Abstract

Room-temperature fabricated ZnO/ST-cut quartz is adopted for SAW ultraviolet (UV) photodetector. The ST-cut quartz substrate and ZnO layer are used for SAW excitation and photodetection, respectively. High resolution x-ray diffraction (XRD) and photoluminescence (PL) measurement indicate that high quality ZnO films can be deposited on ST-cut quartz using radio frequency (RF) sputtering. As the SAW devices under UV illumination (6 mW/cm2), a downshift in frequency of about 35 KHz can be observed. The observed small temperature coefficient of frequency (TCF) indicates that SAW devices exhibit good temperature stability. The results present feasibility of using ZnO/ST-cut quartz SAW photodetectors in ultraviolet region.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ag nanoparticles@ZnO nanowire composite arrays: an absorption enhanced UV photodetector

Yang Liu, Xianghui Zhang, Jun Su, Haixia Li, Qi Zhang, and Yihua Gao
Opt. Express 22(24) 30148-30155 (2014)

Characterization of UV photodetector based on ZnO/diamond film

Rui Su, ZhangCheng Liu, XiaoHui Chang, Yan Liang, GenQang Chen, XiuLiang Yan, FengNan Li, GuoQing Shao, Jin Pan, Haris Naeem Abbasi, and HongXing Wang
Opt. Express 27(25) 36750-36756 (2019)

Formation of c-axis oriented ZnO optical waveguides by radio-frequency magnetron sputtering

Chuan-Lei Jia, Ke-Ming Wang, Xue-Lin Wang, Xi-Jian Zhang, and Fei Lu
Opt. Express 13(13) 5093-5099 (2005)

