
[Crossref]

2003 (2)

J. Zhou and J. Shen, “Ellipse detection and phase demodulation for wood grain orientation measurement based on the Tracheid effect,” Opt. Lasers Eng. 39(1), 73–89 (2003).
[Crossref]

J. Nyström, “Automatic measurement of fiber orientation in softwoods by using the Tracheid effect,” Comput. Electron. Agric. 41(1–3), 91–99 (2003).
[Crossref]

1997 (1)

B. Rajeshwar, D. Bender, D. Bray, and K. McDonald, “An ultrasonic technique for predicting tensile strength of southern pine lumber,” Trans. Am. Soc. Agri. Eng. 40(4), 1153–1159 (1997).
[Crossref]

1954 (1)

T. Maku, “Studies on the heat conduction in wood,” Wood Res. 13, 1–79 (1954).

Aubreton, O.

A. Bajard, O. Aubreton, Y. Bokhabrine, B. Verney, G. Eren, A. Erçil, and F. Truchetet, “3D Scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 0091 (2012).
[Crossref]

Bajard, A.

A. Bajard, O. Aubreton, Y. Bokhabrine, B. Verney, G. Eren, A. Erçil, and F. Truchetet, “3D Scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 0091 (2012).
[Crossref]

Bender, D.

B. Rajeshwar, D. Bender, D. Bray, and K. McDonald, “An ultrasonic technique for predicting tensile strength of southern pine lumber,” Trans. Am. Soc. Agri. Eng. 40(4), 1153–1159 (1997).
[Crossref]

Biechele, T.

T. Biechele, Y. H. Chui, and M. Gong, “Comparison of NDE techniques for assessing mechanical properties of unjointed and finger-jointed lumber,” Holzforschung 65(3), 397–401 (2011).
[Crossref]

Bleron, L.

J. Viguier, A. Jehl, R. Collet, L. Bleron, and F. Meriaudeau, “Improving strength grading of timber by grain angle measurement and mechanical modeling,” Wood Mater. Sci. Eng. 10(1), 1–12 (2015).
[Crossref]

G. Roblot, L. Bleron, F. Mériaudeau, and R. Marchal, “Automatic computation of the knot area ratio for machine strength grading of douglas-fir and spruce timber,” Eur. J. Environ. Civil Eng. 14(10), 1317–1332 (2010).
[Crossref]

Bokhabrine, Y.

A. Bajard, O. Aubreton, Y. Bokhabrine, B. Verney, G. Eren, A. Erçil, and F. Truchetet, “3D Scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 0091 (2012).
[Crossref]

Bray, D.

B. Rajeshwar, D. Bender, D. Bray, and K. McDonald, “An ultrasonic technique for predicting tensile strength of southern pine lumber,” Trans. Am. Soc. Agri. Eng. 40(4), 1153–1159 (1997).
[Crossref]

Chui, Y. H.

T. Biechele, Y. H. Chui, and M. Gong, “Comparison of NDE techniques for assessing mechanical properties of unjointed and finger-jointed lumber,” Holzforschung 65(3), 397–401 (2011).
[Crossref]

Collet, R.

J. Viguier, A. Jehl, R. Collet, L. Bleron, and F. Meriaudeau, “Improving strength grading of timber by grain angle measurement and mechanical modeling,” Wood Mater. Sci. Eng. 10(1), 1–12 (2015).
[Crossref]

Enquist, B.

M. Hu, M. Johansson, A. Olsson, J. Oscarsson, and B. Enquist, “Local variation of modulus of elasticity in timber determined on the basis of non-contact deformation measurement and scanned fibre orientation,” Eur. J. Wood Wood Prod 73(1), 17–27 (2015).
[Crossref]

A. Olsson, J. Oscarsson, E. Serrano, B. Källsner, M. Johansson, and B. Enquist, “Prediction of timber bending strength and in-member cross-sectional stiffness variation on the basis of local wood fibre orientation,” Eur. J. Wood Wood Prod 71(3), 319–333 (2013).
[Crossref]

Erçil, A.

A. Bajard, O. Aubreton, Y. Bokhabrine, B. Verney, G. Eren, A. Erçil, and F. Truchetet, “3D Scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 0091 (2012).
[Crossref]

Eren, G.

