Abstract

Graphene quantum dots (GQDs)-doped PEDOT:PSS composite layers were utilized to align liquid crystals (LCs) via an ion-beam (IB)-spurting pre-treatment process. LCs were homogeneously aligned between sandwiched GQDs/PEDOT:PSS composite thin layers, and the alignment of LCs was found to be affected by both the quantity of doped GQDs and IB-spurting intensity. Competitive electro-optical switching properties and non-residual DC performance of the cell equipped with GQDs/PEDOT:PSS composite alignment layers were obtained because of the enhanced field effect and charge transport induced by doped GQDs. Notably, using IB-spurted GQDs/PEDOT:PSS layers as alignment layers for next generation high-performance liquid crystal display (LCD) is promising.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ion beam fabrication of aluminum-doped zinc oxide layer for high-performance liquid crystals alignment

Yang Liu, Ju Hwan Lee, and Dae-Shik Seo
Opt. Express 24(15) 17424-17432 (2016)

High performance twisted nematic liquid crystal display with solution-derived YZO surface modification via ion-beam irradiation

Jae-Won Lee, Hong-Gyu Park, Hae-Chang Jeong, Sang-Bok Jang, Tae-Kyu Park, and Dae-Shik Seo
Opt. Express 22(25) 31396-31403 (2014)

Polarized UV cured reactive mesogens for fast switching and low voltage driving liquid crystal device

Hyung-Koo Chung, Won-Kyu Lee, Hong-Gyu Park, Hak Moo Lee, Hae-Chang Jeong, Min-Cha Cho, and Dae-Shik Seo
Opt. Express 22(18) 21551-21559 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
    [Crossref] [PubMed]
  2. S. Aisenberg and R. Chabot, “Ion-beam deposition of thin films of diamondlike carbon,” J. Appl. Phys. 42(7), 2953 (1971).
    [Crossref]
  3. J. W. Lee, H. G. Park, H. C. Jeong, S. B. Jang, T. K. Park, and D. S. Seo, “High performance twisted nematic liquid crystal display with solution-derived YZO surface modification via ion-beam irradiation,” Opt. Express 22(25), 31396–31403 (2014).
    [Crossref] [PubMed]
  4. K. C. Kwon, P. K. Son, and S. Y. Kim, “Ion beam irradiation of few-layer graphene and its application to liquid crystal cells,” Carbon 67, 352–359 (2014).
    [Crossref]
  5. H. G. Park, H. C. Jeong, T. K. Park, and D. S. Seo, “Ion-beam-irradiated solution-derived tin oxide films for liquid crystal orientation,” RSC Advances 5(3), 1918–1922 (2015).
    [Crossref]
  6. J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
    [Crossref] [PubMed]
  7. J. J. Lee, H. G. Park, J. J. Han, D. H. Kim, and D. S. Seo, “Surface reformation on solution-derived zinc oxide films for liquid crystal systems via ion-beam irradiation,” J. Mater. Chem. C 1(41), 6824–6828 (2013).
    [Crossref]
  8. Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
    [Crossref] [PubMed]
  9. P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, and J. Jie, “Crystalline Si/graphene quantum dots heterojunction solar cells,” J. Phys. Chem. C 118(10), 5164–5171 (2014).
    [Crossref]
  10. Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
    [Crossref] [PubMed]
  11. X. Yan, X. Cui, B. Li, and L. S. Li, “Large, solution-processable graphene quantum dots as light absorbers for photovoltaics,” Nano Lett. 10(5), 1869–1873 (2010).
    [Crossref] [PubMed]
  12. T. F. Yeh, C. Y. Teng, S. J. Chen, and H. Teng, “Nitrogen-Doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination,” Adv. Mater. 26(20), 3297–3303 (2014).
    [Crossref] [PubMed]
  13. D. I. Son, B. W. Kwon, D. H. Park, W. S. Seo, Y. Yi, B. Angadi, C. L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
    [Crossref] [PubMed]
  14. M. J. Cho, H. G. Park, H. C. Jeong, J. W. Lee, Y. H. Jung, D. H. Kim, J. H. Kim, J. W. Lee, and D. S. Seo, “Superior fast switching of liquid crystal devices using graphene quantum dots,” Liq. Cryst. 41(6), 761–767 (2014).
    [Crossref]
  15. V. Kumar, A. Kumar, A. M. Biradar, G. B. Reddy, D. Sachdev, and R. Pasricha, “Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots,” Liq. Cryst. 41(12), 1719–1725 (2014).
    [Crossref]
  16. P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsäss, and M. Wenderoth, “Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties,” Nano Lett. 15(8), 5110–5115 (2015).
    [Crossref] [PubMed]
  17. J. Kotakoski, C. Brand, Y. Lilach, O. Cheshnovsky, C. Mangler, M. Arndt, and J. C. Meyer, “Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene,” Nano Lett. 15(9), 5944–5949 (2015).
    [Crossref] [PubMed]
  18. M. Bacon, S. J. Bradley, and T. Nann, “Graphene quantum dots,” Part. Part. Syst. Charact. 31(4), 415–428 (2014).
    [Crossref]
  19. L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, and J. J. Zhu, “Focusing on luminescent graphene quantum dots: current status and future perspectives,” Nanoscale 5(10), 4015–4039 (2013).
    [Crossref] [PubMed]
  20. Z. Zhang, J. Zhang, N. Chen, and L. Qu, “Graphene quantum dots: an emerging material for energy-related applications and beyond,” Energy Environ. Sci. 5(10), 8869–8890 (2012).
    [Crossref]
  21. J. Shen, Y. Zhu, X. Yang, and C. Li, “Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices,” Chem. Commun. (Camb.) 48(31), 3686–3699 (2012).
    [Crossref] [PubMed]
  22. J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
    [Crossref] [PubMed]
  23. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  24. G. Greczynski, T. Kugler, and W. R. Salaneck, “Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy,” Thin Solid Films 354(1–2), 129–135 (1999).
    [Crossref]
  25. S. K. M. Jönssona, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. D. V. D. Gon, W. R. Salaneck, and M. Fahlman, “The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,” Sythetic Met. 139(1), 1–10 (2003).
    [Crossref]
  26. D. H. Yoo, J. H. Kim, and J. H. Kim, “Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems,” Nano Res. 7(5), 717–730 (2014).
    [Crossref]
  27. X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
    [Crossref]
  28. Y. J. Lin, J. J. Zeng, and C. L. Tsai, “Enhancement of the carrier mobility of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by incorporating reduced graphene oxide,” Appl. Phys. Lett. 101(5), 053305 (2012).
    [Crossref]
  29. H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baikk, “Ion-beam induced liquid crystal alignment on diamond-like carbon and fluorinated diamond-like carbon thin films,” Jpn. J. Appl. Phys. 44(6A), 4092–4097 (2005).
    [Crossref]
  30. J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
    [Crossref] [PubMed]
  31. W. Fu, Z. Xu, X. Bai, C. Gu, and E. Wang, “Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor,” Nano Lett. 9(3), 921–925 (2009).
    [Crossref] [PubMed]
  32. W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
    [Crossref]
  33. G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
    [Crossref] [PubMed]
  34. F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
    [Crossref] [PubMed]
  35. I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
    [Crossref] [PubMed]
  36. D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
    [Crossref]
  37. M. Mizusaki, T. Miyashita, T. Uchida, Y. Yamada, Y. Ishii, and S. Mizushima, “Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation parameters related to liquid crystal and alignment layer materials,” J. Appl. Phys. 102(1), 014904 (2007).
    [Crossref]

