Abstract

A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging (John Wiley, 2002).
  2. T.-C. Poon, Digital Holography and Three-Dimensional Display (Springer, 2007).
  3. R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
    [Crossref]
  4. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [Crossref]
  5. T. Yamaguchi and H. Yoshikawa, “Computer-generated image hologram,” Chin. Opt. Lett. 9(12), 120006 (2011).
    [Crossref]
  6. K. Matsushima and M. Takai, “Recurrence formulas for fast creation of synthetic three-dimensional holograms,” Appl. Opt. 39(35), 6587–6594 (2000).
    [Crossref] [PubMed]
  7. K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Comput. Phys. Commun. 185(10), 2742–2757 (2014).
    [Crossref]
  8. J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express 20(4), 4018–4023 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4018 .
    [Crossref] [PubMed]
  9. N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-7-9192 .
    [Crossref] [PubMed]
  10. T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information,” Proc. SPIE 9117, 91170B (2014).
    [Crossref]
  11. T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
    [Crossref]
  12. X. Xu, Y. Pan, P. P. M. Y. Lwin, and X. Liang, “3D Holographic Display and Its Data Transmission Requirement,” Information Photonics and Optical Communications (IPOC), 2011 International Conference on. IEEE, 1–4 (2011).
    [Crossref]
  13. E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009).
    [Crossref]
  14. H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” Proc. SPIE 2652, 2–9 (1996).
    [Crossref]
  15. T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimobaba, and T. Sugie, “Special-purpose computer HORN-5 for a real-time electroholography,” Opt. Express 13(6), 1923–1932 (2005).
    [Crossref] [PubMed]
  16. Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. A. Tanjung, C. Tan, and T.-C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17(21), 18543–18555 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-21-18543 .
    [Crossref] [PubMed]
  17. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of 3D objects using a novel lookup table method,” Appl. Opt. 47, D55–D62 (2008).
    [Crossref] [PubMed]
  18. S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of 3-D video holograms by combined use of data compression and look-up table techniques,” Appl. Opt. 47, 5986–5995 (2008).
    [Crossref] [PubMed]
  19. S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-14-16925 .
    [Crossref] [PubMed]
  20. X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-7-8047 .
    [Crossref] [PubMed]
  21. D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Hardware implementation of N-LUT method using field programmable gate array technology,” Proc. SPIE 7957, 79571C (2011).
    [Crossref]
  22. M.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Graphics processing unit-based implementation of a one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects,” Opt. Eng. 53(3), 035103 (2014).
    [Crossref]
  23. R. Talluri, K. Oehler, T. Bannon, J. D. Courtney, A. Das, and J. Liao, “A robust, scalable, object-based video compression technique for very low bit-rate coding,” IEEE Trans. Circ. Syst. Video Tech. 7(1), 221–233 (1997).
    [Crossref]
  24. Y. Wang, J. F. Doherty, and R. E. V. Dyck, “Moving object tracking in video,” Proceedings of the 29th workshop of Applied Imagery Pattern Recognition, 95–101 (2000).
  25. C. Kim and J.-N. Hwang, “Fast and automatic video object segmentation and tracking for content-based applications,” IEEE Trans. Circ. Syst. Video Tech. 12(2), 122–129 (2002).
    [Crossref]
  26. H. Wang and S.-F. Chang, “A Highly Efficient System for Automatic Face Region Detection in MPEG Video,” IEEE Trans. Circ. Syst. Video Tech. 7(4), 615–628 (1997).
    [Crossref]
  27. NVIDIA GeForce series GTX TITAN, http://www.nvidia.com/object/geforce_family.html .
  28. S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
    [Crossref] [PubMed]

2014 (5)

T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information,” Proc. SPIE 9117, 91170B (2014).
[Crossref]

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[Crossref]

K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Comput. Phys. Commun. 185(10), 2742–2757 (2014).
[Crossref]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-7-8047 .
[Crossref] [PubMed]

M.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Graphics processing unit-based implementation of a one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects,” Opt. Eng. 53(3), 035103 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (2)

