Abstract

A compact, inexpensive, low loss, highly sensitive gas sensor is important for various biomedical and industrial applications. However, current gas sensors still have an inadequate study in terahertz (THz) frequency range. In this study, simple multilayer-stacked microporous polymer membranes are experimentally validated in the THz regime for organic vapor sensing under ambient atmosphere and room temperature. The hydrophilic porous polymer structure provides a large surface area to adsorb polar vapors, and exhibits excellent discrimination in different types of organic vapors based on distinct dipole moments. Various concentrations of volatile vapors can also be successfully distinguished by detecting the limits of low ppm concentrations. Furthermore, the microporous structural gas sensor has a reasonable response time in repeat usage. This study would provide new perspectives on toxic gas sensing and exhaled breath detection applications in the THz spectral frequency.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Negative axicon tip-based fiber optic interferometer cavity sensor for volatile gas sensing

Rajesh Kanawade, Ajay Kumar, Dnyandeo Pawar, Kaushal Vairagi, Dattatray Late, Sudipta Sarkar, Ravindra K. Sinha, and Samir Mondal
Opt. Express 27(5) 7277-7290 (2019)

Fiber optic Fabry–Perot interferometer sensor: an efficient and fast approach for ammonia gas sensing

Rajesh Kanawade, Ajay Kumar, Dnyandeo Pawar, Dattatray Late, Samir Mondal, and Ravindra K. Sinha
J. Opt. Soc. Am. B 36(3) 684-689 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Fosnight, B. L. Moran, and I. R. Medvedev, “Chemical analysis of exhaled human breath using a terahertz spectroscopic approach,” Appl. Phys. Lett. 103(13), 133703 (2013).
    [Crossref]
  2. S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors-Basel 9(10), 8158–8196 (2009).
    [Crossref] [PubMed]
  3. L. Wang, K. Kalyanasundaram, M. Stanacevic, and P. Gouma, “Nanosensor device for breath acetone detection,” Sensor Lett. 8(5), 709–712 (2010).
    [Crossref]
  4. S.-J. Chang, T.-J. Hsueh, I.-C. Chen, S.-F. Hsieh, S.-P. Chang, C.-L. Hsu, Y.-R. Lin, and B.-R. Huang, “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption,” IEEE Trans. NanoTechnol. 7(6), 754–759 (2008).
    [Crossref]
  5. D. Mittleman, Sensing with terahertz radiation (Springer 2003), pp. 39–115.
  6. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
    [Crossref]
  7. E. Gerecht, K. O. Douglass, and D. F. Plusquellic, “Chirped-pulse terahertz spectroscopy for broadband trace gas sensing,” Opt. Express 19(9), 8973–8984 (2011).
    [Crossref] [PubMed]
  8. H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2008).
  9. J. S. Melinger, Y. Yang, M. Mandehgar, and D. Grischkowsky, “THz detection of small molecule vapors in the atmospheric transmission windows,” Opt. Express 20(6), 6788–6807 (2012).
    [Crossref] [PubMed]
  10. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
    [Crossref]
  11. C. F. Neese, I. R. Medvedev, G. M. Plummer, A. J. Frank, C. D. Ball, and F. C. De Lucia, “Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity,” IEEE Sens. J. 12(8), 2565–2574 (2012).
    [Crossref]
  12. E. Gerecht, K. O. Douglass, and D. F. Plusquellic, “Chirped-pulse terahertz spectroscopy for broadband trace gas sensing,” Opt. Express 19(9), 8973–8984 (2011).
    [Crossref] [PubMed]
  13. L. Consolino, S. Bartalini, H. Beere, D. Ritchie, M. Vitiello, and P. Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors-Basel 13(3), 3331–3340 (2013).
    [Crossref] [PubMed]
  14. C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [Crossref] [PubMed]
  15. T. Chen, Z. Han, J. Liu, and Z. Hong, “Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors,” Appl. Opt. 53(16), 3454–3458 (2014).
    [Crossref] [PubMed]
  16. A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors-Basel 11(12), 6003–6014 (2011).
    [Crossref] [PubMed]
  17. A. Hassani and M. Skorobogatiy, “Surface plasmon resonance-like integrated sensor at terahertz frequencies for gaseous analytes,” Opt. Express 16(25), 20206–20214 (2008).
    [Crossref] [PubMed]
  18. B. You, J.-Y. Lu, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012).
    [Crossref] [PubMed]
  19. H. J. Kim, Y. Y. Kim, and K. W. Lee, “Sensing characteristics of the organic vapors according to the reflectance spectrum in the porous silicon multilayer structure,” Sensor Actuat. A-Phys. 165, 276–279 (2011).
  20. T. L. Kelly, A. Garcia Sega, and M. J. Sailor, “Identification and quantification of organic vapors by time-resolved diffusion in stacked mesoporous photonic crystals,” Nano Lett. 11(8), 3169–3173 (2011).
    [Crossref] [PubMed]
  21. N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, “An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film,” Opt. Express 18(11), 11859–11866 (2010).
    [Crossref] [PubMed]
  22. H. W. Chen, R. J. Wu, K. H. Chan, Y. L. Sun, and P. G. Su, “The application of cnt/nafion composite material humidity sensing measurement,” Sensor Actuat. Biol. Chem. 104, 80–84 (2005).
  23. P. Xu, H. Yu, and X. Li, “Functionalized mesoporous silica for microgravimetric sensing of trace chemical vapors,” Anal. Chem. 83(9), 3448–3454 (2011).
    [Crossref] [PubMed]
  24. Z. Xie, K. Cao, Y. Zhao, L. Bai, H. Gu, H. Xu, and Z. Z. Gu, “An optical nose chip based on mesoporous colloidal photonic crystal beads,” Adv. Mater. 26(15), 2413–2418 (2014).
    [Crossref] [PubMed]
  25. S. Z. A. Lo and T. E. Murphy, “Nanoporous silicon multilayers for terahertz filtering,” Opt. Lett. 34(19), 2921–2923 (2009).
    [Crossref] [PubMed]
  26. H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
    [Crossref] [PubMed]
  27. Y. Yang, A. Shutler, and D. Grischkowsky, “Measurement of the transmission of the atmosphere from 0.2 to 2 THz,” Opt. Express 19(9), 8830–8838 (2011).
    [Crossref] [PubMed]
  28. R. H. Petrucci, W. S. Harwood, and J. D. Madura, General chemistry principles and modern applications (Pearson Prentice Hall, 2007).
  29. W. G. Beare, G. A. McVicar, and J. B. Ferguson, “The determination of vapor and liquid compositions in binary systems,” J. Phys. Chem. 34(6), 1310–1318 (1929).
    [Crossref]
  30. J. Zhang and D. Grischkowsky, “Terahertz time-domain spectroscopy study of silica aerogels and adsorbed molecular vapors,” J. Phys. Chem. B 108(48), 18590–18600 (2004).
    [Crossref]
  31. W. Shi and Y. J. Ding, “Fingerprinting molecules based on direct measurement of absorption spectrum by frequency-tuning monochromatic THz source,” Laser Phys. Lett. 1(11), 560–564 (2004).
    [Crossref]
  32. R. D. Nelson, D. R. Lide, and A. A. Maryott, “Selected values of electric dipole moments for molecules in the gas phase,” No. NSRDS-NBS-10. NATIONAL STANDARD REFERENCE DATA SYSTEM, 1967.