2015 (3)

P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsäss, and M. Wenderoth, “Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties,” Nano Lett. 15(8), 5110–5115 (2015).
[Crossref] [PubMed]

J. Kotakoski, C. Brand, Y. Lilach, O. Cheshnovsky, C. Mangler, M. Arndt, and J. C. Meyer, “Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene,” Nano Lett. 15(9), 5944–5949 (2015).
[Crossref] [PubMed]

H. G. Park, H. C. Jeong, T. K. Park, and D. S. Seo, “Ion-beam-irradiated solution-derived tin oxide films for liquid crystal orientation,” RSC Advances 5(3), 1918–1922 (2015).
[Crossref]

2014 (10)

T. F. Yeh, C. Y. Teng, S. J. Chen, and H. Teng, “Nitrogen-Doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination,” Adv. Mater. 26(20), 3297–3303 (2014).
[Crossref] [PubMed]

M. J. Cho, H. G. Park, H. C. Jeong, J. W. Lee, Y. H. Jung, D. H. Kim, J. H. Kim, J. W. Lee, and D. S. Seo, “Superior fast switching of liquid crystal devices using graphene quantum dots,” Liq. Cryst. 41(6), 761–767 (2014).
[Crossref]

V. Kumar, A. Kumar, A. M. Biradar, G. B. Reddy, D. Sachdev, and R. Pasricha, “Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots,” Liq. Cryst. 41(12), 1719–1725 (2014).
[Crossref]

D. H. Yoo, J. H. Kim, and J. H. Kim, “Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems,” Nano Res. 7(5), 717–730 (2014).
[Crossref]

M. Bacon, S. J. Bradley, and T. Nann, “Graphene quantum dots,” Part. Part. Syst. Charact. 31(4), 415–428 (2014).
[Crossref]

J. W. Lee, H. G. Park, H. C. Jeong, S. B. Jang, T. K. Park, and D. S. Seo, “High performance twisted nematic liquid crystal display with solution-derived YZO surface modification via ion-beam irradiation,” Opt. Express 22(25), 31396–31403 (2014).
[Crossref] [PubMed]

K. C. Kwon, P. K. Son, and S. Y. Kim, “Ion beam irradiation of few-layer graphene and its application to liquid crystal cells,” Carbon 67, 352–359 (2014).
[Crossref]

Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
[Crossref] [PubMed]

P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, and J. Jie, “Crystalline Si/graphene quantum dots heterojunction solar cells,” J. Phys. Chem. C 118(10), 5164–5171 (2014).
[Crossref]

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

2013 (2)

L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, and J. J. Zhu, “Focusing on luminescent graphene quantum dots: current status and future perspectives,” Nanoscale 5(10), 4015–4039 (2013).
[Crossref] [PubMed]

J. J. Lee, H. G. Park, J. J. Han, D. H. Kim, and D. S. Seo, “Surface reformation on solution-derived zinc oxide films for liquid crystal systems via ion-beam irradiation,” J. Mater. Chem. C 1(41), 6824–6828 (2013).
[Crossref]

2012 (5)

D. I. Son, B. W. Kwon, D. H. Park, W. S. Seo, Y. Yi, B. Angadi, C. L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Y. J. Lin, J. J. Zeng, and C. L. Tsai, “Enhancement of the carrier mobility of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by incorporating reduced graphene oxide,” Appl. Phys. Lett. 101(5), 053305 (2012).
[Crossref]

Z. Zhang, J. Zhang, N. Chen, and L. Qu, “Graphene quantum dots: an emerging material for energy-related applications and beyond,” Energy Environ. Sci. 5(10), 8869–8890 (2012).
[Crossref]

J. Shen, Y. Zhu, X. Yang, and C. Li, “Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices,” Chem. Commun. (Camb.) 48(31), 3686–3699 (2012).
[Crossref] [PubMed]

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

2010 (2)

F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref] [PubMed]

X. Yan, X. Cui, B. Li, and L. S. Li, “Large, solution-processable graphene quantum dots as light absorbers for photovoltaics,” Nano Lett. 10(5), 1869–1873 (2010).
[Crossref] [PubMed]

2009 (1)

W. Fu, Z. Xu, X. Bai, C. Gu, and E. Wang, “Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor,” Nano Lett. 9(3), 921–925 (2009).
[Crossref] [PubMed]

2008 (3)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

2007 (1)

M. Mizusaki, T. Miyashita, T. Uchida, Y. Yamada, Y. Ishii, and S. Mizushima, “Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation parameters related to liquid crystal and alignment layer materials,” J. Appl. Phys. 102(1), 014904 (2007).
[Crossref]

2006 (1)

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

2005 (1)

H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baikk, “Ion-beam induced liquid crystal alignment on diamond-like carbon and fluorinated diamond-like carbon thin films,” Jpn. J. Appl. Phys. 44(6A), 4092–4097 (2005).
[Crossref]

2003 (1)

S. K. M. Jönssona, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. D. V. D. Gon, W. R. Salaneck, and M. Fahlman, “The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,” Sythetic Met. 139(1), 1–10 (2003).
[Crossref]

2001 (3)

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

1999 (1)

G. Greczynski, T. Kugler, and W. R. Salaneck, “Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy,” Thin Solid Films 354(1–2), 129–135 (1999).
[Crossref]

1971 (1)

S. Aisenberg and R. Chabot, “Ion-beam deposition of thin films of diamondlike carbon,” J. Appl. Phys. 42(7), 2953 (1971).
[Crossref]

Ahn, H. J.

H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baikk, “Ion-beam induced liquid crystal alignment on diamond-like carbon and fluorinated diamond-like carbon thin films,” Jpn. J. Appl. Phys. 44(6A), 4092–4097 (2005).
[Crossref]

Aisenberg, S.

S. Aisenberg and R. Chabot, “Ion-beam deposition of thin films of diamondlike carbon,” J. Appl. Phys. 42(7), 2953 (1971).
[Crossref]

Ajayan, P. M.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Alemany, L. B.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Amani, J. A.

P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsäss, and M. Wenderoth, “Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties,” Nano Lett. 15(8), 5110–5115 (2015).
[Crossref] [PubMed]

Andersson, P.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Andry, P. S.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Angadi, B.

D. I. Son, B. W. Kwon, D. H. Park, W. S. Seo, Y. Yi, B. Angadi, C. L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Arndt, M.

J. Kotakoski, C. Brand, Y. Lilach, O. Cheshnovsky, C. Mangler, M. Arndt, and J. C. Meyer, “Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene,” Nano Lett. 15(9), 5944–5949 (2015).
[Crossref] [PubMed]

Avouris, P.