A. Bajard, O. Aubreton, Y. Bokhabrine, B. Verney, G. Eren, A. Erçil, and F. Truchetet, “3D Scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 0091 (2012).
[Crossref]

Fernandes, H. C.

H. C. Fernandes and X. Maldague, “Fiber orientation assessment in complex shaped parts reinforced with carbon fiber using infrared thermography,” Quantum Infrared Thermography J. 12(1), 1–16 (2015).

Gong, M.

T. Biechele, Y. H. Chui, and M. Gong, “Comparison of NDE techniques for assessing mechanical properties of unjointed and finger-jointed lumber,” Holzforschung 65(3), 397–401 (2011).
[Crossref]

Hu, M.

M. Hu, M. Johansson, A. Olsson, J. Oscarsson, and B. Enquist, “Local variation of modulus of elasticity in timber determined on the basis of non-contact deformation measurement and scanned fibre orientation,” Eur. J. Wood Wood Prod 73(1), 17–27 (2015).
[Crossref]

Jehl, A.

J. Viguier, A. Jehl, R. Collet, L. Bleron, and F. Meriaudeau, “Improving strength grading of timber by grain angle measurement and mechanical modeling,” Wood Mater. Sci. Eng. 10(1), 1–12 (2015).
[Crossref]

Johansson, M.

M. Hu, M. Johansson, A. Olsson, J. Oscarsson, and B. Enquist, “Local variation of modulus of elasticity in timber determined on the basis of non-contact deformation measurement and scanned fibre orientation,” Eur. J. Wood Wood Prod 73(1), 17–27 (2015).
[Crossref]

A. Olsson, J. Oscarsson, E. Serrano, B. Källsner, M. Johansson, and B. Enquist, “Prediction of timber bending strength and in-member cross-sectional stiffness variation on the basis of local wood fibre orientation,” Eur. J. Wood Wood Prod 71(3), 319–333 (2013).
[Crossref]

A. Olsson, J. Oscarsson, M. Johansson, and B. Kallsner, “Prediction of timber bending strength on basis of bending stiffness and material homogeneity assessed from dynamic excitation,” Wood Sci. Technol. 46(4), 667–683 (2012).
[Crossref]

Kallsner, B.

A. Olsson, J. Oscarsson, M. Johansson, and B. Kallsner, “Prediction of timber bending strength on basis of bending stiffness and material homogeneity assessed from dynamic excitation,” Wood Sci. Technol. 46(4), 667–683 (2012).
[Crossref]

Källsner, B.

A. Olsson, J. Oscarsson, E. Serrano, B. Källsner, M. Johansson, and B. Enquist, “Prediction of timber bending strength and in-member cross-sectional stiffness variation on the basis of local wood fibre orientation,” Eur. J. Wood Wood Prod 71(3), 319–333 (2013).
[Crossref]

Kim, K. M.

J. K. Oh, K. Shim, K. M. Kim, and J. J. Lee, “Quantification of knots in dimension lumber using a single-pass X-ray radiation,” J. Wood Sci. 55(4), 264–272 (2009).
[Crossref]

Lee, J. J.

J. K. Oh, K. Shim, K. M. Kim, and J. J. Lee, “Quantification of knots in dimension lumber using a single-pass X-ray radiation,” J. Wood Sci. 55(4), 264–272 (2009).
[Crossref]

Maku, T.

T. Maku, “Studies on the heat conduction in wood,” Wood Res. 13, 1–79 (1954).

Maldague, X.

H. C. Fernandes and X. Maldague, “Fiber orientation assessment in complex shaped parts reinforced with carbon fiber using infrared thermography,” Quantum Infrared Thermography J. 12(1), 1–16 (2015).

Marchal, R.

G. Roblot, L. Bleron, F. Mériaudeau, and R. Marchal, “Automatic computation of the knot area ratio for machine strength grading of douglas-fir and spruce timber,” Eur. J. Environ. Civil Eng. 14(10), 1317–1332 (2010).
[Crossref]

McDonald, K.

B. Rajeshwar, D. Bender, D. Bray, and K. McDonald, “An ultrasonic technique for predicting tensile strength of southern pine lumber,” Trans. Am. Soc. Agri. Eng. 40(4), 1153–1159 (1997).
[Crossref]

Meriaudeau, F.