2014 (2)

T. Chen, Z. Han, J. Liu, and Z. Hong, “Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors,” Appl. Opt. 53(16), 3454–3458 (2014).
[Crossref] [PubMed]

Z. Xie, K. Cao, Y. Zhao, L. Bai, H. Gu, H. Xu, and Z. Z. Gu, “An optical nose chip based on mesoporous colloidal photonic crystal beads,” Adv. Mater. 26(15), 2413–2418 (2014).
[Crossref] [PubMed]

2013 (3)

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

A. M. Fosnight, B. L. Moran, and I. R. Medvedev, “Chemical analysis of exhaled human breath using a terahertz spectroscopic approach,” Appl. Phys. Lett. 103(13), 133703 (2013).
[Crossref]

L. Consolino, S. Bartalini, H. Beere, D. Ritchie, M. Vitiello, and P. Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors-Basel 13(3), 3331–3340 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (7)

E. Gerecht, K. O. Douglass, and D. F. Plusquellic, “Chirped-pulse terahertz spectroscopy for broadband trace gas sensing,” Opt. Express 19(9), 8973–8984 (2011).
[Crossref] [PubMed]

H. J. Kim, Y. Y. Kim, and K. W. Lee, “Sensing characteristics of the organic vapors according to the reflectance spectrum in the porous silicon multilayer structure,” Sensor Actuat. A-Phys. 165, 276–279 (2011).