F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref] [PubMed]

Bacon, M.

M. Bacon, S. J. Bradley, and T. Nann, “Graphene quantum dots,” Part. Part. Syst. Charact. 31(4), 415–428 (2014).
[Crossref]

Bai, X.

W. Fu, Z. Xu, X. Bai, C. Gu, and E. Wang, “Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor,” Nano Lett. 9(3), 921–925 (2009).
[Crossref] [PubMed]

Bai, Y.

Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
[Crossref] [PubMed]

Baikk, H. K.

H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baikk, “Ion-beam induced liquid crystal alignment on diamond-like carbon and fluorinated diamond-like carbon thin films,” Jpn. J. Appl. Phys. 44(6A), 4092–4097 (2005).
[Crossref]

Berggren, M.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Biradar, A. M.

V. Kumar, A. Kumar, A. M. Biradar, G. B. Reddy, D. Sachdev, and R. Pasricha, “Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots,” Liq. Cryst. 41(12), 1719–1725 (2014).
[Crossref]

Birgerson, J.

S. K. M. Jönssona, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. D. V. D. Gon, W. R. Salaneck, and M. Fahlman, “The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,” Sythetic Met. 139(1), 1–10 (2003).
[Crossref]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Bradley, S. J.

M. Bacon, S. J. Bradley, and T. Nann, “Graphene quantum dots,” Part. Part. Syst. Charact. 31(4), 415–428 (2014).
[Crossref]

Brand, C.

J. Kotakoski, C. Brand, Y. Lilach, O. Cheshnovsky, C. Mangler, M. Arndt, and J. C. Meyer, “Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene,” Nano Lett. 15(9), 5944–5949 (2015).
[Crossref] [PubMed]

Cai, C.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Callegari, A.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Callegari, A. C.

J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

Chabot, R.

S. Aisenberg and R. Chabot, “Ion-beam deposition of thin films of diamondlike carbon,” J. Appl. Phys. 42(7), 2953 (1971).
[Crossref]

Chaudhari, P.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

Chen, H.

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Chen, N.

Z. Zhang, J. Zhang, N. Chen, and L. Qu, “Graphene quantum dots: an emerging material for energy-related applications and beyond,” Energy Environ. Sci. 5(10), 8869–8890 (2012).
[Crossref]

Chen, S. J.

T. F. Yeh, C. Y. Teng, S. J. Chen, and H. Teng, “Nitrogen-Doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination,” Adv. Mater. 26(20), 3297–3303 (2014).
[Crossref] [PubMed]

Cheshnovsky, O.

J. Kotakoski, C. Brand, Y. Lilach, O. Cheshnovsky, C. Mangler, M. Arndt, and J. C. Meyer, “Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene,” Nano Lett. 15(9), 5944–5949 (2015).
[Crossref] [PubMed]

Cho, M. J.

M. J. Cho, H. G. Park, H. C. Jeong, J. W. Lee, Y. H. Jung, D. H. Kim, J. H. Kim, J. W. Lee, and D. S. Seo, “Superior fast switching of liquid crystal devices using graphene quantum dots,” Liq. Cryst. 41(6), 761–767 (2014).
[Crossref]

Choi, W. K.

D. I. Son, B. W. Kwon, D. H. Park, W. S. Seo, Y. Yi, B. Angadi, C. L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Choi, Y. S.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Crispin, A.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Crispin, X.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

S. K. M. Jönssona, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. D. V. D. Gon, W. R. Salaneck, and M. Fahlman, “The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,” Sythetic Met. 139(1), 1–10 (2003).
[Crossref]

Cui, X.

X. Yan, X. Cui, B. Li, and L. S. Li, “Large, solution-processable graphene quantum dots as light absorbers for photovoltaics,” Nano Lett. 10(5), 1869–1873 (2010).
[Crossref] [PubMed]

Deng, L.

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Diao, S.

P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, and J. Jie, “Crystalline Si/graphene quantum dots heterojunction solar cells,” J. Phys. Chem. C 118(10), 5164–5171 (2014).
[Crossref]

Ding, K.

P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, and J. Jie, “Crystalline Si/graphene quantum dots heterojunction solar cells,” J. Phys. Chem. C 118(10), 5164–5171 (2014).
[Crossref]

Doyle, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Doyle, J. P.

J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

Druga, T.

P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsäss, and M. Wenderoth, “Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties,” Nano Lett. 15(8), 5110–5115 (2015).
[Crossref] [PubMed]

Du, L.

Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
[Crossref] [PubMed]

Fahlman, M.

S. K. M. Jönssona, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. D. V. D. Gon, W. R. Salaneck, and M. Fahlman, “The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,” Sythetic Met. 139(1), 1–10 (2003).
[Crossref]

Fan, L.

Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
[Crossref] [PubMed]

Fan, Z.

Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
[Crossref] [PubMed]

Farmer, D. B.

F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref] [PubMed]

Fu, W.

W. Fu, Z. Xu, X. Bai, C. Gu, and E. Wang, “Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor,” Nano Lett. 9(3), 921–925 (2009).
[Crossref] [PubMed]

Galligan, E.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Gao, G.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Gao, P.

P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, and J. Jie, “Crystalline Si/graphene quantum dots heterojunction solar cells,” J. Phys. Chem. C 118(10), 5164–5171 (2014).
[Crossref]

Gao, W.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Ge, L.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Gon, A. W. D. V. D.

S. K. M. Jönssona, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. D. V. D. Gon, W. R. Salaneck, and M. Fahlman, “The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,” Sythetic Met. 139(1), 1–10 (2003).
[Crossref]

Greczynski, G.

S. K. M. Jönssona, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. D. V. D. Gon, W. R. Salaneck, and M. Fahlman, “The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,” Sythetic Met. 139(1), 1–10 (2003).
[Crossref]

G. Greczynski, T. Kugler, and W. R. Salaneck, “Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy,” Thin Solid Films 354(1–2), 129–135 (1999).
[Crossref]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Grim, P. C. M.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Gu, C.

W. Fu, Z. Xu, X. Bai, C. Gu, and E. Wang, “Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor,” Nano Lett. 9(3), 921–925 (2009).
[Crossref] [PubMed]

Gupta, B. K.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Han, J. J.

J. J. Lee, H. G. Park, J. J. Han, D. H. Kim, and D. S. Seo, “Surface reformation on solution-derived zinc oxide films for liquid crystal systems via ion-beam irradiation,” J. Mater. Chem. C 1(41), 6824–6828 (2013).
[Crossref]

Han, M. Y.

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

Hayashi, T.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Hofsäss, H.

P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsäss, and M. Wenderoth, “Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties,” Nano Lett. 15(8), 5110–5115 (2015).
[Crossref] [PubMed]

Hou, Y.

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Hougham, G.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Hu, Y.

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Hwang, B. H.

