Abstract

The intention of this paper is to study the physical mechanism underlying the response of gold nanoparticle (AuNP) dimers to a near-infrared off-resonance femtosecond pulse laser in aqueous medium. We show that the strongly localized field enhancement in the gap distance and around nanoparticles significantly reduces the laser fluence threshold to achieve an optical breakdown in comparison with an AuNP monomer. This optical breakdown results from highly localized plasma in surrounding media where the nanoparticles stay intact. Also the impact of the gap distance, field polarization, laser fluence and pulse duration on the energy deposition in plasma is presented. These results can be used to make nanoscale plasmonic devices for variety of absorption-based applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical study on femtosecond laser optical breakdown threshold in water mediated by aluminum nanoparticle coated with silica

Qing Lin, Naifei Ren, Yunpeng Ren, Yan Chen, Zhiduo Xin, Yongsheng Fan, Xudong Ren, and Lin Li
Opt. Express 26(26) 34200-34213 (2018)

Plasmonic trapping and tuning of a gold nanoparticle dimer

Zhe Shen and Lei Su
Opt. Express 24(5) 4801-4811 (2016)

Filamentary plasma grating induced by interference of two femtosecond laser pulses in water

Fengjiang Liu, Shuai Yuan, Boqu He, Junyi Nan, Mengci Jiang, Abdul Qayyum Khan, Liang’en Ding, Jiaxin Yu, and Heping Zeng
Opt. Express 25(19) 22303-22311 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
    [Crossref]
  2. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
    [Crossref] [PubMed]
  3. S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010).
    [Crossref] [PubMed]
  4. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
    [Crossref]
  5. S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10(2), 632–637 (2010).
    [Crossref] [PubMed]
  6. Y. D. Fernandez, L. Sun, T. Gschneidtner, and K. Moth-Poulsen, “Research update: progress in synthesis of nanoparticle dimers by self-assembly,” APL Mat. 2(1), 010702 (2014).
    [Crossref]
  7. J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale 3(4), 1304–1315 (2011).
    [Crossref] [PubMed]
  8. E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
    [Crossref] [PubMed]
  9. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [Crossref]
  10. E. Boulais, R. Lachaine, A. Hatef, and M. Meunier, “Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications,” J. Photochem. Photobiol. C: Photochemistry Reviews 17, 26–49 (2013).
    [Crossref]
  11. R. Lachaine, É. Boulais, and M. Meunier, “From Thermo- to Plasma-Mediated Ultrafast Laser-Induced Plasmonic Nanobubbles,” ACS Photonics 1(4), 331–336 (2014).
    [Crossref]
  12. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  13. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [Crossref] [PubMed]
  14. E. P. Furlani, I. H. Karampelas, and Q. Xie, “Analysis of pulsed laser plasmon-assisted photothermal heating and bubble generation at the nanoscale,” Lab Chip - Miniaturisation for Chemistry and Biology 12, 3707–3719 (2012).
    [Crossref]
  15. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
    [Crossref] [PubMed]
  16. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
    [Crossref]
  17. O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
    [Crossref] [PubMed]
  18. D. Werner and S. Hashimoto, “Improved working model for interpreting the excitation wavelength- and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115(12), 5063–5072 (2011).
    [Crossref]
  19. G. Bisker and D. Yelin, “Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis,” J. Opt. Soc. Am. B 29(6), 1383–1393 (2012).
    [Crossref]
  20. C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobioscience 7(3), 206–214 (2008).
    [Crossref] [PubMed]
  21. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
    [Crossref] [PubMed]
  22. L. Hallo, A. Bourgeade, V. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
    [Crossref]
  23. N. E. Andreev, M. E. Veisman, V. P. Efremov, and V. E. Fortov, “The generation of a dense hot plasma by intense subpicosecond laser pulses,” High Temp. 41(5), 594–608 (2003).
    [Crossref]

2014 (2)