T. L. Kelly, A. Garcia Sega, and M. J. Sailor, “Identification and quantification of organic vapors by time-resolved diffusion in stacked mesoporous photonic crystals,” Nano Lett. 11(8), 3169–3173 (2011).
[Crossref] [PubMed]

E. Gerecht, K. O. Douglass, and D. F. Plusquellic, “Chirped-pulse terahertz spectroscopy for broadband trace gas sensing,” Opt. Express 19(9), 8973–8984 (2011).
[Crossref] [PubMed]

Y. Yang, A. Shutler, and D. Grischkowsky, “Measurement of the transmission of the atmosphere from 0.2 to 2 THz,” Opt. Express 19(9), 8830–8838 (2011).
[Crossref] [PubMed]

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors-Basel 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

P. Xu, H. Yu, and X. Li, “Functionalized mesoporous silica for microgravimetric sensing of trace chemical vapors,” Anal. Chem. 83(9), 3448–3454 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (3)

2008 (3)

A. Hassani and M. Skorobogatiy, “Surface plasmon resonance-like integrated sensor at terahertz frequencies for gaseous analytes,” Opt. Express 16(25), 20206–20214 (2008).
[Crossref] [PubMed]

S.-J. Chang, T.-J. Hsueh, I.-C. Chen, S.-F. Hsieh, S.-P. Chang, C.-L. Hsu, Y.-R. Lin, and B.-R. Huang, “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption,” IEEE Trans. NanoTechnol. 7(6), 754–759 (2008).
[Crossref]

H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2008).

2007 (1)

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[Crossref]

2005 (1)

H. W. Chen, R. J. Wu, K. H. Chan, Y. L. Sun, and P. G. Su, “The application of cnt/nafion composite material humidity sensing measurement,” Sensor Actuat. Biol. Chem. 104, 80–84 (2005).

2004 (2)

J. Zhang and D. Grischkowsky, “Terahertz time-domain spectroscopy study of silica aerogels and adsorbed molecular vapors,” J. Phys. Chem. B 108(48), 18590–18600 (2004).
[Crossref]

W. Shi and Y. J. Ding, “Fingerprinting molecules based on direct measurement of absorption spectrum by frequency-tuning monochromatic THz source,” Laser Phys. Lett. 1(11), 560–564 (2004).
[Crossref]

1998 (1)

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

1929 (1)

W. G. Beare, G. A. McVicar, and J. B. Ferguson, “The determination of vapor and liquid compositions in binary systems,” J. Phys. Chem. 34(6), 1310–1318 (1929).
[Crossref]

Abbott, D.

H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2008).

Abu-Yousef, I. A.

S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors-Basel 9(10), 8158–8196 (2009).
[Crossref] [PubMed]

Andrews, A. M.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors-Basel 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Baets, R.

Bai, L.

Z. Xie, K. Cao, Y. Zhao, L. Bai, H. Gu, H. Xu, and Z. Z. Gu, “An optical nose chip based on mesoporous colloidal photonic crystal beads,” Adv. Mater. 26(15), 2413–2418 (2014).
[Crossref] [PubMed]

Ball, C. D.

C. F. Neese, I. R. Medvedev, G. M. Plummer, A. J. Frank, C. D. Ball, and F. C. De Lucia, “Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity,” IEEE Sens. J. 12(8), 2565–2574 (2012).
[Crossref]

Baraniuk, R. G.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

Bartalini, S.

L. Consolino, S. Bartalini, H. Beere, D. Ritchie, M. Vitiello, and P. Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors-Basel 13(3), 3331–3340 (2013).
[Crossref] [PubMed]

Beare, W. G.

W. G. Beare, G. A. McVicar, and J. B. Ferguson, “The determination of vapor and liquid compositions in binary systems,” J. Phys. Chem. 34(6), 1310–1318 (1929).
[Crossref]

Beere, H.

L. Consolino, S. Bartalini, H. Beere, D. Ritchie, M. Vitiello, and P. Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors-Basel 13(3), 3331–3340 (2013).
[Crossref] [PubMed]

Benz, A.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors-Basel 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Bigourd, D.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[Crossref]

Bocquet, R.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[Crossref]

Brandstetter, M.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors-Basel 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Cao, K.