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Hardware implementation of N-LUT method using field programmable gate array technology,” Proc. SPIE 7957, 79571C (2011).
[Crossref]

T. Yamaguchi and H. Yoshikawa, “Computer-generated image hologram,” Chin. Opt. Lett. 9(12), 120006 (2011).
[Crossref]

2009 (2)

2008 (3)

2005 (1)

2002 (1)

C. Kim and J.-N. Hwang, “Fast and automatic video object segmentation and tracking for content-based applications,” IEEE Trans. Circ. Syst. Video Tech. 12(2), 122–129 (2002).
[Crossref]

2000 (1)

1997 (2)

H. Wang and S.-F. Chang, “A Highly Efficient System for Automatic Face Region Detection in MPEG Video,” IEEE Trans. Circ. Syst. Video Tech. 7(4), 615–628 (1997).
[Crossref]

R. Talluri, K. Oehler, T. Bannon, J. D. Courtney, A. Das, and J. Liao, “A robust, scalable, object-based video compression technique for very low bit-rate coding,” IEEE Trans. Circ. Syst. Video Tech. 7(1), 221–233 (1997).
[Crossref]

1996 (1)

H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” Proc. SPIE 2652, 2–9 (1996).
[Crossref]

1993 (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Bannon, T.

R. Talluri, K. Oehler, T. Bannon, J. D. Courtney, A. Das, and J. Liao, “A robust, scalable, object-based video compression technique for very low bit-rate coding,” IEEE Trans. Circ. Syst. Video Tech. 7(1), 221–233 (1997).
[Crossref]

Chang, S.-F.

H. Wang and S.-F. Chang, “A Highly Efficient System for Automatic Face Region Detection in MPEG Video,” IEEE Trans. Circ. Syst. Video Tech. 7(4), 615–628 (1997).
[Crossref]

Chong, T.-C.

Courtney, J. D.

R. Talluri, K. Oehler, T. Bannon, J. D. Courtney, A. Das, and J. Liao, “A robust, scalable, object-based video compression technique for very low bit-rate coding,” IEEE Trans. Circ. Syst. Video Tech. 7(1), 221–233 (1997).
[Crossref]

Darakis, E.

E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009).
[Crossref]

Das, A.

R. Talluri, K. Oehler, T. Bannon, J. D. Courtney, A. Das, and J. Liao, “A robust, scalable, object-based video compression technique for very low bit-rate coding,” IEEE Trans. Circ. Syst. Video Tech. 7(1), 221–233 (1997).
[Crossref]

Doherty, J. F.

Y. Wang, J. F. Doherty, and R. E. V. Dyck, “Moving object tracking in video,” Proceedings of the 29th workshop of Applied Imagery Pattern Recognition, 95–101 (2000).

Dong, X.-B.

Dyck, R. E. V.

Y. Wang, J. F. Doherty, and R. E. V. Dyck, “Moving object tracking in video,” Proceedings of the 29th workshop of Applied Imagery Pattern Recognition, 95–101 (2000).

Hwang, J.-N.

C. Kim and J.-N. Hwang, “Fast and automatic video object segmentation and tracking for content-based applications,” IEEE Trans. Circ. Syst. Video Tech. 12(2), 122–129 (2002).
[Crossref]

Ichihashi, Y.

Ito, T.

Kakue, T.

T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information,” Proc. SPIE 9117, 91170B (2014).
[Crossref]

K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Comput. Phys. Commun. 185(10), 2742–2757 (2014).
[Crossref]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-7-9192 .
[Crossref] [PubMed]

Kim, C.

C. Kim and J.-N. Hwang, “Fast and automatic video object segmentation and tracking for content-based applications,” IEEE Trans. Circ. Syst. Video Tech. 12(2), 122–129 (2002).
[Crossref]

Kim, E.-S.