J. Viguier, A. Jehl, R. Collet, L. Bleron, and F. Meriaudeau, “Improving strength grading of timber by grain angle measurement and mechanical modeling,” Wood Mater. Sci. Eng. 10(1), 1–12 (2015).
[Crossref]

Mériaudeau, F.

G. Roblot, L. Bleron, F. Mériaudeau, and R. Marchal, “Automatic computation of the knot area ratio for machine strength grading of douglas-fir and spruce timber,” Eur. J. Environ. Civil Eng. 14(10), 1317–1332 (2010).
[Crossref]

Nyström, J.

J. Nyström, “Automatic measurement of fiber orientation in softwoods by using the Tracheid effect,” Comput. Electron. Agric. 41(1–3), 91–99 (2003).
[Crossref]

Oh, J. K.

J. K. Oh, K. Shim, K. M. Kim, and J. J. Lee, “Quantification of knots in dimension lumber using a single-pass X-ray radiation,” J. Wood Sci. 55(4), 264–272 (2009).
[Crossref]

Olsson, A.

M. Hu, M. Johansson, A. Olsson, J. Oscarsson, and B. Enquist, “Local variation of modulus of elasticity in timber determined on the basis of non-contact deformation measurement and scanned fibre orientation,” Eur. J. Wood Wood Prod 73(1), 17–27 (2015).
[Crossref]

A. Olsson, J. Oscarsson, E. Serrano, B. Källsner, M. Johansson, and B. Enquist, “Prediction of timber bending strength and in-member cross-sectional stiffness variation on the basis of local wood fibre orientation,” Eur. J. Wood Wood Prod 71(3), 319–333 (2013).
[Crossref]

A. Olsson, J. Oscarsson, M. Johansson, and B. Kallsner, “Prediction of timber bending strength on basis of bending stiffness and material homogeneity assessed from dynamic excitation,” Wood Sci. Technol. 46(4), 667–683 (2012).
[Crossref]

Oscarsson, J.

M. Hu, M. Johansson, A. Olsson, J. Oscarsson, and B. Enquist, “Local variation of modulus of elasticity in timber determined on the basis of non-contact deformation measurement and scanned fibre orientation,” Eur. J. Wood Wood Prod 73(1), 17–27 (2015).
[Crossref]

A. Olsson, J. Oscarsson, E. Serrano, B. Källsner, M. Johansson, and B. Enquist, “Prediction of timber bending strength and in-member cross-sectional stiffness variation on the basis of local wood fibre orientation,” Eur. J. Wood Wood Prod 71(3), 319–333 (2013).
[Crossref]

A. Olsson, J. Oscarsson, M. Johansson, and B. Kallsner, “Prediction of timber bending strength on basis of bending stiffness and material homogeneity assessed from dynamic excitation,” Wood Sci. Technol. 46(4), 667–683 (2012).
[Crossref]

Palviainen, J.

S. Simonaho, J. Palviainen, Y. Tolonen, and R. Silvennoinen, “Determination of wood grain direction from laser light scattering pattern,” Opt. Lasers Eng. 41(1), 95–103 (2004).
[Crossref]

Rajeshwar, B.

B. Rajeshwar, D. Bender, D. Bray, and K. McDonald, “An ultrasonic technique for predicting tensile strength of southern pine lumber,” Trans. Am. Soc. Agri. Eng. 40(4), 1153–1159 (1997).
[Crossref]

Roblot, G.

G. Roblot, L. Bleron, F. Mériaudeau, and R. Marchal, “Automatic computation of the knot area ratio for machine strength grading of douglas-fir and spruce timber,” Eur. J. Environ. Civil Eng. 14(10), 1317–1332 (2010).
[Crossref]

Serrano, E.

A. Olsson, J. Oscarsson, E. Serrano, B. Källsner, M. Johansson, and B. Enquist, “Prediction of timber bending strength and in-member cross-sectional stiffness variation on the basis of local wood fibre orientation,” Eur. J. Wood Wood Prod 71(3), 319–333 (2013).
[Crossref]

Shen, J.

J. Zhou and J. Shen, “Ellipse detection and phase demodulation for wood grain orientation measurement based on the Tracheid effect,” Opt. Lasers Eng. 39(1), 73–89 (2003).
[Crossref]

Shim, K.