Z. Xie, K. Cao, Y. Zhao, L. Bai, H. Gu, H. Xu, and Z. Z. Gu, “An optical nose chip based on mesoporous colloidal photonic crystal beads,” Adv. Mater. 26(15), 2413–2418 (2014).
[Crossref] [PubMed]

Cazier, F.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[Crossref]

Chan, K. H.

H. W. Chen, R. J. Wu, K. H. Chan, Y. L. Sun, and P. G. Su, “The application of cnt/nafion composite material humidity sensing measurement,” Sensor Actuat. Biol. Chem. 104, 80–84 (2005).

Chang, H. C.

Chang, S.-J.

S.-J. Chang, T.-J. Hsueh, I.-C. Chen, S.-F. Hsieh, S.-P. Chang, C.-L. Hsu, Y.-R. Lin, and B.-R. Huang, “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption,” IEEE Trans. NanoTechnol. 7(6), 754–759 (2008).
[Crossref]

Chang, S.-P.

S.-J. Chang, T.-J. Hsueh, I.-C. Chen, S.-F. Hsieh, S.-P. Chang, C.-L. Hsu, Y.-R. Lin, and B.-R. Huang, “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption,” IEEE Trans. NanoTechnol. 7(6), 754–759 (2008).
[Crossref]

Chen, H. W.

C. H. Lai, Y. C. Hsueh, H. W. Chen, Y. J. Huang, H. C. Chang, and C. K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[Crossref] [PubMed]

H. W. Chen, R. J. Wu, K. H. Chan, Y. L. Sun, and P. G. Su, “The application of cnt/nafion composite material humidity sensing measurement,” Sensor Actuat. Biol. Chem. 104, 80–84 (2005).

Chen, I.-C.

S.-J. Chang, T.-J. Hsueh, I.-C. Chen, S.-F. Hsieh, S.-P. Chang, C.-L. Hsu, Y.-R. Lin, and B.-R. Huang, “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption,” IEEE Trans. NanoTechnol. 7(6), 754–759 (2008).
[Crossref]

Chen, L.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Chen, T.

Consolino, L.

L. Consolino, S. Bartalini, H. Beere, D. Ritchie, M. Vitiello, and P. Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors-Basel 13(3), 3331–3340 (2013).
[Crossref] [PubMed]

Cuisset, A.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[Crossref]

De Lucia, F. C.

C. F. Neese, I. R. Medvedev, G. M. Plummer, A. J. Frank, C. D. Ball, and F. C. De Lucia, “Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity,” IEEE Sens. J. 12(8), 2565–2574 (2012).
[Crossref]

Detz, H.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors-Basel 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Deutsch, C.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors-Basel 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Dewaele, D.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[Crossref]

Ding, Y. J.

W. Shi and Y. J. Ding, “Fingerprinting molecules based on direct measurement of absorption spectrum by frequency-tuning monochromatic THz source,” Laser Phys. Lett. 1(11), 560–564 (2004).
[Crossref]

Douglass, K. O.

El-Kadri, O. M.

S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors-Basel 9(10), 8158–8196 (2009).
[Crossref] [PubMed]

Ferguson, J. B.

W. G. Beare, G. A. McVicar, and J. B. Ferguson, “The determination of vapor and liquid compositions in binary systems,” J. Phys. Chem. 34(6), 1310–1318 (1929).
[Crossref]

Fischer, B. M.

H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2008).

Fosnight, A. M.

A. M. Fosnight, B. L. Moran, and I. R. Medvedev, “Chemical analysis of exhaled human breath using a terahertz spectroscopic approach,” Appl. Phys. Lett. 103(13), 133703 (2013).
[Crossref]

Frank, A. J.

C. F. Neese, I. R. Medvedev, G. M. Plummer, A. J. Frank, C. D. Ball, and F. C. De Lucia, “Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity,” IEEE Sens. J. 12(8), 2565–2574 (2012).
[Crossref]

Garcia Sega, A.

T. L. Kelly, A. Garcia Sega, and M. J. Sailor, “Identification and quantification of organic vapors by time-resolved diffusion in stacked mesoporous photonic crystals,” Nano Lett. 11(8), 3169–3173 (2011).
[Crossref] [PubMed]

Gerecht, E.

Gouma, P.

L. Wang, K. Kalyanasundaram, M. Stanacevic, and P. Gouma, “Nanosensor device for breath acetone detection,” Sensor Lett. 8(5), 709–712 (2010).
[Crossref]

Grischkowsky, D.

Gu, H.

