Abstract

We demonstrated a simple and cost-effective method to fabricate all fiber Mach–Zehnder interferometer (MZI) based on cascading a short section of liquid crystal (LC)-filled hollow-optic fiber (HOF) between two single mode fibers by using automatically splicing technique. The transmission spectra of the proposed MZI with different LC-infiltrated length were measured and the temperature-induced wavelength shifts of the interference fringes were recorded. Both blue shift and red shift were observed, depending the temperature range. Based on our experimental results, interference fringe was observed with a maximum interferometric contrast over 35dB. The temperature-induced resonant wavelength blue-shifts 70.4 nm for the MZI with an LC length of 9.79 mm and the wavelength temperature sensitivity of −1.55 nm/°C is easily achieved as the temperature increases from 25°C to 77°C.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer

Jiangtao Zhou, Changrui Liao, Yiping Wang, Guolu Yin, Xiaoyong Zhong, Kaiming Yang, Bing Sun, Guanjun Wang, and Zhengyong Li
Opt. Express 22(2) 1680-1686 (2014)

All-fiber Mach-Zehnder interferometer based on two liquid infiltrations in a photonic crystal fiber

Jia-hong Liou and Chin-ping Yu
Opt. Express 23(5) 6946-6951 (2015)

Up-taper-based Mach–Zehnder interferometer for temperature and strain simultaneous measurement

Zexin Kang, Xiaodong Wen, Chao Li, Jiang Sun, Jing Wang, and Shuisheng Jian
Appl. Opt. 53(12) 2691-2695 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Antunes, A. M. Rocha, H. Lima, H. Varum, and P. S. André, “Thin bonding wires temperature measurement using optical fiber sensors,” Measurement 44(3), 554–558 (2011).
    [Crossref]
  2. É. Pinet, “Pressure measurement with fiber-optic sensors: commercial technologies and applications,” Proc. SPIE 7753, 775304 (2011).
    [Crossref]
  3. H. Ahmad, M. Yasin, K. Thambiratnam, and S. W. Harun, “Fiber optic displacement sensor for micro-thickness measurement,” Sensor Rev. 32(3), 230–235 (2012).
    [Crossref]
  4. Y. Cao, H. Liu, Z. Tong, and S. Yuan, “Simultaneous measurement of temperature and microdisplacement based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Eng. 54(6), 066101 (2015).
    [Crossref]
  5. J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
    [Crossref]
  6. Q. Shi, B. Peng, D. Chen, S. Fu, and H. Dai, “A new refractive index sensor based on Mach-Zehnder interferometer fabricated by two cascaded single-mode fiber corners,” Proc. SPIE 9274, 92741C (2014).
  7. S. Zhang, W. Zhang, P. Geng, and L. Wang, “A Mach–Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
    [Crossref]
  8. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29(4), 346–348 (2004).
    [Crossref] [PubMed]
  9. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50(28), 5503–5507 (2011).
    [Crossref] [PubMed]
  10. R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36(23), 4482–4484 (2011).
    [Crossref] [PubMed]
  11. P. Lu, J. Harris, Y. Xu, Y. Lu, L. Chen, and X. Bao, “Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer,” Opt. Lett. 37(22), 4567–4569 (2012).
    [Crossref] [PubMed]
  12. J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
    [Crossref] [PubMed]
  13. W. Ding, Y. Jiang, R. Gao, Z. Wang, and Y. Liu, “An in-line photonic crystal fibre-based Mach–Zehnder interferometer with temperature compensation,” Meas. Sci. Technol. 25(10), 107002 (2014).
    [Crossref]
  14. W. Talataisong, D. N. Wang, R. Chitaree, C. R. Liao, and C. Wang, “Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing,” Opt. Lett. 40(7), 1220–1222 (2015).
    [Crossref] [PubMed]
  15. M. Park, S. Lee, W. Ha, D.-K. Kim, W. Shin, I.-B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber mach–zehnder interferometer,” IEEE Photonics Technol. Lett. 21(15), 1027–1029 (2009).
    [Crossref]
  16. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (Wiley, 2014).
  17. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
    [Crossref]
  18. A. Lorenz, R. Schuhmann, and H. S. Kitzerow, “Infiltrated photonic crystal fiber: experiments and liquid crystal scattering model,” Opt. Express 18(4), 3519–3530 (2010).
    [Crossref] [PubMed]
  19. G. Zito and S. Pissadakis, “Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber,” Opt. Lett. 38(17), 3253–3256 (2013).
    [Crossref] [PubMed]
  20. K. R. Khan, S. Bidnyk, and T. J. Hall, “Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,” Prog. Electromag. Res. M 22, 179–189 (2012).
    [Crossref]
  21. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004).
    [Crossref] [PubMed]
  22. J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
    [Crossref] [PubMed]
  23. J. I. S. Handbook, 33 Glass, Japanese Stand. Assoc., Tokyo, Japan, 2010.
  24. S. Weiss and G. Ahlers, “Nematic–isotropic phase transition in turbulent thermal convection,” J. Fluid Mech. 737, 308–328 (2013).
    [Crossref]