Y. D. Fernandez, L. Sun, T. Gschneidtner, and K. Moth-Poulsen, “Research update: progress in synthesis of nanoparticle dimers by self-assembly,” APL Mat. 2(1), 010702 (2014).
[Crossref]

R. Lachaine, É. Boulais, and M. Meunier, “From Thermo- to Plasma-Mediated Ultrafast Laser-Induced Plasmonic Nanobubbles,” ACS Photonics 1(4), 331–336 (2014).
[Crossref]

2013 (1)

E. Boulais, R. Lachaine, A. Hatef, and M. Meunier, “Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications,” J. Photochem. Photobiol. C: Photochemistry Reviews 17, 26–49 (2013).
[Crossref]

2012 (2)

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

G. Bisker and D. Yelin, “Noble-metal nanoparticles and short pulses for nanomanipulations: theoretical analysis,” J. Opt. Soc. Am. B 29(6), 1383–1393 (2012).
[Crossref]

2011 (3)

D. Werner and S. Hashimoto, “Improved working model for interpreting the excitation wavelength- and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115(12), 5063–5072 (2011).
[Crossref]

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale 3(4), 1304–1315 (2011).
[Crossref] [PubMed]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011).
[Crossref] [PubMed]

2010 (3)

S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010).
[Crossref] [PubMed]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10(2), 632–637 (2010).
[Crossref] [PubMed]

2009 (1)

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

2008 (2)

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[Crossref] [PubMed]

C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobioscience 7(3), 206–214 (2008).
[Crossref] [PubMed]

2007 (2)

L. Hallo, A. Bourgeade, V. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

2005 (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

2004 (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

2003 (2)

N. E. Andreev, M. E. Veisman, V. P. Efremov, and V. E. Fortov, “The generation of a dense hot plasma by intense subpicosecond laser pulses,” High Temp. 41(5), 594–608 (2003).
[Crossref]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

1999 (1)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Alivisatos, A. P.

S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010).
[Crossref] [PubMed]

Alvarez-Puebla, R. A.

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale 3(4), 1304–1315 (2011).
[Crossref] [PubMed]

Andreev, N. E.

N. E. Andreev, M. E. Veisman, V. P. Efremov, and V. E. Fortov, “The generation of a dense hot plasma by intense subpicosecond laser pulses,” High Temp. 41(5), 594–608 (2003).
[Crossref]

Ben-Yakar, A.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[Crossref] [PubMed]

Bisker, G.

Boulais, E.

E. Boulais, R. Lachaine, A. Hatef, and M. Meunier, “Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications,” J. Photochem. Photobiol. C: Photochemistry Reviews 17, 26–49 (2013).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

Boulais, É.

R. Lachaine, É. Boulais, and M. Meunier, “From Thermo- to Plasma-Mediated Ultrafast Laser-Induced Plasmonic Nanobubbles,” ACS Photonics 1(4), 331–336 (2014).
[Crossref]

Bourgeade, A.

L. Hallo, A. Bourgeade, V. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

Breil, J.

L. Hallo, A. Bourgeade, V. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

Chen, H.-Y.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10(2), 632–637 (2010).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Durr, N. J.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[Crossref] [PubMed]

Efremov, V. P.

N. E. Andreev, M. E. Veisman, V. P. Efremov, and V. E. Fortov, “The generation of a dense hot plasma by intense subpicosecond laser pulses,” High Temp. 41(5), 594–608 (2003).
[Crossref]

Ekici, O.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Eversole, D. S.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[Crossref] [PubMed]

Fernandez, Y. D.

Y. D. Fernandez, L. Sun, T. Gschneidtner, and K. Moth-Poulsen, “Research update: progress in synthesis of nanoparticle dimers by self-assembly,” APL Mat. 2(1), 010702 (2014).
[Crossref]

Fortov, V. E.

N. E. Andreev, M. E. Veisman, V. P. Efremov, and V. E. Fortov, “The generation of a dense hot plasma by intense subpicosecond laser pulses,” High Temp. 41(5), 594–608 (2003).
[Crossref]

Gschneidtner, T.