J. K. Oh, K. Shim, K. M. Kim, and J. J. Lee, “Quantification of knots in dimension lumber using a single-pass X-ray radiation,” J. Wood Sci. 55(4), 264–272 (2009).
[Crossref]

Silvennoinen, R.

S. Simonaho, J. Palviainen, Y. Tolonen, and R. Silvennoinen, “Determination of wood grain direction from laser light scattering pattern,” Opt. Lasers Eng. 41(1), 95–103 (2004).
[Crossref]

Simonaho, S.

S. Simonaho, J. Palviainen, Y. Tolonen, and R. Silvennoinen, “Determination of wood grain direction from laser light scattering pattern,” Opt. Lasers Eng. 41(1), 95–103 (2004).
[Crossref]

Tolonen, Y.

S. Simonaho, J. Palviainen, Y. Tolonen, and R. Silvennoinen, “Determination of wood grain direction from laser light scattering pattern,” Opt. Lasers Eng. 41(1), 95–103 (2004).
[Crossref]

Truchetet, F.

A. Bajard, O. Aubreton, Y. Bokhabrine, B. Verney, G. Eren, A. Erçil, and F. Truchetet, “3D Scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 0091 (2012).
[Crossref]

Verney, B.

A. Bajard, O. Aubreton, Y. Bokhabrine, B. Verney, G. Eren, A. Erçil, and F. Truchetet, “3D Scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 0091 (2012).
[Crossref]

Viguier, J.

J. Viguier, A. Jehl, R. Collet, L. Bleron, and F. Meriaudeau, “Improving strength grading of timber by grain angle measurement and mechanical modeling,” Wood Mater. Sci. Eng. 10(1), 1–12 (2015).
[Crossref]

Zhou, J.

J. Zhou and J. Shen, “Ellipse detection and phase demodulation for wood grain orientation measurement based on the Tracheid effect,” Opt. Lasers Eng. 39(1), 73–89 (2003).
[Crossref]

Comput. Electron. Agric. (1)

J. Nyström, “Automatic measurement of fiber orientation in softwoods by using the Tracheid effect,” Comput. Electron. Agric. 41(1–3), 91–99 (2003).
[Crossref]

Eur. J. Environ. Civil Eng. (1)

G. Roblot, L. Bleron, F. Mériaudeau, and R. Marchal, “Automatic computation of the knot area ratio for machine strength grading of douglas-fir and spruce timber,” Eur. J. Environ. Civil Eng. 14(10), 1317–1332 (2010).
[Crossref]

Eur. J. Wood Wood Prod (2)

M. Hu, M. Johansson, A. Olsson, J. Oscarsson, and B. Enquist, “Local variation of modulus of elasticity in timber determined on the basis of non-contact deformation measurement and scanned fibre orientation,” Eur. J. Wood Wood Prod 73(1), 17–27 (2015).
[Crossref]

A. Olsson, J. Oscarsson, E. Serrano, B. Källsner, M. Johansson, and B. Enquist, “Prediction of timber bending strength and in-member cross-sectional stiffness variation on the basis of local wood fibre orientation,” Eur. J. Wood Wood Prod 71(3), 319–333 (2013).
[Crossref]

Holzforschung (1)

T. Biechele, Y. H. Chui, and M. Gong, “Comparison of NDE techniques for assessing mechanical properties of unjointed and finger-jointed lumber,” Holzforschung 65(3), 397–401 (2011).
[Crossref]

J. Wood Sci. (1)

J. K. Oh, K. Shim, K. M. Kim, and J. J. Lee, “Quantification of knots in dimension lumber using a single-pass X-ray radiation,” J. Wood Sci. 55(4), 264–272 (2009).
[Crossref]

Opt. Eng. (1)

A. Bajard, O. Aubreton, Y. Bokhabrine, B. Verney, G. Eren, A. Erçil, and F. Truchetet, “3D Scanning of specular and diffuse metallic surfaces using an infrared technique,” Opt. Eng. 51(6), 0091 (2012).
[Crossref]

Opt. Lasers Eng. (2)

S. Simonaho, J. Palviainen, Y. Tolonen, and R. Silvennoinen, “Determination of wood grain direction from laser light scattering pattern,” Opt. Lasers Eng. 41(1), 95–103 (2004).
[Crossref]

J. Zhou and J. Shen, “Ellipse detection and phase demodulation for wood grain orientation measurement based on the Tracheid effect,” Opt. Lasers Eng. 39(1), 73–89 (2003).
[Crossref]

Quantum Infrared Thermography J. (1)

H. C. Fernandes and X. Maldague, “Fiber orientation assessment in complex shaped parts reinforced with carbon fiber using infrared thermography,” Quantum Infrared Thermography J. 12(1), 1–16 (2015).