2015 (2)

Y. Cao, H. Liu, Z. Tong, and S. Yuan, “Simultaneous measurement of temperature and microdisplacement based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Eng. 54(6), 066101 (2015).
[Crossref]

W. Talataisong, D. N. Wang, R. Chitaree, C. R. Liao, and C. Wang, “Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing,” Opt. Lett. 40(7), 1220–1222 (2015).
[Crossref] [PubMed]

2014 (4)

Q. Shi, B. Peng, D. Chen, S. Fu, and H. Dai, “A new refractive index sensor based on Mach-Zehnder interferometer fabricated by two cascaded single-mode fiber corners,” Proc. SPIE 9274, 92741C (2014).

S. Zhang, W. Zhang, P. Geng, and L. Wang, “A Mach–Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

W. Ding, Y. Jiang, R. Gao, Z. Wang, and Y. Liu, “An in-line photonic crystal fibre-based Mach–Zehnder interferometer with temperature compensation,” Meas. Sci. Technol. 25(10), 107002 (2014).
[Crossref]

2013 (2)

2012 (3)

K. R. Khan, S. Bidnyk, and T. J. Hall, “Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,” Prog. Electromag. Res. M 22, 179–189 (2012).
[Crossref]

H. Ahmad, M. Yasin, K. Thambiratnam, and S. W. Harun, “Fiber optic displacement sensor for micro-thickness measurement,” Sensor Rev. 32(3), 230–235 (2012).
[Crossref]

P. Lu, J. Harris, Y. Xu, Y. Lu, L. Chen, and X. Bao, “Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer,” Opt. Lett. 37(22), 4567–4569 (2012).
[Crossref] [PubMed]

2011 (5)

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50(28), 5503–5507 (2011).
[Crossref] [PubMed]

R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36(23), 4482–4484 (2011).
[Crossref] [PubMed]

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[Crossref]

P. Antunes, A. M. Rocha, H. Lima, H. Varum, and P. S. André, “Thin bonding wires temperature measurement using optical fiber sensors,” Measurement 44(3), 554–558 (2011).
[Crossref]

É. Pinet, “Pressure measurement with fiber-optic sensors: commercial technologies and applications,” Proc. SPIE 7753, 775304 (2011).
[Crossref]

2010 (1)

2009 (1)

M. Park, S. Lee, W. Ha, D.-K. Kim, W. Shin, I.-B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber mach–zehnder interferometer,” IEEE Photonics Technol. Lett. 21(15), 1027–1029 (2009).
[Crossref]

2004 (4)

Ahlers, G.

S. Weiss and G. Ahlers, “Nematic–isotropic phase transition in turbulent thermal convection,” J. Fluid Mech. 737, 308–328 (2013).
[Crossref]

Ahmad, H.

H. Ahmad, M. Yasin, K. Thambiratnam, and S. W. Harun, “Fiber optic displacement sensor for micro-thickness measurement,” Sensor Rev. 32(3), 230–235 (2012).
[Crossref]

Alkeskjold, T.

Anawati, A.

André, P. S.

P. Antunes, A. M. Rocha, H. Lima, H. Varum, and P. S. André, “Thin bonding wires temperature measurement using optical fiber sensors,” Measurement 44(3), 554–558 (2011).
[Crossref]

Antunes, P.

P. Antunes, A. M. Rocha, H. Lima, H. Varum, and P. S. André, “Thin bonding wires temperature measurement using optical fiber sensors,” Measurement 44(3), 554–558 (2011).
[Crossref]

Bao, X.

Bidnyk, S.

K. R. Khan, S. Bidnyk, and T. J. Hall, “Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,” Prog. Electromag. Res. M 22, 179–189 (2012).
[Crossref]

Bjarklev, A.

Broeng, J.

Cao, Y.

Y. Cao, H. Liu, Z. Tong, and S. Yuan, “Simultaneous measurement of temperature and microdisplacement based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Eng. 54(6), 066101 (2015).
[Crossref]

Chen, C.