M.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Graphics processing unit-based implementation of a one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects,” Opt. Eng. 53(3), 035103 (2014).
[Crossref]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-7-8047 .
[Crossref] [PubMed]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-14-16925 .
[Crossref] [PubMed]

S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
[Crossref] [PubMed]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Hardware implementation of N-LUT method using field programmable gate array technology,” Proc. SPIE 7957, 79571C (2011).
[Crossref]

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of 3D objects using a novel lookup table method,” Appl. Opt. 47, D55–D62 (2008).
[Crossref] [PubMed]

S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of 3-D video holograms by combined use of data compression and look-up table techniques,” Appl. Opt. 47, 5986–5995 (2008).
[Crossref] [PubMed]

Kim, J.-M.

Kim, S.-C.

M.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Graphics processing unit-based implementation of a one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects,” Opt. Eng. 53(3), 035103 (2014).
[Crossref]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-7-8047 .
[Crossref] [PubMed]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-14-16925 .
[Crossref] [PubMed]

S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
[Crossref] [PubMed]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Hardware implementation of N-LUT method using field programmable gate array technology,” Proc. SPIE 7957, 79571C (2011).
[Crossref]

S.-C. Kim, J.-H. Yoon, and E.-S. Kim, “Fast generation of 3-D video holograms by combined use of data compression and look-up table techniques,” Appl. Opt. 47, 5986–5995 (2008).
[Crossref] [PubMed]

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of 3D objects using a novel lookup table method,” Appl. Opt. 47, D55–D62 (2008).
[Crossref] [PubMed]

Kwon, D.-W.

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Hardware implementation of N-LUT method using field programmable gate array technology,” Proc. SPIE 7957, 79571C (2011).
[Crossref]

Kwon, M.-W.

M.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Graphics processing unit-based implementation of a one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects,” Opt. Eng. 53(3), 035103 (2014).
[Crossref]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-14-16925 .
[Crossref] [PubMed]

Liang, X.

Liao, J.

R. Talluri, K. Oehler, T. Bannon, J. D. Courtney, A. Das, and J. Liao, “A robust, scalable, object-based video compression technique for very low bit-rate coding,” IEEE Trans. Circ. Syst. Video Tech. 7(1), 221–233 (1997).
[Crossref]

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Masuda, N.

Matsushima, K.

Murano, K.

K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Comput. Phys. Commun. 185(10), 2742–2757 (2014).
[Crossref]

Nakayama, H.

Naughton, T. J.

E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009).
[Crossref]

Oehler, K.

R. Talluri, K. Oehler, T. Bannon, J. D. Courtney, A. Das, and J. Liao, “A robust, scalable, object-based video compression technique for very low bit-rate coding,” IEEE Trans. Circ. Syst. Video Tech. 7(1), 221–233 (1997).
[Crossref]

Oi, R.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[Crossref]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-7-9192 .
[Crossref] [PubMed]

R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
[Crossref]

Oikawa, M.

Okada, N.

Okui, M.

R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
[Crossref]

Pan, Y.

Sasaki, H.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[Crossref]

Senoh, T.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[Crossref]

Shimobaba, T.

Shiraki, A.

Solanki, S.

Sugie, T.

Sugiyama, A.

K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Comput. Phys. Commun. 185(10), 2742–2757 (2014).
[Crossref]

Takada, N.

K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Comput. Phys. Commun. 185(10), 2742–2757 (2014).
[Crossref]

Takai, M.

Talluri, R.

R. Talluri, K. Oehler, T. Bannon, J. D. Courtney, A. Das, and J. Liao, “A robust, scalable, object-based video compression technique for very low bit-rate coding,” IEEE Trans. Circ. Syst. Video Tech. 7(1), 221–233 (1997).
[Crossref]

Tamai, J.

H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” Proc. SPIE 2652, 2–9 (1996).
[Crossref]

Tan, C.

Tanjung, R. B. A.

Wakunami, K.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[Crossref]

Wang, H.

H. Wang and S.-F. Chang, “A Highly Efficient System for Automatic Face Region Detection in MPEG Video,” IEEE Trans. Circ. Syst. Video Tech. 7(4), 615–628 (1997).
[Crossref]

Wang, Y.