H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baikk, “Ion-beam induced liquid crystal alignment on diamond-like carbon and fluorinated diamond-like carbon thin films,” Jpn. J. Appl. Phys. 44(6A), 4092–4097 (2005).
[Crossref]

Ishii, Y.

M. Mizusaki, T. Miyashita, T. Uchida, Y. Yamada, Y. Ishii, and S. Mizushima, “Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation parameters related to liquid crystal and alignment layer materials,” J. Appl. Phys. 102(1), 014904 (2007).
[Crossref]

Jakobsson, F. L. E.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Jang, S. B.

Jeong, H. C.

H. G. Park, H. C. Jeong, T. K. Park, and D. S. Seo, “Ion-beam-irradiated solution-derived tin oxide films for liquid crystal orientation,” RSC Advances 5(3), 1918–1922 (2015).
[Crossref]

M. J. Cho, H. G. Park, H. C. Jeong, J. W. Lee, Y. H. Jung, D. H. Kim, J. H. Kim, J. W. Lee, and D. S. Seo, “Superior fast switching of liquid crystal devices using graphene quantum dots,” Liq. Cryst. 41(6), 761–767 (2014).
[Crossref]

J. W. Lee, H. G. Park, H. C. Jeong, S. B. Jang, T. K. Park, and D. S. Seo, “High performance twisted nematic liquid crystal display with solution-derived YZO surface modification via ion-beam irradiation,” Opt. Express 22(25), 31396–31403 (2014).
[Crossref] [PubMed]

Jie, J.

P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, and J. Jie, “Crystalline Si/graphene quantum dots heterojunction solar cells,” J. Phys. Chem. C 118(10), 5164–5171 (2014).
[Crossref]

John, R.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Jönssona, S. K. M.

S. K. M. Jönssona, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. D. V. D. Gon, W. R. Salaneck, and M. Fahlman, “The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,” Sythetic Met. 139(1), 1–10 (2003).
[Crossref]

Jung, Y. H.

M. J. Cho, H. G. Park, H. C. Jeong, J. W. Lee, Y. H. Jung, D. H. Kim, J. H. Kim, J. W. Lee, and D. S. Seo, “Superior fast switching of liquid crystal devices using graphene quantum dots,” Liq. Cryst. 41(6), 761–767 (2014).
[Crossref]

Kaipparettu, B. A.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Kamat, P. V.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

Kang, Y. G.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Katoh, Y.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Kim, D. H.

M. J. Cho, H. G. Park, H. C. Jeong, J. W. Lee, Y. H. Jung, D. H. Kim, J. H. Kim, J. W. Lee, and D. S. Seo, “Superior fast switching of liquid crystal devices using graphene quantum dots,” Liq. Cryst. 41(6), 761–767 (2014).
[Crossref]

J. J. Lee, H. G. Park, J. J. Han, D. H. Kim, and D. S. Seo, “Surface reformation on solution-derived zinc oxide films for liquid crystal systems via ion-beam irradiation,” J. Mater. Chem. C 1(41), 6824–6828 (2013).
[Crossref]

Kim, J. B.

H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baikk, “Ion-beam induced liquid crystal alignment on diamond-like carbon and fluorinated diamond-like carbon thin films,” Jpn. J. Appl. Phys. 44(6A), 4092–4097 (2005).
[Crossref]

Kim, J. H.

D. H. Yoo, J. H. Kim, and J. H. Kim, “Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems,” Nano Res. 7(5), 717–730 (2014).
[Crossref]

D. H. Yoo, J. H. Kim, and J. H. Kim, “Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems,” Nano Res. 7(5), 717–730 (2014).
[Crossref]

M. J. Cho, H. G. Park, H. C. Jeong, J. W. Lee, Y. H. Jung, D. H. Kim, J. H. Kim, J. W. Lee, and D. S. Seo, “Superior fast switching of liquid crystal devices using graphene quantum dots,” Liq. Cryst. 41(6), 761–767 (2014).
[Crossref]

Kim, K. C.

H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baikk, “Ion-beam induced liquid crystal alignment on diamond-like carbon and fluorinated diamond-like carbon thin films,” Jpn. J. Appl. Phys. 44(6A), 4092–4097 (2005).
[Crossref]

Kim, P.

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

Kim, S. Y.

K. C. Kwon, P. K. Son, and S. Y. Kim, “Ion beam irradiation of few-layer graphene and its application to liquid crystal cells,” Carbon 67, 352–359 (2014).
[Crossref]

Kotakoski, J.

J. Kotakoski, C. Brand, Y. Lilach, O. Cheshnovsky, C. Mangler, M. Arndt, and J. C. Meyer, “Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene,” Nano Lett. 15(9), 5944–5949 (2015).
[Crossref] [PubMed]

Kotzott, T.

P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsäss, and M. Wenderoth, “Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties,” Nano Lett. 15(8), 5110–5115 (2015).
[Crossref] [PubMed]

Kugler, T.

G. Greczynski, T. Kugler, and W. R. Salaneck, “Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy,” Thin Solid Films 354(1–2), 129–135 (1999).
[Crossref]

Kumar, A.

V. Kumar, A. Kumar, A. M. Biradar, G. B. Reddy, D. Sachdev, and R. Pasricha, “Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots,” Liq. Cryst. 41(12), 1719–1725 (2014).
[Crossref]

Kumar, V.

V. Kumar, A. Kumar, A. M. Biradar, G. B. Reddy, D. Sachdev, and R. Pasricha, “Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots,” Liq. Cryst. 41(12), 1719–1725 (2014).
[Crossref]

Kwon, B. W.

D. I. Son, B. W. Kwon, D. H. Park, W. S. Seo, Y. Yi, B. Angadi, C. L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Kwon, K. C.

K. C. Kwon, P. K. Son, and S. Y. Kim, “Ion beam irradiation of few-layer graphene and its application to liquid crystal cells,” Carbon 67, 352–359 (2014).
[Crossref]

Lacey, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Lacey, J. A.

J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

Lang, N. D.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Lee, C. L.

D. I. Son, B. W. Kwon, D. H. Park, W. S. Seo, Y. Yi, B. Angadi, C. L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Lee, J. J.

J. J. Lee, H. G. Park, J. J. Han, D. H. Kim, and D. S. Seo, “Surface reformation on solution-derived zinc oxide films for liquid crystal systems via ion-beam irradiation,” J. Mater. Chem. C 1(41), 6824–6828 (2013).
[Crossref]

Lee, J. W.

M. J. Cho, H. G. Park, H. C. Jeong, J. W. Lee, Y. H. Jung, D. H. Kim, J. H. Kim, J. W. Lee, and D. S. Seo, “Superior fast switching of liquid crystal devices using graphene quantum dots,” Liq. Cryst. 41(6), 761–767 (2014).
[Crossref]

M. J. Cho, H. G. Park, H. C. Jeong, J. W. Lee, Y. H. Jung, D. H. Kim, J. H. Kim, J. W. Lee, and D. S. Seo, “Superior fast switching of liquid crystal devices using graphene quantum dots,” Liq. Cryst. 41(6), 761–767 (2014).
[Crossref]

J. W. Lee, H. G. Park, H. C. Jeong, S. B. Jang, T. K. Park, and D. S. Seo, “High performance twisted nematic liquid crystal display with solution-derived YZO surface modification via ion-beam irradiation,” Opt. Express 22(25), 31396–31403 (2014).
[Crossref] [PubMed]

Lee, S. L.