Chen, D.

Q. Shi, B. Peng, D. Chen, S. Fu, and H. Dai, “A new refractive index sensor based on Mach-Zehnder interferometer fabricated by two cascaded single-mode fiber corners,” Proc. SPIE 9274, 92741C (2014).

Chen, L.

Chen, Q.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[Crossref]

Chen, Q. D.

Chitaree, R.

Dai, H.

Q. Shi, B. Peng, D. Chen, S. Fu, and H. Dai, “A new refractive index sensor based on Mach-Zehnder interferometer fabricated by two cascaded single-mode fiber corners,” Proc. SPIE 9274, 92741C (2014).

Ding, W.

W. Ding, Y. Jiang, R. Gao, Z. Wang, and Y. Liu, “An in-line photonic crystal fibre-based Mach–Zehnder interferometer with temperature compensation,” Meas. Sci. Technol. 25(10), 107002 (2014).
[Crossref]

Du, F.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Fu, S.

Q. Shi, B. Peng, D. Chen, S. Fu, and H. Dai, “A new refractive index sensor based on Mach-Zehnder interferometer fabricated by two cascaded single-mode fiber corners,” Proc. SPIE 9274, 92741C (2014).

Gao, R.

W. Ding, Y. Jiang, R. Gao, Z. Wang, and Y. Liu, “An in-line photonic crystal fibre-based Mach–Zehnder interferometer with temperature compensation,” Meas. Sci. Technol. 25(10), 107002 (2014).
[Crossref]

Gauzia, S.

Geng, P.

S. Zhang, W. Zhang, P. Geng, and L. Wang, “A Mach–Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Ha, W.

M. Park, S. Lee, W. Ha, D.-K. Kim, W. Shin, I.-B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber mach–zehnder interferometer,” IEEE Photonics Technol. Lett. 21(15), 1027–1029 (2009).
[Crossref]

Hall, T. J.

K. R. Khan, S. Bidnyk, and T. J. Hall, “Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,” Prog. Electromag. Res. M 22, 179–189 (2012).
[Crossref]

Harris, J.

Harun, S. W.

H. Ahmad, M. Yasin, K. Thambiratnam, and S. W. Harun, “Fiber optic displacement sensor for micro-thickness measurement,” Sensor Rev. 32(3), 230–235 (2012).
[Crossref]

Hermann, D.

Jang, H. S.

Jiang, L.

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50(28), 5503–5507 (2011).
[Crossref] [PubMed]

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[Crossref]

Jiang, Y.

W. Ding, Y. Jiang, R. Gao, Z. Wang, and Y. Liu, “An in-line photonic crystal fibre-based Mach–Zehnder interferometer with temperature compensation,” Meas. Sci. Technol. 25(10), 107002 (2014).
[Crossref]

Khan, K. R.

K. R. Khan, S. Bidnyk, and T. J. Hall, “Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,” Prog. Electromag. Res. M 22, 179–189 (2012).
[Crossref]

Kim, D.-K.

M. Park, S. Lee, W. Ha, D.-K. Kim, W. Shin, I.-B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber mach–zehnder interferometer,” IEEE Photonics Technol. Lett. 21(15), 1027–1029 (2009).
[Crossref]

Kim, J. C.

Kitzerow, H. S.

Lægsgaard, J.

Lee, B. H.

Lee, K. S.

Lee, S.

M. Park, S. Lee, W. Ha, D.-K. Kim, W. Shin, I.-B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber mach–zehnder interferometer,” IEEE Photonics Technol. Lett. 21(15), 1027–1029 (2009).
[Crossref]

Li, B.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[Crossref]

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50(28), 5503–5507 (2011).
[Crossref] [PubMed]

Li, J.

Li, Z.

Liao, C.

Liao, C. R.

Lim, J. H.

Lima, H.

P. Antunes, A. M. Rocha, H. Lima, H. Varum, and P. S. André, “Thin bonding wires temperature measurement using optical fiber sensors,” Measurement 44(3), 554–558 (2011).
[Crossref]

Liu, H.

Y. Cao, H. Liu, Z. Tong, and S. Yuan, “Simultaneous measurement of temperature and microdisplacement based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Eng. 54(6), 066101 (2015).
[Crossref]

Liu, Y.