Z. Xie, K. Cao, Y. Zhao, L. Bai, H. Gu, H. Xu, and Z. Z. Gu, “An optical nose chip based on mesoporous colloidal photonic crystal beads,” Adv. Mater. 26(15), 2413–2418 (2014).
[Crossref] [PubMed]

Gu, Z. Z.

Z. Xie, K. Cao, Y. Zhao, L. Bai, H. Gu, H. Xu, and Z. Z. Gu, “An optical nose chip based on mesoporous colloidal photonic crystal beads,” Adv. Mater. 26(15), 2413–2418 (2014).
[Crossref] [PubMed]

Han, Z.

Hassani, A.

Hens, Z.

Hindle, F.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[Crossref]

Hong, Z.

Hsieh, S.-F.

S.-J. Chang, T.-J. Hsueh, I.-C. Chen, S.-F. Hsieh, S.-P. Chang, C.-L. Hsu, Y.-R. Lin, and B.-R. Huang, “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption,” IEEE Trans. NanoTechnol. 7(6), 754–759 (2008).
[Crossref]

Hsu, C.-L.

S.-J. Chang, T.-J. Hsueh, I.-C. Chen, S.-F. Hsieh, S.-P. Chang, C.-L. Hsu, Y.-R. Lin, and B.-R. Huang, “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption,” IEEE Trans. NanoTechnol. 7(6), 754–759 (2008).
[Crossref]

Hsueh, T.-J.

S.-J. Chang, T.-J. Hsueh, I.-C. Chen, S.-F. Hsieh, S.-P. Chang, C.-L. Hsu, Y.-R. Lin, and B.-R. Huang, “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption,” IEEE Trans. NanoTechnol. 7(6), 754–759 (2008).
[Crossref]

Hsueh, Y. C.

Huang, B.-R.

S.-J. Chang, T.-J. Hsueh, I.-C. Chen, S.-F. Hsieh, S.-P. Chang, C.-L. Hsu, Y.-R. Lin, and B.-R. Huang, “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption,” IEEE Trans. NanoTechnol. 7(6), 754–759 (2008).
[Crossref]

Huang, Y. J.

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

Jia, Z.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Kalyanasundaram, K.

L. Wang, K. Kalyanasundaram, M. Stanacevic, and P. Gouma, “Nanosensor device for breath acetone detection,” Sensor Lett. 8(5), 709–712 (2010).
[Crossref]

Kanan, M. C.

S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors-Basel 9(10), 8158–8196 (2009).
[Crossref] [PubMed]

Kanan, S. M.

S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors-Basel 9(10), 8158–8196 (2009).
[Crossref] [PubMed]

Kelly, T. L.

T. L. Kelly, A. Garcia Sega, and M. J. Sailor, “Identification and quantification of organic vapors by time-resolved diffusion in stacked mesoporous photonic crystals,” Nano Lett. 11(8), 3169–3173 (2011).
[Crossref] [PubMed]

Kim, H. J.

H. J. Kim, Y. Y. Kim, and K. W. Lee, “Sensing characteristics of the organic vapors according to the reflectance spectrum in the porous silicon multilayer structure,” Sensor Actuat. A-Phys. 165, 276–279 (2011).

Kim, Y. Y.

H. J. Kim, Y. Y. Kim, and K. W. Lee, “Sensing characteristics of the organic vapors according to the reflectance spectrum in the porous silicon multilayer structure,” Sensor Actuat. A-Phys. 165, 276–279 (2011).

Klang, P.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors-Basel 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Lai, C. H.

Lee, K. W.

H. J. Kim, Y. Y. Kim, and K. W. Lee, “Sensing characteristics of the organic vapors according to the reflectance spectrum in the porous silicon multilayer structure,” Sensor Actuat. A-Phys. 165, 276–279 (2011).

Li, X.

P. Xu, H. Yu, and X. Li, “Functionalized mesoporous silica for microgravimetric sensing of trace chemical vapors,” Anal. Chem. 83(9), 3448–3454 (2011).
[Crossref] [PubMed]

Lin, H.

H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2008).

Lin, Y.-R.

S.-J. Chang, T.-J. Hsueh, I.-C. Chen, S.-F. Hsieh, S.-P. Chang, C.-L. Hsu, Y.-R. Lin, and B.-R. Huang, “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption,” IEEE Trans. NanoTechnol. 7(6), 754–759 (2008).
[Crossref]

Liu, J.