Trans. Am. Soc. Agri. Eng. (1)

B. Rajeshwar, D. Bender, D. Bray, and K. McDonald, “An ultrasonic technique for predicting tensile strength of southern pine lumber,” Trans. Am. Soc. Agri. Eng. 40(4), 1153–1159 (1997).
[Crossref]

Wood Mater. Sci. Eng. (1)

J. Viguier, A. Jehl, R. Collet, L. Bleron, and F. Meriaudeau, “Improving strength grading of timber by grain angle measurement and mechanical modeling,” Wood Mater. Sci. Eng. 10(1), 1–12 (2015).
[Crossref]

Wood Res. (1)

T. Maku, “Studies on the heat conduction in wood,” Wood Res. 13, 1–79 (1954).

Wood Sci. Technol. (1)

A. Olsson, J. Oscarsson, M. Johansson, and B. Kallsner, “Prediction of timber bending strength on basis of bending stiffness and material homogeneity assessed from dynamic excitation,” Wood Sci. Technol. 46(4), 667–683 (2012).
[Crossref]

Other (7)

EN 338, “Structural timber-Strength classes,” (2009).

EN 14081–1, “Strength graded structural timber with rectangular cross section-part 1: general requirements,” (2011).

EN 14081–2, “Strength graded structural timber with rectangular cross section-part 2: machine grading; additional requirements for initial type testing,” (2013).

EN 14081–3, “Strength graded structural timber with rectangular cross section-part 3: machine grading; additional requirements for factory production control,” (2012).

EN 14081–4, “Strength graded structural timber with rectangular cross section-part 4: machine grading; grading machine settings for machine controlled systems,” (2009).

R. Bergman, Z. Cai, C. Carll, C. Clausen, M. Dietenberger, R. Falk, C. Frihart, S. Glass, C. Hunt, and R. Ibach, “Wood handbook: wood as an engineering material,” in Forest Products Laboratory (2010).

F. F. P. Kollmann and W. A. Côté, “Principles of Wood Science and Technology,” (Springer-Verlag, 1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Tracheid effect by projection of dot line laser [12].
Fig. 2
Fig. 2 3D representation of heat transfers (taken from [20]).
Fig. 3
Fig. 3 Experimental setup.
Fig. 4
Fig. 4 Ellipse obtained by conduction at different times on oak sample. In our application, the images were captured at 200 µs, Fig. 4(b).
Fig. 5
Fig. 5 Comparison of slope of grain variation in spruce. a) Sample of spruce and the two lines computed. b) Comparison between the two methods (scattering method in red and heating method in blue) for the red arrow. c) Same comparison for the green arrow.
Fig. 6
Fig. 6 Comparison of slope of grain variation in Douglas fir. a) Sample of Douglas fir and the two lines computed. b) Comparison between the two methods (scattering method in red and heating method in blue) for the red arrow. c) Same comparison for the green arrow.
Fig. 7
Fig. 7 Comparison of slope of grain variation in poplar. a) Sample of poplar and the two lines computed. b) Comparison between the two methods (scattering method in red and heating method in blue) for the red arrow. c) Same comparison for the green arrow.
Fig. 8
Fig. 8 Tracheid effect on different wood species.
Fig. 9
Fig. 9 Oriented vectors (slope of grain) calculated on an oak sample. The slope of grain turns around the knot. The length of the vectors is related to the ellipticity. Magenta vectors represent the ellipses with a low ellipticity.
Fig. 10
Fig. 10 Comparison between the scattering method and the heating method for the same wood sample with different surface finishes. a) Douglas rough-sawn sample. b) Same sample planed. c) and d) Comparison between the two methods for the rough sample. e) and f) Comparison between the two methods for the planed sample.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ= λ e + λ p
N=[ x 1 x ¯ ... x n x ¯ y 1 y ¯ ... y n y ¯ ]
C=N. N T .
ε= λ 1 λ 2 ,

Metrics