W. Ding, Y. Jiang, R. Gao, Z. Wang, and Y. Liu, “An in-line photonic crystal fibre-based Mach–Zehnder interferometer with temperature compensation,” Meas. Sci. Technol. 25(10), 107002 (2014).
[Crossref]

Lorenz, A.

Lu, P.

Lu, Y.

Lu, Y.-Q.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Oh, K.

M. Park, S. Lee, W. Ha, D.-K. Kim, W. Shin, I.-B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber mach–zehnder interferometer,” IEEE Photonics Technol. Lett. 21(15), 1027–1029 (2009).
[Crossref]

Park, M.

M. Park, S. Lee, W. Ha, D.-K. Kim, W. Shin, I.-B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber mach–zehnder interferometer,” IEEE Photonics Technol. Lett. 21(15), 1027–1029 (2009).
[Crossref]

Peng, B.

Q. Shi, B. Peng, D. Chen, S. Fu, and H. Dai, “A new refractive index sensor based on Mach-Zehnder interferometer fabricated by two cascaded single-mode fiber corners,” Proc. SPIE 9274, 92741C (2014).

Pinet, É.

É. Pinet, “Pressure measurement with fiber-optic sensors: commercial technologies and applications,” Proc. SPIE 7753, 775304 (2011).
[Crossref]

Pissadakis, S.

Rocha, A. M.

P. Antunes, A. M. Rocha, H. Lima, H. Varum, and P. S. André, “Thin bonding wires temperature measurement using optical fiber sensors,” Measurement 44(3), 554–558 (2011).
[Crossref]

Schuhmann, R.

Shi, Q.

Q. Shi, B. Peng, D. Chen, S. Fu, and H. Dai, “A new refractive index sensor based on Mach-Zehnder interferometer fabricated by two cascaded single-mode fiber corners,” Proc. SPIE 9274, 92741C (2014).

Shin, W.

M. Park, S. Lee, W. Ha, D.-K. Kim, W. Shin, I.-B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber mach–zehnder interferometer,” IEEE Photonics Technol. Lett. 21(15), 1027–1029 (2009).
[Crossref]

Sohn, I.-B.

M. Park, S. Lee, W. Ha, D.-K. Kim, W. Shin, I.-B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber mach–zehnder interferometer,” IEEE Photonics Technol. Lett. 21(15), 1027–1029 (2009).
[Crossref]

Sun, B.

Sun, H. B.

Talataisong, W.

Thambiratnam, K.

H. Ahmad, M. Yasin, K. Thambiratnam, and S. W. Harun, “Fiber optic displacement sensor for micro-thickness measurement,” Sensor Rev. 32(3), 230–235 (2012).
[Crossref]

Tong, Z.

Y. Cao, H. Liu, Z. Tong, and S. Yuan, “Simultaneous measurement of temperature and microdisplacement based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Eng. 54(6), 066101 (2015).
[Crossref]

Tsai, H.

Varum, H.

P. Antunes, A. M. Rocha, H. Lima, H. Varum, and P. S. André, “Thin bonding wires temperature measurement using optical fiber sensors,” Measurement 44(3), 554–558 (2011).
[Crossref]

Wang, C.

Wang, D. N.

Wang, G.

Wang, L.

S. Zhang, W. Zhang, P. Geng, and L. Wang, “A Mach–Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Wang, M.

Wang, S.

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50(28), 5503–5507 (2011).
[Crossref] [PubMed]

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[Crossref]

Wang, Y.

Wang, Z.

W. Ding, Y. Jiang, R. Gao, Z. Wang, and Y. Liu, “An in-line photonic crystal fibre-based Mach–Zehnder interferometer with temperature compensation,” Meas. Sci. Technol. 25(10), 107002 (2014).
[Crossref]

Weiss, S.

S. Weiss and G. Ahlers, “Nematic–isotropic phase transition in turbulent thermal convection,” J. Fluid Mech. 737, 308–328 (2013).
[Crossref]

Wu, S. T.

Wu, S.-T.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
[Crossref] [PubMed]

Xiao, H.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[Crossref]

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50(28), 5503–5507 (2011).
[Crossref] [PubMed]

Xu, Y.

Xue, Y.

Yang, J.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[Crossref]

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50(28), 5503–5507 (2011).
[Crossref] [PubMed]

Yang, K.

Yang, R.

Yasin, M.

H. Ahmad, M. Yasin, K. Thambiratnam, and S. W. Harun, “Fiber optic displacement sensor for micro-thickness measurement,” Sensor Rev. 32(3), 230–235 (2012).
[Crossref]

Yin, G.

Yu, Y. S.