Liu, R.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Liu, T.-A.

Lo, S. Z. A.

Lommens, P.

Lu, J.-Y.

Lv, X.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Ma, J.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Mandehgar, M.

Matton, S.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[Crossref]

McVicar, G. A.

W. G. Beare, G. A. McVicar, and J. B. Ferguson, “The determination of vapor and liquid compositions in binary systems,” J. Phys. Chem. 34(6), 1310–1318 (1929).
[Crossref]

Medvedev, I. R.

A. M. Fosnight, B. L. Moran, and I. R. Medvedev, “Chemical analysis of exhaled human breath using a terahertz spectroscopic approach,” Appl. Phys. Lett. 103(13), 133703 (2013).
[Crossref]

C. F. Neese, I. R. Medvedev, G. M. Plummer, A. J. Frank, C. D. Ball, and F. C. De Lucia, “Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity,” IEEE Sens. J. 12(8), 2565–2574 (2012).
[Crossref]

Melinger, J. S.

Mickan, S. P.

H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2008).

Mittleman, D. M.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

Moran, B. L.

A. M. Fosnight, B. L. Moran, and I. R. Medvedev, “Chemical analysis of exhaled human breath using a terahertz spectroscopic approach,” Appl. Phys. Lett. 103(13), 133703 (2013).
[Crossref]

Mouret, G.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[Crossref]

Murphy, T. E.

Natale, P.

L. Consolino, S. Bartalini, H. Beere, D. Ritchie, M. Vitiello, and P. Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors-Basel 13(3), 3331–3340 (2013).
[Crossref] [PubMed]

Neelamani, R.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

Neese, C. F.

C. F. Neese, I. R. Medvedev, G. M. Plummer, A. J. Frank, C. D. Ball, and F. C. De Lucia, “Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity,” IEEE Sens. J. 12(8), 2565–2574 (2012).
[Crossref]

Nouali, H.

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[Crossref]

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

Peng, J.-L.

Plummer, G. M.

C. F. Neese, I. R. Medvedev, G. M. Plummer, A. J. Frank, C. D. Ball, and F. C. De Lucia, “Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity,” IEEE Sens. J. 12(8), 2565–2574 (2012).
[Crossref]

Plusquellic, D. F.

Ritchie, D.

L. Consolino, S. Bartalini, H. Beere, D. Ritchie, M. Vitiello, and P. Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors-Basel 13(3), 3331–3340 (2013).
[Crossref] [PubMed]

Sailor, M. J.

T. L. Kelly, A. Garcia Sega, and M. J. Sailor, “Identification and quantification of organic vapors by time-resolved diffusion in stacked mesoporous photonic crystals,” Nano Lett. 11(8), 3169–3173 (2011).
[Crossref] [PubMed]

Schrenk, W.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors-Basel 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Shi, W.

W. Shi and Y. J. Ding, “Fingerprinting molecules based on direct measurement of absorption spectrum by frequency-tuning monochromatic THz source,” Laser Phys. Lett. 1(11), 560–564 (2004).
[Crossref]

Shutler, A.

Skorobogatiy, M.

Stanacevic, M.

L. Wang, K. Kalyanasundaram, M. Stanacevic, and P. Gouma, “Nanosensor device for breath acetone detection,” Sensor Lett. 8(5), 709–712 (2010).
[Crossref]

Strasser, G.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors-Basel 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Su, P. G.

H. W. Chen, R. J. Wu, K. H. Chan, Y. L. Sun, and P. G. Su, “The application of cnt/nafion composite material humidity sensing measurement,” Sensor Actuat. Biol. Chem. 104, 80–84 (2005).

Sun, C. K.

Sun, Y. L.

H. W. Chen, R. J. Wu, K. H. Chan, Y. L. Sun, and P. G. Su, “The application of cnt/nafion composite material humidity sensing measurement,” Sensor Actuat. Biol. Chem. 104, 80–84 (2005).

Unterrainer, K.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors-Basel 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Vitiello, M.

L. Consolino, S. Bartalini, H. Beere, D. Ritchie, M. Vitiello, and P. Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors-Basel 13(3), 3331–3340 (2013).
[Crossref] [PubMed]

Wang, L.

L. Wang, K. Kalyanasundaram, M. Stanacevic, and P. Gouma, “Nanosensor device for breath acetone detection,” Sensor Lett. 8(5), 709–712 (2010).
[Crossref]

Withayachumnankul, W.

