Abstract

We experimentally demonstrate a quad-carrier 1-Tb/s solution with 37.5-GBaud PM-16QAM signal over 37.5-GHz optical grid at 6.7 b/s/Hz net spectral efficiency. Digital Nyquist pulse shaping at the transmitter and post-equalization at the receiver are employed to mitigate the impairments of joint inter-symbol-interference (ISI) and inter-channel-interference (ICI) symbol degradation. The post-equalization algorithms consist of one sample/symbol based decision-directed least mean square (DD-LMS) adaptive filter, digital post filter and maximum likelihood sequence estimation (MLSE), and a positive iterative process among them. By combining these algorithms, the improvement as much as 4-dB OSNR (0.1nm) at SD-FEC limit (Q2 = 6.25 corresponding to BER = 2.0e-2) is obtained when compared to no such post-equalization process, and transmission over 820-km EDFA-only standard single-mode fiber (SSMF) link is achieved for two 1.2-Tb/s signals with the averaged Q2 factor larger than 6.5 dB for all sub-channels. Additionally, 50-GBaud 16QAM operating at 1.28 samples/symbol in a DAC is also investigated and successful transmission over 410-km SSMF link is achieved at 62.5-GHz optical grid.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping

Meng Xiang, Songnian Fu, Ming Tang, Haoyuan Tang, Perry Shum, and Deming Liu
Opt. Express 22(14) 17448-17457 (2014)

Transmission of 1.936 Tb/s (11 × 176 Gb/s) DP-16QAM superchannel signals over 640 km SSMF with EDFA only and 300 GHz WSS channel

Jianqiang Li, Magnus Karlsson, Peter A. Andrekson, and Kun Xu
Opt. Express 20(26) B223-B231 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Gringeri, E. B. Basch, and T.-J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), s21–s30 (2012).
    [Crossref]
  2. X. Zhou and L. E. Nelson, “400G WDM transmission on the 50 GHz grid for future optical networks,” J. Lightwave Technol. 30(24), 3779–3792 (2012).
    [Crossref]
  3. J. Yu, Z. Dong, H. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 G PDM-CSRZ-QPSK and PDM-16 QAM With a SE of 4 b/s/Hz,” J. Lightwave Technol. 31(4), 515–522 (2013).
    [Crossref]
  4. M. Xiang, S. Fu, M. Tang, H. Tang, P. Shum, and D. Liu, “Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping,” Opt. Express 22(14), 17448–17457 (2014).
    [Crossref] [PubMed]
  5. J. H. Ke, Y. Gao, and J. C. Cartledge, “400 Gbit/s single-carrier and 1 Tbit/s three-carrier superchannel signals using dual polarization 16-QAM with look-up table correction and optical pulse shaping,” Opt. Express 22(1), 71–83 (2014).
    [Crossref] [PubMed]
  6. C. Xie, B. Zhu, and E. Burrows, “Transmission performance of 256-Gb/s PDM-16QAM with different amplification schemes and channel spacings,” J. Lightwave Technol. 32(13), 2324–2331 (2014).
    [Crossref]
  7. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection,” Proc. OFC/NFOEC, San Diego, California, paper PDPB7 (2010).
    [Crossref]
  8. E. Tipsuwannakul, J. Li, T. A. Eriksson, M. Karlsson, and P. A. Andrekson, “Transmission of 3x224 Gbit/s DP-16QAM signals with (up to) 7.2 bit/s/Hz spectral efficiency in SMF-EDFA links,” Proc. OFC/NFOEC, Los Angeles, California, paper OW4C.6 (2012).
  9. G. Raybon, A. Adamiecki, S. Randel, and P. J. Winzer, “Single-carrier and dual-carrier 400-Gb/s and 1.0-Tb/s transmission systems,” Proc. OFC, San Francisco, California, paper Th4F.1 (2014).
  10. J.-X. Cai, H. Zhang, H. G. Batshon, M. Mazurczyk, O. V. Sinkin, Y. Sun, A. Pilipetskii, and D. G. Foursa, “Transmission over 9100 km with a capacity of 49.3 Tb/s using variable spectral efficiency 16 QAM based coded modulation,” Proc. OFC, San Francisco, California, paper Th5B.4 (2014).
  11. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [Crossref] [PubMed]
  12. J. Renaudier, R. R. Muller, L. Schmalen, P. Tran, P. Brindel, and G. Charlet, “1-Tb/s PDM-32QAM superchannel transmission at 6.7-b/s/Hz over SSMF and 150-GHz-grid ROADMs,” Proc. ECOC, Cannes, France, paper Tu.3.3.4 (2014).
    [Crossref]
  13. L. H. H. Carvalho, C. Floridia, C. Franciscangelis, V. E. Parahyba, E. P. Silva, N. G. Gonzalez, and J. Oliveira, “WDM transmission of 3x1.12-Tb/s PDM-16QAM superchannels with 6.5-b/s/Hz in a 162.5-GHz flexible-grid using only optical spectral shaping,” Proc. OFC, San Francisco, California, paper M3C.3 (2014).
    [Crossref]
  14. Z. Jia, Y. Cai, H.-C. Chien, and J. Yu, “Performance comparison of spectrum-narrowing equalizations with maximum likelihood sequence estimation and soft-decision output,” Opt. Express 22(5), 6047–6059 (2014).
    [PubMed]
  15. J. Li, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Building up low-complexity spectrally-efficient Terabit superchannels by receiver-side duobinary shaping,” Opt. Express 20(9), 10271–10282 (2012).
    [Crossref] [PubMed]