Yuan, S.

Y. Cao, H. Liu, Z. Tong, and S. Yuan, “Simultaneous measurement of temperature and microdisplacement based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Eng. 54(6), 066101 (2015).
[Crossref]

Zhang, S.

S. Zhang, W. Zhang, P. Geng, and L. Wang, “A Mach–Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Zhang, W.

S. Zhang, W. Zhang, P. Geng, and L. Wang, “A Mach–Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Zhong, X.

Zhou, J.

Zito, G.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

IEEE Photonics J. (1)

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Park, S. Lee, W. Ha, D.-K. Kim, W. Shin, I.-B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber mach–zehnder interferometer,” IEEE Photonics Technol. Lett. 21(15), 1027–1029 (2009).
[Crossref]

J. Fluid Mech. (1)

S. Weiss and G. Ahlers, “Nematic–isotropic phase transition in turbulent thermal convection,” J. Fluid Mech. 737, 308–328 (2013).
[Crossref]

J. Opt. (1)

S. Zhang, W. Zhang, P. Geng, and L. Wang, “A Mach–Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Meas. Sci. Technol. (1)

W. Ding, Y. Jiang, R. Gao, Z. Wang, and Y. Liu, “An in-line photonic crystal fibre-based Mach–Zehnder interferometer with temperature compensation,” Meas. Sci. Technol. 25(10), 107002 (2014).
[Crossref]

Measurement (1)

P. Antunes, A. M. Rocha, H. Lima, H. Varum, and P. S. André, “Thin bonding wires temperature measurement using optical fiber sensors,” Measurement 44(3), 554–558 (2011).
[Crossref]

Opt. Eng. (1)

Y. Cao, H. Liu, Z. Tong, and S. Yuan, “Simultaneous measurement of temperature and microdisplacement based on a Mach–Zehnder interferometer cascaded with a fiber Bragg grating,” Opt. Eng. 54(6), 066101 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Proc. SPIE (2)

É. Pinet, “Pressure measurement with fiber-optic sensors: commercial technologies and applications,” Proc. SPIE 7753, 775304 (2011).
[Crossref]

Q. Shi, B. Peng, D. Chen, S. Fu, and H. Dai, “A new refractive index sensor based on Mach-Zehnder interferometer fabricated by two cascaded single-mode fiber corners,” Proc. SPIE 9274, 92741C (2014).

Prog. Electromag. Res. M (1)

K. R. Khan, S. Bidnyk, and T. J. Hall, “Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,” Prog. Electromag. Res. M 22, 179–189 (2012).
[Crossref]

Sensor Rev. (1)

H. Ahmad, M. Yasin, K. Thambiratnam, and S. W. Harun, “Fiber optic displacement sensor for micro-thickness measurement,” Sensor Rev. 32(3), 230–235 (2012).
[Crossref]

Other (2)

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices, 2nd ed. (Wiley, 2014).

J. I. S. Handbook, 33 Glass, Japanese Stand. Assoc., Tokyo, Japan, 2010.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the proposed LC-based MZI structure, in which the tapering structure was formed by arc-fusing at both of the spliced ends as shown in inset picture.
Fig. 2
Fig. 2 Experimental setup for measuring the transmission spectrum of MZI.
Fig. 3
Fig. 3 Images of light intensity distribution taken at the end surface of (a) lead-in SMF, (b) front inner air hole, (c) LC section, (d) rear air hole of the LC-fiber, and (e) lead-out SMF, respectively.
Fig. 4
Fig. 4 Measured transmission spectra of the proposed MZIs with different lengths of LCs-infiltrated segment.
Fig. 5
Fig. 5 The influence of temperature on the birefringence of LCs is observed under crossed polarization microscope.
Fig. 6
Fig. 6 Temperature effects on the transmission spectrum of MZI with the length of LC section ~2.8 mm: (a) 25 °C to 77 °C, (b) 77°C to 91 °C, (c) 91°C to 115 °C.
Fig. 7
Fig. 7 Temperature-induced wavelength shift of MZIs for three different LC-segment lengths.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I= I 1 + I 2 +2 I 1 I 2 cos[ 2π( n eff c n eff cl )L λ ],
λ m = 2 2m+1 δ n eff L,
λ m T = 2 2m+1 [ L LC (δ n eff LC ) T +δ n eff LC L LC T +δ n eff air (L L LC ) T ],
λ m T ( n o LC ) T =A+ β (Δn) o 3 T c (1T/ T c ) 1β ,

Metrics