Y. Wang, J. F. Doherty, and R. E. V. Dyck, “Moving object tracking in video,” Proceedings of the 29th workshop of Applied Imagery Pattern Recognition, 95–101 (2000).

Weng, J.

Xu, X.

Yamaguchi, T.

Yamamoto, K.

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[Crossref]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-7-9192 .
[Crossref] [PubMed]

R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
[Crossref]

Yoon, J.-H.

Yoshikawa, H.

T. Yamaguchi and H. Yoshikawa, “Computer-generated image hologram,” Chin. Opt. Lett. 9(12), 120006 (2011).
[Crossref]

H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” Proc. SPIE 2652, 2–9 (1996).
[Crossref]

Yoshimura, K.

Appl. Opt. (3)

Chin. Opt. Lett. (1)

Comput. Phys. Commun. (1)

K. Murano, T. Shimobaba, A. Sugiyama, N. Takada, T. Kakue, M. Oikawa, and T. Ito, “Fast computation of computer-generated hologram using Xeon Phi coprocessor,” Comput. Phys. Commun. 185(10), 2742–2757 (2014).
[Crossref]

IEEE Trans. Circ. Syst. Video Tech. (3)

C. Kim and J.-N. Hwang, “Fast and automatic video object segmentation and tracking for content-based applications,” IEEE Trans. Circ. Syst. Video Tech. 12(2), 122–129 (2002).
[Crossref]

H. Wang and S.-F. Chang, “A Highly Efficient System for Automatic Face Region Detection in MPEG Video,” IEEE Trans. Circ. Syst. Video Tech. 7(4), 615–628 (1997).
[Crossref]

R. Talluri, K. Oehler, T. Bannon, J. D. Courtney, A. Das, and J. Liao, “A robust, scalable, object-based video compression technique for very low bit-rate coding,” IEEE Trans. Circ. Syst. Video Tech. 7(1), 221–233 (1997).
[Crossref]

J. Electron. Imaging (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Opt. Eng. (2)

T. Senoh, K. Wakunami, Y. Ichihashi, H. Sasaki, R. Oi, and K. Yamamoto, “Multiview image and depth map coding for holographic TV system,” Opt. Eng. 53(11), 112302 (2014).
[Crossref]

M.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Graphics processing unit-based implementation of a one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects,” Opt. Eng. 53(3), 035103 (2014).
[Crossref]

Opt. Express (7)

T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimobaba, and T. Sugie, “Special-purpose computer HORN-5 for a real-time electroholography,” Opt. Express 13(6), 1923–1932 (2005).
[Crossref] [PubMed]

Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. A. Tanjung, C. Tan, and T.-C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17(21), 18543–18555 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-21-18543 .
[Crossref] [PubMed]

J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express 20(4), 4018–4023 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4018 .
[Crossref] [PubMed]

S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
[Crossref] [PubMed]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-7-9192 .
[Crossref] [PubMed]

S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, “Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table,” Opt. Express 21(9), 11568–11584 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-14-16925 .
[Crossref] [PubMed]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects,” Opt. Express 22(7), 8047–8067 (2014), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-7-8047 .
[Crossref] [PubMed]

Proc. SPIE (5)

R. Oi, K. Yamamoto, and M. Okui, “Electronic generation of holograms by using depth maps of real scenes,” Proc. SPIE 6912, 69120M (2008).
[Crossref]

E. Darakis and T. J. Naughton, “Compression of digital hologram sequences using MPEG-4,” Proc. SPIE 7358, 735811 (2009).
[Crossref]

H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” Proc. SPIE 2652, 2–9 (1996).
[Crossref]

D.-W. Kwon, S.-C. Kim, and E.-S. Kim, “Hardware implementation of N-LUT method using field programmable gate array technology,” Proc. SPIE 7957, 79571C (2011).
[Crossref]

T. Shimobaba, T. Kakue, and T. Ito, “Acceleration of color computer-generated hologram from three-dimensional scenes with texture and depth information,” Proc. SPIE 9117, 91170B (2014).
[Crossref]

Other (5)

C. J. Kuo and M. H. Tsai, Three-Dimensional Holographic Imaging (John Wiley, 2002).

T.-C. Poon, Digital Holography and Three-Dimensional Display (Springer, 2007).