2014 (4)

2013 (1)

2012 (3)

2009 (1)

Andrekson, P. A.

Basch, E. B.

S. Gringeri, E. B. Basch, and T.-J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), s21–s30 (2012).
[Crossref]

Burrows, E.

Cai, Y.

Cartledge, J. C.

Chen, S.

Chien, H.

Chien, H.-C.

Dong, Z.

Fu, S.

Gao, Y.

Gringeri, S.

S. Gringeri, E. B. Basch, and T.-J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), s21–s30 (2012).
[Crossref]

Gunkel, M.

Huo, D.

Jia, Z.

Karlsson, M.

Ke, J. H.

Li, J.

Li, X.

Liu, D.

Ma, Y.

Mayer, H.

Nelson, L. E.

Schippel, A.

Shieh, W.

Shum, P.

Sjödin, M.

Tang, H.

Tang, M.

Tang, Y.

Wagner, P.

Xia, T.-J.

S. Gringeri, E. B. Basch, and T.-J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), s21–s30 (2012).
[Crossref]

Xiang, M.

Xie, C.

Yang, Q.

Yu, J.

Zhou, X.

Zhu, B.

IEEE Commun. Mag. (1)

S. Gringeri, E. B. Basch, and T.-J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), s21–s30 (2012).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (5)

Other (6)

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection,” Proc. OFC/NFOEC, San Diego, California, paper PDPB7 (2010).
[Crossref]

E. Tipsuwannakul, J. Li, T. A. Eriksson, M. Karlsson, and P. A. Andrekson, “Transmission of 3x224 Gbit/s DP-16QAM signals with (up to) 7.2 bit/s/Hz spectral efficiency in SMF-EDFA links,” Proc. OFC/NFOEC, Los Angeles, California, paper OW4C.6 (2012).

G. Raybon, A. Adamiecki, S. Randel, and P. J. Winzer, “Single-carrier and dual-carrier 400-Gb/s and 1.0-Tb/s transmission systems,” Proc. OFC, San Francisco, California, paper Th4F.1 (2014).

J.-X. Cai, H. Zhang, H. G. Batshon, M. Mazurczyk, O. V. Sinkin, Y. Sun, A. Pilipetskii, and D. G. Foursa, “Transmission over 9100 km with a capacity of 49.3 Tb/s using variable spectral efficiency 16 QAM based coded modulation,” Proc. OFC, San Francisco, California, paper Th5B.4 (2014).

J. Renaudier, R. R. Muller, L. Schmalen, P. Tran, P. Brindel, and G. Charlet, “1-Tb/s PDM-32QAM superchannel transmission at 6.7-b/s/Hz over SSMF and 150-GHz-grid ROADMs,” Proc. ECOC, Cannes, France, paper Tu.3.3.4 (2014).
[Crossref]

L. H. H. Carvalho, C. Floridia, C. Franciscangelis, V. E. Parahyba, E. P. Silva, N. G. Gonzalez, and J. Oliveira, “WDM transmission of 3x1.12-Tb/s PDM-16QAM superchannels with 6.5-b/s/Hz in a 162.5-GHz flexible-grid using only optical spectral shaping,” Proc. OFC, San Francisco, California, paper M3C.3 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup. OC: optical coupler, SW: switch, WSS: wavelength-selective switch, ICR: integrated coherent receiver, LO: local oscillator.
Fig. 2
Fig. 2 Signal spectra (a) Nyquist electrical spectrum and (b) Optical spectra before and after transmission.
Fig. 3
Fig. 3 Block diagram of post-equalization algorithm.
Fig. 4
Fig. 4 BTB OSNR performance with different post-equalization configurations.
Fig. 5
Fig. 5 Back-to-back OSNR performance at different channel spacings.
Fig. 6
Fig. 6 Experimental results by adjustment of DPF response and MLSE.
Fig. 7
Fig. 7 Experimental transmission results: (a) eight subcarriers at different transmission distance; (b) w/ and w/o post-equalization algorithm.

Metrics