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Lee, W. K.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Li, B.

X. Yan, X. Cui, B. Li, and L. S. Li, “Large, solution-processable graphene quantum dots as light absorbers for photovoltaics,” Nano Lett. 10(5), 1869–1873 (2010).
[Crossref] [PubMed]

Li, C.

J. Shen, Y. Zhu, X. Yang, and C. Li, “Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices,” Chem. Commun. (Camb.) 48(31), 3686–3699 (2012).
[Crossref] [PubMed]

Li, L.

L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, and J. J. Zhu, “Focusing on luminescent graphene quantum dots: current status and future perspectives,” Nanoscale 5(10), 4015–4039 (2013).
[Crossref] [PubMed]

Li, L. S.

X. Yan, X. Cui, B. Li, and L. S. Li, “Large, solution-processable graphene quantum dots as light absorbers for photovoltaics,” Nano Lett. 10(5), 1869–1873 (2010).
[Crossref] [PubMed]

Li, M. C.

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Li, Y.

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Lien, S. A.

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

Lien, S. C. A.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Lilach, Y.

J. Kotakoski, C. Brand, Y. Lilach, O. Cheshnovsky, C. Mangler, M. Arndt, and J. C. Meyer, “Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene,” Nano Lett. 15(9), 5944–5949 (2015).
[Crossref] [PubMed]

Lin, Y. J.

Y. J. Lin, J. J. Zeng, and C. L. Tsai, “Enhancement of the carrier mobility of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by incorporating reduced graphene oxide,” Appl. Phys. Lett. 101(5), 053305 (2012).
[Crossref]

Lin, Y. M.

F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref] [PubMed]

Liu, Z.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Lu, M.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Luning, J.

J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

Lüning, J.

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

Ma, J.

Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
[Crossref] [PubMed]

Maiti, K.

P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsäss, and M. Wenderoth, “Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties,” Nano Lett. 15(8), 5110–5115 (2015).
[Crossref] [PubMed]

Mangler, C.

J. Kotakoski, C. Brand, Y. Lilach, O. Cheshnovsky, C. Mangler, M. Arndt, and J. C. Meyer, “Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene,” Nano Lett. 15(9), 5944–5949 (2015).
[Crossref] [PubMed]

Marti, A. A.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Meric, I.

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

Meyer, J. C.

J. Kotakoski, C. Brand, Y. Lilach, O. Cheshnovsky, C. Mangler, M. Arndt, and J. C. Meyer, “Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene,” Nano Lett. 15(9), 5944–5949 (2015).
[Crossref] [PubMed]

Miyashita, T.

M. Mizusaki, T. Miyashita, T. Uchida, Y. Yamada, Y. Ishii, and S. Mizushima, “Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation parameters related to liquid crystal and alignment layer materials,” J. Appl. Phys. 102(1), 014904 (2007).
[Crossref]

Mizusaki, M.

M. Mizusaki, T. Miyashita, T. Uchida, Y. Yamada, Y. Ishii, and S. Mizushima, “Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation parameters related to liquid crystal and alignment layer materials,” J. Appl. Phys. 102(1), 014904 (2007).
[Crossref]

Mizushima, S.

M. Mizusaki, T. Miyashita, T. Uchida, Y. Yamada, Y. Ishii, and S. Mizushima, “Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation parameters related to liquid crystal and alignment layer materials,” J. Appl. Phys. 102(1), 014904 (2007).
[Crossref]

Mu, C.

Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
[Crossref] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Nakagaki, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Nakagawa, Y.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Nakano, H.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Nann, T.

M. Bacon, S. J. Bradley, and T. Nann, “Graphene quantum dots,” Part. Part. Syst. Charact. 31(4), 415–428 (2014).
[Crossref]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Odahara, S.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Osikowicz, W.

S. K. M. Jönssona, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. D. V. D. Gon, W. R. Salaneck, and M. Fahlman, “The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,” Sythetic Met. 139(1), 1–10 (2003).
[Crossref]

Ozyilmaz, B.

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

Park, C. J.

H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baikk, “Ion-beam induced liquid crystal alignment on diamond-like carbon and fluorinated diamond-like carbon thin films,” Jpn. J. Appl. Phys. 44(6A), 4092–4097 (2005).
[Crossref]

Park, C. M.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Park, D. H.

D. I. Son, B. W. Kwon, D. H. Park, W. S. Seo, Y. Yi, B. Angadi, C. L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Park, H. G.

H. G. Park, H. C. Jeong, T. K. Park, and D. S. Seo, “Ion-beam-irradiated solution-derived tin oxide films for liquid crystal orientation,” RSC Advances 5(3), 1918–1922 (2015).
[Crossref]

M. J. Cho, H. G. Park, H. C. Jeong, J. W. Lee, Y. H. Jung, D. H. Kim, J. H. Kim, J. W. Lee, and D. S. Seo, “Superior fast switching of liquid crystal devices using graphene quantum dots,” Liq. Cryst. 41(6), 761–767 (2014).
[Crossref]

J. W. Lee, H. G. Park, H. C. Jeong, S. B. Jang, T. K. Park, and D. S. Seo, “High performance twisted nematic liquid crystal display with solution-derived YZO surface modification via ion-beam irradiation,” Opt. Express 22(25), 31396–31403 (2014).
[Crossref] [PubMed]

J. J. Lee, H. G. Park, J. J. Han, D. H. Kim, and D. S. Seo, “Surface reformation on solution-derived zinc oxide films for liquid crystal systems via ion-beam irradiation,” J. Mater. Chem. C 1(41), 6824–6828 (2013).
[Crossref]

Park, T. K.

Pasricha, R.

V. Kumar, A. Kumar, A. M. Biradar, G. B. Reddy, D. Sachdev, and R. Pasricha, “Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots,” Liq. Cryst. 41(12), 1719–1725 (2014).
[Crossref]

Peng, F.

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Peng, J.

L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, and J. J. Zhu, “Focusing on luminescent graphene quantum dots: current status and future perspectives,” Nanoscale 5(10), 4015–4039 (2013).
[Crossref] [PubMed]

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Phillips, D. L.

Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
[Crossref] [PubMed]

Purushothaman, S.

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Qu, L.

Z. Zhang, J. Zhang, N. Chen, and L. Qu, “Graphene quantum dots: an emerging material for energy-related applications and beyond,” Energy Environ. Sci. 5(10), 8869–8890 (2012).
[Crossref]

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Reddy, G. B.

V. Kumar, A. Kumar, A. M. Biradar, G. B. Reddy, D. Sachdev, and R. Pasricha, “Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots,” Liq. Cryst. 41(12), 1719–1725 (2014).
[Crossref]

Rho, S. J.