X. Xu, Y. Pan, P. P. M. Y. Lwin, and X. Liang, “3D Holographic Display and Its Data Transmission Requirement,” Information Photonics and Optical Communications (IPOC), 2011 International Conference on. IEEE, 1–4 (2011).
[Crossref]

Y. Wang, J. F. Doherty, and R. E. V. Dyck, “Moving object tracking in video,” Proceedings of the 29th workshop of Applied Imagery Pattern Recognition, 95–101 (2000).

NVIDIA GeForce series GTX TITAN, http://www.nvidia.com/object/geforce_family.html .

Supplementary Material (9)

» Media 1: AVI (7133 KB)     
» Media 2: AVI (7133 KB)     
» Media 3: AVI (7133 KB)     
» Media 4: AVI (7133 KB)     
» Media 5: AVI (7133 KB)     
» Media 6: AVI (7133 KB)     
» Media 7: AVI (7133 KB)     
» Media 8: AVI (7133 KB)     
» Media 9: AVI (7133 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Geometry for generating the Fresnel CGH hologram pattern of a 3-D object
Fig. 2
Fig. 2 CGH generation process for two object points with the NLUT: (a) Two object points on the object plane of z1, (b) Shifting and adding process of the NLUT, (c) Finally generated CGH pattern
Fig. 3
Fig. 3 Overall block-diagram of the proposed method for CGH generation of 3-D video images.
Fig. 4
Fig. 4 Flowchart for generation of the OTM.
Fig. 5
Fig. 5 Software structures of TR-NLUT, MC-NLUT and MPEG-NLUT methods.
Fig. 6
Fig. 6 Software structures of OTM-NLUT method.
Fig. 7
Fig. 7 Conceptual diagram for calculation of the CGH patterns in parallel on three GPU boards.
Fig. 8
Fig. 8 Software structure of the proposed OTM-NLUT on three GPU boards.
Fig. 9
Fig. 9 Memory management in the GPU board.
Fig. 10
Fig. 10 Intensity and depth images of the 1st, 30th, and 60th frames for the ‘Scenario I (Media 1 and Media 2), II (Media 3 and Media 4) and III (Media 5 and Media 6).
Fig. 11
Fig. 11 Intensity and depth images of the 60th frame, masks and extracted fixed and moving objects with corresponding masks for the ‘Scenario I, II and III’.
Fig. 12
Fig. 12 Calculated CGH patterns of the 60th frames with the proposed method for the fixed, moving and total objects images for the ‘Scenario I, II and III’.
Fig. 13
Fig. 13 Fig. 13. Reconstructed 3-D video images of the 1st, 30th and 60th: (a)-(c) ‘Scenario I (Media 7)’, (d)-(f) ‘Scenario II (Media 8)’, (g)-(i) ‘Scenario III (Media 9).
Fig. 14
Fig. 14 Comparison results on the performances of the conventional and proposed methods for the ‘Scenario I, II and III’.

Tables (3)

Tables Icon

Table 1 Compatibilities of the conventional and proposed NLUT methods with the GPU board

Tables Icon

Table 2 Average performance of the conventional and proposed methods for the ‘Scenario I, II and III’

Tables Icon

Table 3 Results on the total numbers of calculated object points of the 30th for the conventional and proposed NLUT methods

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T(x,y; z p ) 1 r p cos[ k r p +kxsin θ R + φ p ].
r p = (x x p ) 2 + (y y p ) 2 + z p 2 .
I(x,y)= p=1 N a p T( x x p ,y y p ; z p ) .
N TCOP = N DOP + N AOP 2× N ROP .
N TCOP = N MOP .

Metrics