H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2008).

Wu, R. J.

H. W. Chen, R. J. Wu, K. H. Chan, Y. L. Sun, and P. G. Su, “The application of cnt/nafion composite material humidity sensing measurement,” Sensor Actuat. Biol. Chem. 104, 80–84 (2005).

Xie, Z.

Z. Xie, K. Cao, Y. Zhao, L. Bai, H. Gu, H. Xu, and Z. Z. Gu, “An optical nose chip based on mesoporous colloidal photonic crystal beads,” Adv. Mater. 26(15), 2413–2418 (2014).
[Crossref] [PubMed]

Xu, H.

Z. Xie, K. Cao, Y. Zhao, L. Bai, H. Gu, H. Xu, and Z. Z. Gu, “An optical nose chip based on mesoporous colloidal photonic crystal beads,” Adv. Mater. 26(15), 2413–2418 (2014).
[Crossref] [PubMed]

Xu, P.

P. Xu, H. Yu, and X. Li, “Functionalized mesoporous silica for microgravimetric sensing of trace chemical vapors,” Anal. Chem. 83(9), 3448–3454 (2011).
[Crossref] [PubMed]

Yang, Y.

Yebo, N. A.

You, B.

Yu, C.-P.

Yu, H.

P. Xu, H. Yu, and X. Li, “Functionalized mesoporous silica for microgravimetric sensing of trace chemical vapors,” Anal. Chem. 83(9), 3448–3454 (2011).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Zhang, J.

J. Zhang and D. Grischkowsky, “Terahertz time-domain spectroscopy study of silica aerogels and adsorbed molecular vapors,” J. Phys. Chem. B 108(48), 18590–18600 (2004).
[Crossref]

Zhao, Y.

Z. Xie, K. Cao, Y. Zhao, L. Bai, H. Gu, H. Xu, and Z. Z. Gu, “An optical nose chip based on mesoporous colloidal photonic crystal beads,” Adv. Mater. 26(15), 2413–2418 (2014).
[Crossref] [PubMed]

Zhou, J.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

Z. Xie, K. Cao, Y. Zhao, L. Bai, H. Gu, H. Xu, and Z. Z. Gu, “An optical nose chip based on mesoporous colloidal photonic crystal beads,” Adv. Mater. 26(15), 2413–2418 (2014).
[Crossref] [PubMed]

Anal. Chem. (1)

P. Xu, H. Yu, and X. Li, “Functionalized mesoporous silica for microgravimetric sensing of trace chemical vapors,” Anal. Chem. 83(9), 3448–3454 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (2)

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B 67(3), 379–390 (1998).
[Crossref]

D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, and H. Nouali, “Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods,” Appl. Phys. B 86(4), 579–586 (2007).
[Crossref]

Appl. Phys. Lett. (1)

A. M. Fosnight, B. L. Moran, and I. R. Medvedev, “Chemical analysis of exhaled human breath using a terahertz spectroscopic approach,” Appl. Phys. Lett. 103(13), 133703 (2013).
[Crossref]

Biosens. Bioelectron. (1)

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

IEEE Sens. J. (1)

C. F. Neese, I. R. Medvedev, G. M. Plummer, A. J. Frank, C. D. Ball, and F. C. De Lucia, “Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity,” IEEE Sens. J. 12(8), 2565–2574 (2012).
[Crossref]

IEEE Trans. NanoTechnol. (1)

S.-J. Chang, T.-J. Hsueh, I.-C. Chen, S.-F. Hsieh, S.-P. Chang, C.-L. Hsu, Y.-R. Lin, and B.-R. Huang, “Highly sensitive ZnO nanowire acetone vapor sensor with Au adsorption,” IEEE Trans. NanoTechnol. 7(6), 754–759 (2008).
[Crossref]

J. Phys. Chem. (1)

W. G. Beare, G. A. McVicar, and J. B. Ferguson, “The determination of vapor and liquid compositions in binary systems,” J. Phys. Chem. 34(6), 1310–1318 (1929).
[Crossref]

J. Phys. Chem. B (1)

J. Zhang and D. Grischkowsky, “Terahertz time-domain spectroscopy study of silica aerogels and adsorbed molecular vapors,” J. Phys. Chem. B 108(48), 18590–18600 (2004).
[Crossref]

Laser Phys. Lett. (1)