H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baikk, “Ion-beam induced liquid crystal alignment on diamond-like carbon and fluorinated diamond-like carbon thin films,” Jpn. J. Appl. Phys. 44(6A), 4092–4097 (2005).
[Crossref]

Ritsko, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Romero-Aburto, R.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Ruan, K.

P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, and J. Jie, “Crystalline Si/graphene quantum dots heterojunction solar cells,” J. Phys. Chem. C 118(10), 5164–5171 (2014).
[Crossref]

Sachdev, D.

V. Kumar, A. Kumar, A. M. Biradar, G. B. Reddy, D. Sachdev, and R. Pasricha, “Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots,” Liq. Cryst. 41(12), 1719–1725 (2014).
[Crossref]

Saitoh, Y.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Sakai, K.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Salaneck, W. R.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

S. K. M. Jönssona, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. D. V. D. Gon, W. R. Salaneck, and M. Fahlman, “The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,” Sythetic Met. 139(1), 1–10 (2003).
[Crossref]

G. Greczynski, T. Kugler, and W. R. Salaneck, “Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy,” Thin Solid Films 354(1–2), 129–135 (1999).
[Crossref]

Samant, M.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Samant, M. G.

J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

Satoh, H.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Seger, B.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

Seo, D. S.

H. G. Park, H. C. Jeong, T. K. Park, and D. S. Seo, “Ion-beam-irradiated solution-derived tin oxide films for liquid crystal orientation,” RSC Advances 5(3), 1918–1922 (2015).
[Crossref]

M. J. Cho, H. G. Park, H. C. Jeong, J. W. Lee, Y. H. Jung, D. H. Kim, J. H. Kim, J. W. Lee, and D. S. Seo, “Superior fast switching of liquid crystal devices using graphene quantum dots,” Liq. Cryst. 41(6), 761–767 (2014).
[Crossref]

J. W. Lee, H. G. Park, H. C. Jeong, S. B. Jang, T. K. Park, and D. S. Seo, “High performance twisted nematic liquid crystal display with solution-derived YZO surface modification via ion-beam irradiation,” Opt. Express 22(25), 31396–31403 (2014).
[Crossref] [PubMed]

J. J. Lee, H. G. Park, J. J. Han, D. H. Kim, and D. S. Seo, “Surface reformation on solution-derived zinc oxide films for liquid crystal systems via ion-beam irradiation,” J. Mater. Chem. C 1(41), 6824–6828 (2013).
[Crossref]

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Seo, W. S.

D. I. Son, B. W. Kwon, D. H. Park, W. S. Seo, Y. Yi, B. Angadi, C. L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Shen, J.

J. Shen, Y. Zhu, X. Yang, and C. Li, “Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices,” Chem. Commun. (Camb.) 48(31), 3686–3699 (2012).
[Crossref] [PubMed]

Shepard, K. L.

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

Shi, G.

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Shiota, Y.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Sinterhauf, A.

P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsäss, and M. Wenderoth, “Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties,” Nano Lett. 15(8), 5110–5115 (2015).
[Crossref] [PubMed]

Son, D. I.

D. I. Son, B. W. Kwon, D. H. Park, W. S. Seo, Y. Yi, B. Angadi, C. L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Son, P. K.

K. C. Kwon, P. K. Son, and S. Y. Kim, “Ion beam irradiation of few-layer graphene and its application to liquid crystal cells,” Carbon 67, 352–359 (2014).
[Crossref]

Song, L.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Speidell, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Speidell, J. L.

J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Stohr, J.

J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

Stöhr, J.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

Sun, B.

P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, and J. Jie, “Crystalline Si/graphene quantum dots heterojunction solar cells,” J. Phys. Chem. C 118(10), 5164–5171 (2014).
[Crossref]

Sung, J. W.

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Teng, C. Y.

T. F. Yeh, C. Y. Teng, S. J. Chen, and H. Teng, “Nitrogen-Doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination,” Adv. Mater. 26(20), 3297–3303 (2014).
[Crossref] [PubMed]

Teng, H.

T. F. Yeh, C. Y. Teng, S. J. Chen, and H. Teng, “Nitrogen-Doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination,” Adv. Mater. 26(20), 3297–3303 (2014).
[Crossref] [PubMed]

Thakur, S.

P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsäss, and M. Wenderoth, “Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties,” Nano Lett. 15(8), 5110–5115 (2015).
[Crossref] [PubMed]

Tsai, C. L.

Y. J. Lin, J. J. Zeng, and C. L. Tsai, “Enhancement of the carrier mobility of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by incorporating reduced graphene oxide,” Appl. Phys. Lett. 101(5), 053305 (2012).
[Crossref]

Tsai, W. C.

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Uchida, T.

M. Mizusaki, T. Miyashita, T. Uchida, Y. Yamada, Y. Ishii, and S. Mizushima, “Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation parameters related to liquid crystal and alignment layer materials,” J. Appl. Phys. 102(1), 014904 (2007).
[Crossref]

Van der Auweraer, M.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

van Haesendonck, C.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Vithayathil, S. A.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Volodin, A.

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Wang, E.

W. Fu, Z. Xu, X. Bai, C. Gu, and E. Wang, “Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor,” Nano Lett. 9(3), 921–925 (2009).
[Crossref] [PubMed]

Wang, Y.

P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, and J. Jie, “Crystalline Si/graphene quantum dots heterojunction solar cells,” J. Phys. Chem. C 118(10), 5164–5171 (2014).
[Crossref]

Wang, Z.

Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
[Crossref] [PubMed]

Weikert, S.

P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsäss, and M. Wenderoth, “Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties,” Nano Lett. 15(8), 5110–5115 (2015).
[Crossref] [PubMed]

Wenderoth, M.

P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsäss, and M. Wenderoth, “Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties,” Nano Lett. 15(8), 5110–5115 (2015).
[Crossref] [PubMed]

Williams, G.

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

Willke, P.

P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsäss, and M. Wenderoth, “Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties,” Nano Lett. 15(8), 5110–5115 (2015).
[Crossref] [PubMed]

Wu, G.

L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, and J. J. Zhu, “Focusing on luminescent graphene quantum dots: current status and future perspectives,” Nanoscale 5(10), 4015–4039 (2013).
[Crossref] [PubMed]

Wu, S. T.

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Xia, F.

F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref] [PubMed]

Xu, D.

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Xu, Z.

W. Fu, Z. Xu, X. Bai, C. Gu, and E. Wang, “Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor,” Nano Lett. 9(3), 921–925 (2009).
[Crossref] [PubMed]

Yamada, Y.

M. Mizusaki, T. Miyashita, T. Uchida, Y. Yamada, Y. Ishii, and S. Mizushima, “Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation parameters related to liquid crystal and alignment layer materials,” J. Appl. Phys. 102(1), 014904 (2007).
[Crossref]

Yan, H.

Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
[Crossref] [PubMed]

Yan, X.

X. Yan, X. Cui, B. Li, and L. S. Li, “Large, solution-processable graphene quantum dots as light absorbers for photovoltaics,” Nano Lett. 10(5), 1869–1873 (2010).
[Crossref] [PubMed]

Yang, G.