Y. D. Fernandez, L. Sun, T. Gschneidtner, and K. Moth-Poulsen, “Research update: progress in synthesis of nanoparticle dimers by self-assembly,” APL Mat. 2(1), 010702 (2014).
[Crossref]

Gwo, S.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10(2), 632–637 (2010).
[Crossref] [PubMed]

Hallo, L.

L. Hallo, A. Bourgeade, V. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Harrison, R. K.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[Crossref] [PubMed]

Hashimoto, S.

D. Werner and S. Hashimoto, “Improved working model for interpreting the excitation wavelength- and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115(12), 5063–5072 (2011).
[Crossref]

Hatef, A.

E. Boulais, R. Lachaine, A. Hatef, and M. Meunier, “Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications,” J. Photochem. Photobiol. C: Photochemistry Reviews 17, 26–49 (2013).
[Crossref]

He, C.-L.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10(2), 632–637 (2010).
[Crossref] [PubMed]

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010).
[Crossref] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jun, Y. W.

S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010).
[Crossref] [PubMed]

Kanehara, M.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10(2), 632–637 (2010).
[Crossref] [PubMed]

Kobori, H.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10(2), 632–637 (2010).
[Crossref] [PubMed]

Lachaine, R.

R. Lachaine, É. Boulais, and M. Meunier, “From Thermo- to Plasma-Mediated Ultrafast Laser-Induced Plasmonic Nanobubbles,” ACS Photonics 1(4), 331–336 (2014).
[Crossref]

E. Boulais, R. Lachaine, A. Hatef, and M. Meunier, “Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications,” J. Photochem. Photobiol. C: Photochemistry Reviews 17, 26–49 (2013).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

Lee, M.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[Crossref] [PubMed]

Li, B. Q.

C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobioscience 7(3), 206–214 (2008).
[Crossref] [PubMed]

Li, C.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10(2), 632–637 (2010).
[Crossref] [PubMed]

Lin, M.-H.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10(2), 632–637 (2010).
[Crossref] [PubMed]

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

Liu, C.

C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobioscience 7(3), 206–214 (2008).
[Crossref] [PubMed]

Liz-Marzán, L. M.

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale 3(4), 1304–1315 (2011).
[Crossref] [PubMed]

Meunier, M.

R. Lachaine, É. Boulais, and M. Meunier, “From Thermo- to Plasma-Mediated Ultrafast Laser-Induced Plasmonic Nanobubbles,” ACS Photonics 1(4), 331–336 (2014).
[Crossref]

E. Boulais, R. Lachaine, A. Hatef, and M. Meunier, “Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications,” J. Photochem. Photobiol. C: Photochemistry Reviews 17, 26–49 (2013).
[Crossref]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

Mezel, C.

L. Hallo, A. Bourgeade, V. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

Mi, C. C.

C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobioscience 7(3), 206–214 (2008).
[Crossref] [PubMed]

Moth-Poulsen, K.

Y. D. Fernandez, L. Sun, T. Gschneidtner, and K. Moth-Poulsen, “Research update: progress in synthesis of nanoparticle dimers by self-assembly,” APL Mat. 2(1), 010702 (2014).
[Crossref]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Nordlander, P.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

Romo-Herrera, J. M.

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale 3(4), 1304–1315 (2011).
[Crossref] [PubMed]

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Sheikholeslami, S.

S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010).
[Crossref] [PubMed]

Stockman, M. I.

Sun, L.

Y. D. Fernandez, L. Sun, T. Gschneidtner, and K. Moth-Poulsen, “Research update: progress in synthesis of nanoparticle dimers by self-assembly,” APL Mat. 2(1), 010702 (2014).
[Crossref]

Teranishi, T.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10(2), 632–637 (2010).
[Crossref] [PubMed]

Tikhonchuk, V.

L. Hallo, A. Bourgeade, V. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

Veisman, M. E.