W. Shi and Y. J. Ding, “Fingerprinting molecules based on direct measurement of absorption spectrum by frequency-tuning monochromatic THz source,” Laser Phys. Lett. 1(11), 560–564 (2004).
[Crossref]

Nano Lett. (1)

T. L. Kelly, A. Garcia Sega, and M. J. Sailor, “Identification and quantification of organic vapors by time-resolved diffusion in stacked mesoporous photonic crystals,” Nano Lett. 11(8), 3169–3173 (2011).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (2)

Proc. SPIE (1)

H. Lin, W. Withayachumnankul, B. M. Fischer, S. P. Mickan, and D. Abbott, “Gas recognition with terahertz time-domain spectroscopy and spectral catalog: a preliminary study,” Proc. SPIE 6840, 68400X (2008).

Sensor Actuat. A-Phys. (1)

H. J. Kim, Y. Y. Kim, and K. W. Lee, “Sensing characteristics of the organic vapors according to the reflectance spectrum in the porous silicon multilayer structure,” Sensor Actuat. A-Phys. 165, 276–279 (2011).

Sensor Actuat. Biol. Chem. (1)

H. W. Chen, R. J. Wu, K. H. Chan, Y. L. Sun, and P. G. Su, “The application of cnt/nafion composite material humidity sensing measurement,” Sensor Actuat. Biol. Chem. 104, 80–84 (2005).

Sensor Lett. (1)

L. Wang, K. Kalyanasundaram, M. Stanacevic, and P. Gouma, “Nanosensor device for breath acetone detection,” Sensor Lett. 8(5), 709–712 (2010).
[Crossref]

Sensors-Basel (3)

S. M. Kanan, O. M. El-Kadri, I. A. Abu-Yousef, and M. C. Kanan, “Semiconducting metal oxide based sensors for selective gas pollutant detection,” Sensors-Basel 9(10), 8158–8196 (2009).
[Crossref] [PubMed]

L. Consolino, S. Bartalini, H. Beere, D. Ritchie, M. Vitiello, and P. Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors-Basel 13(3), 3331–3340 (2013).
[Crossref] [PubMed]

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors-Basel 11(12), 6003–6014 (2011).
[Crossref] [PubMed]

Other (3)

D. Mittleman, Sensing with terahertz radiation (Springer 2003), pp. 39–115.

R. H. Petrucci, W. S. Harwood, and J. D. Madura, General chemistry principles and modern applications (Pearson Prentice Hall, 2007).

R. D. Nelson, D. R. Lide, and A. A. Maryott, “Selected values of electric dipole moments for molecules in the gas phase,” No. NSRDS-NBS-10. NATIONAL STANDARD REFERENCE DATA SYSTEM, 1967.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) A photograph of the assembled microporous structure. (b) Microscopic photographs of porous PET films with two different pore sizes and porosities. (c) A configuration of the microporous structure sealed inside a chamber.
Fig. 2
Fig. 2 (a) Transmission power spectra and (b) the correlated effective absorption coefficient spectra of micropores in the microporous structure for various aqueous acetone concentrations.
Fig. 3
Fig. 3 Measured effective absorption coefficients (blue square dot) and refractive index variation (red circular dot) at 0.4 THz for various acetone vapor densities in the chamber (a) with and (b) without the microporous structure. The mathematical fit of the proportional relationship is denoted by the blue line. The Langmuir adsorption isotherm for the microporous structure is denoted by the cyan curve.
Fig. 4
Fig. 4 (a) Measured effective absorption coefficients and (b) refractive index variations at 0.4 THz for different methanol, ethanol, and ammonia vapor densities using the microporous structure.
Fig. 5
Fig. 5 (a) Measured 0.4 THz wave effective absorption coefficients versus the vapor densities. (b) Dipole moments and detection limits of the molecular densities of acetone, methanol, ethanol, and ammonia vapor using the microporous structure.
Fig. 6
Fig. 6 (a) The 0.4 THz wave transmittance variation versus the time. The acetone liquid injection and air flow pump-on are respectively at 180s and 800s. (b) Response and (c) recovery times used to detect different concentrations of acetone aqueous solutions.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P v+p (ω)= P 0 (ω) e 2 α v+p (ω)L ,
P p (ω)= P 0 (ω) e 2 α p (ω)L .
α v+p = α v f+ α PET (1f).
α p = α air f+ α PET (1f).
Δϕ'=Δϕ / V pore =ω/c Δn',

Metrics