L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, and J. J. Zhu, “Focusing on luminescent graphene quantum dots: current status and future perspectives,” Nanoscale 5(10), 4015–4039 (2013).
[Crossref] [PubMed]

Yang, K. H.

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Yang, S.

Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
[Crossref] [PubMed]

Yang, X.

J. Shen, Y. Zhu, X. Yang, and C. Li, “Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices,” Chem. Commun. (Camb.) 48(31), 3686–3699 (2012).
[Crossref] [PubMed]

Yeh, T. F.

T. F. Yeh, C. Y. Teng, S. J. Chen, and H. Teng, “Nitrogen-Doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination,” Adv. Mater. 26(20), 3297–3303 (2014).
[Crossref] [PubMed]

Yi, Y.

D. I. Son, B. W. Kwon, D. H. Park, W. S. Seo, Y. Yi, B. Angadi, C. L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Yoo, D. H.

D. H. Yoo, J. H. Kim, and J. H. Kim, “Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems,” Nano Res. 7(5), 717–730 (2014).
[Crossref]

Young, A. F.

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

Yuan, J.

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

Zeng, J. J.

Y. J. Lin, J. J. Zeng, and C. L. Tsai, “Enhancement of the carrier mobility of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by incorporating reduced graphene oxide,” Appl. Phys. Lett. 101(5), 053305 (2012).
[Crossref]

Zhan, X.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Zhang, J.

Z. Zhang, J. Zhang, N. Chen, and L. Qu, “Graphene quantum dots: an emerging material for energy-related applications and beyond,” Energy Environ. Sci. 5(10), 8869–8890 (2012).
[Crossref]

Zhang, Q.

P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, and J. Jie, “Crystalline Si/graphene quantum dots heterojunction solar cells,” J. Phys. Chem. C 118(10), 5164–5171 (2014).
[Crossref]

Zhang, Z.

Z. Zhang, J. Zhang, N. Chen, and L. Qu, “Graphene quantum dots: an emerging material for energy-related applications and beyond,” Energy Environ. Sci. 5(10), 8869–8890 (2012).
[Crossref]

Zhao, J.

L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, and J. J. Zhu, “Focusing on luminescent graphene quantum dots: current status and future perspectives,” Nanoscale 5(10), 4015–4039 (2013).
[Crossref] [PubMed]

Zhao, Y.

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

Zhu, J. J.

L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, and J. J. Zhu, “Focusing on luminescent graphene quantum dots: current status and future perspectives,” Nanoscale 5(10), 4015–4039 (2013).
[Crossref] [PubMed]

Zhu, J.-J.

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Zhu, Y.

J. Shen, Y. Zhu, X. Yang, and C. Li, “Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices,” Chem. Commun. (Camb.) 48(31), 3686–3699 (2012).
[Crossref] [PubMed]

Zhu, Z.

Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
[Crossref] [PubMed]

ACS Nano (1)

G. Williams, B. Seger, and P. V. Kamat, “TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide,” ACS Nano 2(7), 1487–1491 (2008).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

W. K. Lee, Y. S. Choi, Y. G. Kang, J. W. Sung, D. S. Seo, and C. M. Park, “Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks,” Adv. Funct. Mater. 21(20), 3843–3850 (2011).
[Crossref]

Adv. Mater. (2)

Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Adv. Mater. 23(6), 776–780 (2011).
[Crossref] [PubMed]

T. F. Yeh, C. Y. Teng, S. J. Chen, and H. Teng, “Nitrogen-Doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination,” Adv. Mater. 26(20), 3297–3303 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. J. Lin, J. J. Zeng, and C. L. Tsai, “Enhancement of the carrier mobility of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by incorporating reduced graphene oxide,” Appl. Phys. Lett. 101(5), 053305 (2012).
[Crossref]

Carbon (1)

K. C. Kwon, P. K. Son, and S. Y. Kim, “Ion beam irradiation of few-layer graphene and its application to liquid crystal cells,” Carbon 67, 352–359 (2014).
[Crossref]

Chem. Commun. (Camb.) (1)

J. Shen, Y. Zhu, X. Yang, and C. Li, “Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices,” Chem. Commun. (Camb.) 48(31), 3686–3699 (2012).
[Crossref] [PubMed]

Chem. Mater. (1)

X. Crispin, F. L. E. Jakobsson, A. Crispin, P. C. M. Grim, P. Andersson, A. Volodin, C. van Haesendonck, M. Van der Auweraer, W. R. Salaneck, and M. Berggren, “The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes,” Chem. Mater. 18(18), 4354–4360 (2006).
[Crossref]

Energy Environ. Sci. (1)

Z. Zhang, J. Zhang, N. Chen, and L. Qu, “Graphene quantum dots: an emerging material for energy-related applications and beyond,” Energy Environ. Sci. 5(10), 8869–8890 (2012).
[Crossref]

J. Am. Chem. Soc. (1)

Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H. Yan, D. L. Phillips, and S. Yang, “Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots,” J. Am. Chem. Soc. 136(10), 3760–3763 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (3)

S. Aisenberg and R. Chabot, “Ion-beam deposition of thin films of diamondlike carbon,” J. Appl. Phys. 42(7), 2953 (1971).
[Crossref]

D. Xu, F. Peng, H. Chen, J. Yuan, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “Image sticking in liquid crystal displays with lateral electric fields,” J. Appl. Phys. 116(19), 193102 (2014).
[Crossref]

M. Mizusaki, T. Miyashita, T. Uchida, Y. Yamada, Y. Ishii, and S. Mizushima, “Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation parameters related to liquid crystal and alignment layer materials,” J. Appl. Phys. 102(1), 014904 (2007).
[Crossref]

J. Mater. Chem. C (1)

J. J. Lee, H. G. Park, J. J. Han, D. H. Kim, and D. S. Seo, “Surface reformation on solution-derived zinc oxide films for liquid crystal systems via ion-beam irradiation,” J. Mater. Chem. C 1(41), 6824–6828 (2013).
[Crossref]

J. Phys. Chem. C (1)

P. Gao, K. Ding, Y. Wang, K. Ruan, S. Diao, Q. Zhang, B. Sun, and J. Jie, “Crystalline Si/graphene quantum dots heterojunction solar cells,” J. Phys. Chem. C 118(10), 5164–5171 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baikk, “Ion-beam induced liquid crystal alignment on diamond-like carbon and fluorinated diamond-like carbon thin films,” Jpn. J. Appl. Phys. 44(6A), 4092–4097 (2005).
[Crossref]

Liq. Cryst. (2)

M. J. Cho, H. G. Park, H. C. Jeong, J. W. Lee, Y. H. Jung, D. H. Kim, J. H. Kim, J. W. Lee, and D. S. Seo, “Superior fast switching of liquid crystal devices using graphene quantum dots,” Liq. Cryst. 41(6), 761–767 (2014).
[Crossref]