N. E. Andreev, M. E. Veisman, V. P. Efremov, and V. E. Fortov, “The generation of a dense hot plasma by intense subpicosecond laser pulses,” High Temp. 41(5), 594–608 (2003).
[Crossref]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

Werner, D.

D. Werner and S. Hashimoto, “Improved working model for interpreting the excitation wavelength- and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115(12), 5063–5072 (2011).
[Crossref]

Yang, S.-C.

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10(2), 632–637 (2010).
[Crossref] [PubMed]

Yelin, D.

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

ACS Photonics (1)

R. Lachaine, É. Boulais, and M. Meunier, “From Thermo- to Plasma-Mediated Ultrafast Laser-Induced Plasmonic Nanobubbles,” ACS Photonics 1(4), 331–336 (2014).
[Crossref]

APL Mat. (1)

Y. D. Fernandez, L. Sun, T. Gschneidtner, and K. Moth-Poulsen, “Research update: progress in synthesis of nanoparticle dimers by self-assembly,” APL Mat. 2(1), 010702 (2014).
[Crossref]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[Crossref]

Chem. Phys. Lett. (1)

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487(4-6), 153–164 (2010).
[Crossref]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[Crossref] [PubMed]

High Temp. (1)

N. E. Andreev, M. E. Veisman, V. P. Efremov, and V. E. Fortov, “The generation of a dense hot plasma by intense subpicosecond laser pulses,” High Temp. 41(5), 594–608 (2003).
[Crossref]

IEEE Trans. Nanobioscience (1)

C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobioscience 7(3), 206–214 (2008).
[Crossref] [PubMed]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. C: Photochemistry Reviews (1)

E. Boulais, R. Lachaine, A. Hatef, and M. Meunier, “Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications,” J. Photochem. Photobiol. C: Photochemistry Reviews 17, 26–49 (2013).
[Crossref]

J. Phys. Chem. B (1)

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999).
[Crossref]

J. Phys. Chem. C (1)

D. Werner and S. Hashimoto, “Improved working model for interpreting the excitation wavelength- and fluence-dependent response in pulsed laser-induced size reduction of aqueous gold nanoparticles,” J. Phys. Chem. C 115(12), 5063–5072 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D Appl. Phys. 41(18), 185501 (2008).
[Crossref] [PubMed]

Nano Lett. (5)

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9(2), 887–891 (2009).
[Crossref] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10(7), 2655–2660 (2010).
[Crossref] [PubMed]

E. Boulais, R. Lachaine, and M. Meunier, “Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation,” Nano Lett. 12(9), 4763–4769 (2012).
[Crossref] [PubMed]

S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10(2), 632–637 (2010).
[Crossref] [PubMed]

Nanoscale (1)

J. M. Romo-Herrera, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Controlled assembly of plasmonic colloidal nanoparticle clusters,” Nanoscale 3(4), 1304–1315 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (2)

L. Hallo, A. Bourgeade, V. Tikhonchuk, C. Mezel, and J. Breil, “Model and numerical simulations of the propagation and absorption of a short laser pulse in a transparent dielectric material: Blast-wave launch and cavity formation,” Phys. Rev. B 76(2), 024101 (2007).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Other (1)