V. Kumar, A. Kumar, A. M. Biradar, G. B. Reddy, D. Sachdev, and R. Pasricha, “Enhancement of electro-optical response of ferroelectric liquid crystal: the role of graphene quantum dots,” Liq. Cryst. 41(12), 1719–1725 (2014).
[Crossref]

Nano Lett. (6)

P. Willke, J. A. Amani, A. Sinterhauf, S. Thakur, T. Kotzott, T. Druga, S. Weikert, K. Maiti, H. Hofsäss, and M. Wenderoth, “Doping of graphene by low-energy ion beam implantation: structural, electronic, and transport properties,” Nano Lett. 15(8), 5110–5115 (2015).
[Crossref] [PubMed]

J. Kotakoski, C. Brand, Y. Lilach, O. Cheshnovsky, C. Mangler, M. Arndt, and J. C. Meyer, “Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene,” Nano Lett. 15(9), 5944–5949 (2015).
[Crossref] [PubMed]

X. Yan, X. Cui, B. Li, and L. S. Li, “Large, solution-processable graphene quantum dots as light absorbers for photovoltaics,” Nano Lett. 10(5), 1869–1873 (2010).
[Crossref] [PubMed]

W. Fu, Z. Xu, X. Bai, C. Gu, and E. Wang, “Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor,” Nano Lett. 9(3), 921–925 (2009).
[Crossref] [PubMed]

F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10(2), 715–718 (2010).
[Crossref] [PubMed]

J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.-J. Zhu, and P. M. Ajayan, “Graphene Quantum dots derived from carbon fibers,” Nano Lett. 12(2), 844–849 (2012).
[Crossref] [PubMed]

Nano Res. (1)

D. H. Yoo, J. H. Kim, and J. H. Kim, “Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems,” Nano Res. 7(5), 717–730 (2014).
[Crossref]

Nanoscale (1)

L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, and J. J. Zhu, “Focusing on luminescent graphene quantum dots: current status and future perspectives,” Nanoscale 5(10), 4015–4039 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” Nat. Nanotechnol. 3(11), 654–659 (2008).
[Crossref] [PubMed]

D. I. Son, B. W. Kwon, D. H. Park, W. S. Seo, Y. Yi, B. Angadi, C. L. Lee, and W. K. Choi, “Emissive ZnO-graphene quantum dots for white-light-emitting diodes,” Nat. Nanotechnol. 7(7), 465–471 (2012).
[Crossref] [PubMed]

Nature (1)

P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S. C. A. Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K. H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411(6833), 56–59 (2001).
[Crossref] [PubMed]

Opt. Express (1)

Part. Part. Syst. Charact. (1)

M. Bacon, S. J. Bradley, and T. Nann, “Graphene quantum dots,” Part. Part. Syst. Charact. 31(4), 415–428 (2014).
[Crossref]

RSC Advances (1)

H. G. Park, H. C. Jeong, T. K. Park, and D. S. Seo, “Ion-beam-irradiated solution-derived tin oxide films for liquid crystal orientation,” RSC Advances 5(3), 1918–1922 (2015).
[Crossref]

Science (3)

J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292(5525), 2299–2302 (2001).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Sythetic Met. (1)

S. K. M. Jönssona, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. D. V. D. Gon, W. R. Salaneck, and M. Fahlman, “The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,” Sythetic Met. 139(1), 1–10 (2003).
[Crossref]

Thin Solid Films (1)

G. Greczynski, T. Kugler, and W. R. Salaneck, “Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy,” Thin Solid Films 354(1–2), 129–135 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Transmittance comparison of a PEDOT:PSS layer and various amount of GQDs doped PEDOT:PSS composite layers. TEM images of GQDs (b) dispersed in water (as received without any modification); (c) doped in PEDOT:PSS (0.5 mg/ml).
Fig. 2
Fig. 2 AFM images of (a) a PEDOT:PSS layer; (b) a 1.2 keV IB-spurted GQDs (0.2 mg/mL)/PEDOT:PSS layer; (c) a 0.6 keV IB-spurted GQDs (0.5 mg/mL)/PEDOT:PSS layer; and (d) a 0.6 keV IB-spurted GQDs (1.0 mg/mL)/PEDOT:PSS layer; and (e) the corresponding roughness comparison.
Fig. 3
Fig. 3 XPS results for (a) S 2p and (b) C 1 s core levels of PEDOT:PSS layer, 1.2 keV IB-spurted PEDOT:PSS layer, 0.6 keV IB-spurted GQDs (0.2 mg/mL)/PEDOT:PSS layer, and 0.6 keV IB-spurted GQDs (1.0 mg/mL)/PEDOT:PSS layer.
Fig. 4
Fig. 4 Polarized optical images and the corresponding pretilt angle measurement result of unequal-IB-spurted PEDOT/PSS alignment layer cells and GQDs-doped PEDOT:PSS alignment layers cells (“A” denotes “analyzer” and “P” denotes “polarizer,” and the red arrow indicates the direction of IB spurting).
Fig. 5
Fig. 5 (a) Voltage-dependent transmittance curves (b) rising and decaying response time of a rubbed PI alignment layer cell; a 1.2 keV IB-spurted PEDOT:PSS alignment layer cell; and a 0.6 keV IB-spurted GQDs (1.0 mg/mL)/PEDOT:PSS alignment layer cell.
Fig. 6
Fig. 6 C–V characteristics of the cell with (a) rubbed PI alignment layers; (b) 1.2 keV IB-spurted PEDOT:PSS alignment layers; (c) 1.2 keV IB-spurted GQDs (0.2 mg/mL)/PEDOT:PSS alignment layers; (d) 0.6 keV IB-spurted GQDs (0.5 mg/mL)/PEDOT:PSS alignment layers; and (e) 0.6 keV IB-spurted GQDs (1.0 mg/mL)/PEDOT:PSS alignment layers.

Tables (2)

Tables Icon

Table 1 Threshold voltage, rising and decaying response time of a rubbed PI alignment layer cell, 1.2 keV IB-spurted PEDOT:PSS alignment layer cell, a 1.2 keV IB-spurted GQDs (0.2 mg/mL)/PEDOT:PSS alignment layers cell; a 0.6 keV IB-spurted GQDs (0.5 mg/mL)/PEDOT:PSS alignment layer cells; and a 0.6 keV IB-spurted GQDs (1.0 mg/mL)/PEDOT:PSS alignment layer cells. Vth presents for threshold voltage, τr presents for rising time, τd presents for the decaying time, and τ presents for the total response time.

Tables Icon

Table 2 Residual DC (RDC) of a rubbed PI alignment layer cell, 1.2 keV IB-spurted PEDOT:PSS alignment layer cell, a 1.2 keV IB-spurted GQDs (0.2 mg/mL)/PEDOT:PSS alignment layers cell; a 0.6 keV IB-spurted GQDs (0.5 mg/mL)/PEDOT:PSS alignment layer cells; and a 0.6 keV IB-spurted GQDs (1.0 mg/mL)/PEDOT:PSS alignment layer cells

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R D C = R D C P l u s + R D C M inus 2

Metrics