E. P. Furlani, I. H. Karampelas, and Q. Xie, “Analysis of pulsed laser plasmon-assisted photothermal heating and bubble generation at the nanoscale,” Lab Chip - Miniaturisation for Chemistry and Biology 12, 3707–3719 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Electric FE distribution cross-sections of 100 nm AuNP dimer with gap distances of d = 10 nm, (b) AuNP monomer for longitudinal polarization at off-resonance wavelength λ = 800 nm. The right inset shows their correspondence FE cross-section on top surface. The color legend on the right shows the magnitude of the FE. (c) and (d) show FEM calculation of scattering, absorption and extinction cross sections as a function of the incident laser wavelength for AuNP dimer and monomer, respectively.
Fig. 2
Fig. 2 Electric FE of (a) 100 nm AuNP dimer versus gap distances, (b) AuNP dimer versus diameter of a gap distance of d = 10 nm at off-resonance wavelength λ = 800 nm.
Fig. 3
Fig. 3 (a) Temperature profile in water surrounding of AuNP dimer absorbing a linear 45 fs laser pulse with a fluence of 50 mJ/cm2 at wavelength λ = 800 nm 600 ps after pulse peak. (b) Temperature profiles at 600 ps after pulse peak as a function of radial distance in the length of the AuNP dimer at the z = 0 plane. (c) Time dependent temperature evolution of electrons (ΔTe), lattice (ΔTl) and water temperature (ΔTm) at the AuNP-water interface, for a linear (dashed curve) and circular (dotted curve) field polarization. The inset shows the laser intensity profile.
Fig. 4
Fig. 4 Energy deposition in pJ on (a) induced plasma around and (b) in 100 nm AuNP monomer and dimer versus laser fluence with 45 fs width at 800 nm. Dashed and circular points show the linear and circular polarization, respectively.
Fig. 5
Fig. 5 (a) and (b) energy deposition in pJ in surrounding AuNP dimer plasma versus dimer gap distance with variable fluence 10 – 50 mJ/cm2 at 800 nm for the linear and circular polarization, respectively.
Fig. 6
Fig. 6 (a) and (b) Energy deposition in pJ in surrounding AuNP dimer plasma versus laser fluence variable AuNP diameter 60 nm to 120 nm for the linear and circular polarization, respectively.
Fig. 7
Fig. 7 (a) and (b) Energy deposition in pJ in surrounding AuNP dimer plasma versus laser fluence variable width 50 – 300 fs at 800 nm for the linear and circular polarization, respectively.
Fig. 8
Fig. 8 Calculation of scattering, absorption and extinction cross sections as a function of the incident laser wavelength for AuNP 100 nm dimer with gap distances of d = 10 nm (solid curve), d = 20 nm (dotted curve) and d = 30 nm (dashed curve). The incident laser field has longitudinal polarization at off-resonance wavelength λ = 800 nm.
Fig. 9
Fig. 9 Energy deposition on induced plasma around 100 nm AuNP dimer versus pulsed laser fluence with 45 fs width for on (λ = 800 nm) and off (λ = 680 nm) resonance. Dashed and circular points show the linear and circular polarization, respectively.

Tables (1)

Tables Icon

Table 1 Energy deposition in pJ in surrounding AuNP dimer plasma for a linearly polarized 45 fs pulsed laser with fluence of 50 mJ/cm2 and AuNP diameter 60 nm to 120 nm.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

×( μ r 1 × E ) k 0 2 ( ε r j σ ω ) E =0
ε= ε n e e 2 ϵ 0 m( ω 2 + jωγ c )
Q scat = 1 2 Re[ E scat × H scat ·  n ds ]
Q abs = 1 2 Re[ E tot × H tot ·  n ds ]
I( t )= F L 2π t σ  exp( [ t t 0 ] 2 2 t σ 2 )
C e ( T e ) T e ( r,t ) t = · ( k e  · Δ T e ( r,t ) )G · [ T e (r,t) T l (r,t) ]+S( t )
C l ( T l ) T l ( r,t ) t = · ( k l  · Δ T l ( r,t ) )G · [ T e ( r,t ) T el ( r,t ) ]F 
ρ m ( r ) C m ( r ) T m ( r,t ) t = · ( k m  · Δ T m ( r,t ) )+F
F= 3h R [ T l ( r,t ) T m ( r,t ) ]
n e t + ·  j n = S photo + S coll S rec
u t + ·  j q = 1 2 Re( J * · E ) Q ei Q rad  ·  Δ ˜ S coll
Q total plasma = Q plasma + Q dphoto
Q plasma = 1 2 σ plasma ( T plasma ) | E | 2
Q dphoto = d photo ρ 0 ρ ρ 0  Δ
Q AuNP = 1 2 σ Au | E | 2

Metrics