References

  • View by:
  • |
  • |
  • |

  1. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett. 72(25), 3270–3272 (1998).
    [Crossref]
  2. S. Nagar and S. Chakrabarti, “UV electroluminescence from p-ZnO:P/n-ZnO homojunction diode,” Electron. Lett. 50(18), 1307–1309 (2014).
    [Crossref]
  3. L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, and L. Liao, “Tunable electrical properties in high-valent transition-metal-doped ZnO thin-film transistors,” IEEE Electron Device Lett. 35(7), 759–761 (2014).
    [Crossref]
  4. W. B. Peng, Y. N. He, X. L. Zhao, H. Liu, X. Kang, and C. B. Wen, “Study on the performance of ZnO nanomaterial-based surface acoustic wave ultraviolet detectors,” J. Micromech. Microeng. 23(12), 125008 (2013).
    [Crossref]
  5. D. Nardi, E. Zagato, G. Ferrini, C. Giannetti, and F. Banfi, “Design of a surface acoustic wave mass sensor in the 100 GHz range,” Appl. Phys. Lett. 100(25), 253106 (2012).
    [Crossref]
  6. H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, H. Huang, C. Zhou, and X. Zhao, “Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature,” Appl. Phys. Lett. 94(1), 013503 (2009).
    [Crossref]
  7. G. M. Ali and P. Chakrabarti, “ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors,” J. Phys. D Appl. Phys. 43(41), 415103 (2010).
    [Crossref]
  8. M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
    [Crossref]
  9. G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
    [Crossref]
  10. C. L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, and P. S. Cheng, “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator,” Thin Solid Films 518(11), 3059–3062 (2010).
    [Crossref]
  11. P. Sharma and K. Sreenivas, “Highly sensitive ultraviolet detector based on ZnO/LiNbO3 hybrid surface acoustic wave filter,” Appl. Phys. Lett. 83(17), 3617–3619 (2003).
    [Crossref]
  12. N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. M. Chen, and Y. C. Lu, “Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire,” Appl. Phys. Lett. 85(17), 3702–3704 (2004).
    [Crossref]
  13. M. Kadota and H. Kando, “Small and low-loss intermediate frequency surface acoustic wave filters using zinc oxide film on quartz substrate,” Jpn. J. Appl. Phys. 42(5B), 3139–3142 (2003).
    [Crossref]
  14. M. Tomar, V. Gupta, K. Sreenivas, and A. Mansingh, “Temperature stability of ZnO thin film SAW device on fused quartz,” IEEE T. Device Mat. Re. 5(3), 494–500 (2005).
    [Crossref]
  15. W. S. Wang, C. J. Tsai, and C. C. Ma, “Qualitative and quantitative analysis of surface-acoustic-wave-based ultraviolet photodetectors,” J. Appl. Phys. 114(6), 064911 (2013).
    [Crossref]
  16. R. C. Chang, S. Y. Chu, C. S. Hong, and Y. T. Chuang, “A study of Love wave devices in ZnO/Quartz and ZnO/LiTaO3 structures,” Thin Solid Films 498(1–2), 146–151 (2006).
    [Crossref]
  17. Y. Zhang, H. Zheng, J. Su, B. Lin, and Z. Fu, “Effects of sic buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates,” J. Lumin. 124(2), 252–256 (2007).
    [Crossref]
  18. S. Bethe, H. Pan, and B. W. Wesseis, “Luminescence of heteroepitaxial zinc oxide,” Appl. Phys. Lett. 52(2), 138–140 (1988).
    [Crossref]
  19. D. S. Ballantine, Jr., R. M. White, S. J. Martin, A. J. Ricco, G. C. Frye, E. T. Zellers, and H. Wohltjen, Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications (Academic, 1997).
  20. D. Ciplys, R. Rimeika, A. Sereika, R. Gaska, M. S. Shur, J. W. Yang, and M. A. Khan, “GaN-based SAW delay-line oscillator,” Electron. Lett. 37(8), 545–546 (2001).
    [Crossref]
  21. D. Ciplys, R. Rimeika, M. S. Shur, S. Rumyantsev, R. Gaska, A. Sereika, J. Yang, and M. Asif Khan, “Visible-blind photoresponse of GaN-based surface acoustic wave oscillator,” Appl. Phys. Lett. 80(11), 2020–2022 (2002).
    [Crossref]
  22. W. B. Peng, Y. N. He, C. B. Wen, and K. Ma, “Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer,” Sensor. Actuat, A-Phys. 184, 34–40 (2012).
  23. S. H. Lee, H. H. Jeong, S. B. Bae, H. C. Choi, J. H. Lee, and Y. H. Lee, “Epitaxially grown GaN thin-film SAW filter with high velocity and low insertion loss,” IEEE T, Electron Dev. 48(3), 524–529 (2001).
    [Crossref]
  24. A. Talbi, F. Sarry, F. Moreira, M. Elhakiki, O. Elmazria, L. Le Brizoual, and P. Alnot, “Zero TCF ZnO/quartz SAW structure for gas sensing applications,” in Proceedings of IEEE Conference on Frequency Control Symposium and Exposition (IEEE, 2004), pp. 542–545.
  25. M. Kadota, “Combination of ZnO film and quartz to realize large coupling factor and excellent temperature coefficient for SAW devices,” in Proceedings of IEEE Conference on Ultrasonics Symposium (IEEE, 1997), pp. 261–266.
    [Crossref]
  26. R. Y. Ro, R. Y. Lee, Z. X. Lin, C. C. Sung, Y. F. Chiang, and S. Wu, “Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure,” Thin Solid Films 529, 470–474 (2013).
    [Crossref]
  27. N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu, “Epitaxial ZnO piezoelectric thin films for SAW filters,” Mater. Sci. Semicond. Process. 2(3), 247–252 (1999).
    [Crossref]
  28. H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahashi, T. Kajiwara, and Y. Yamamoto, “High frequency surface acoustic wave filter using ZnO/diamond/Si-structure,” Jpn. J. Appl. Phys. 33(1A), 324–328 (1994).
    [Crossref]
  29. C. K. Campbell, “Applications of surface acoustic and shallow bulk acoustic wave devices,” Proc. IEEE 77(10), 1453–1484 (1989).
    [Crossref]
  30. T. Shiosaki and A. Kawabata, “58 MHz surface-acoustic-wave TV-intermediate-frequency filter using ZnO sputtered film,” Jpn. J. Appl. Phys. 16(S1), 483–486 (1977).
    [Crossref]

2014 (2)

S. Nagar and S. Chakrabarti, “UV electroluminescence from p-ZnO:P/n-ZnO homojunction diode,” Electron. Lett. 50(18), 1307–1309 (2014).
[Crossref]

L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, and L. Liao, “Tunable electrical properties in high-valent transition-metal-doped ZnO thin-film transistors,” IEEE Electron Device Lett. 35(7), 759–761 (2014).
[Crossref]

2013 (3)

W. B. Peng, Y. N. He, X. L. Zhao, H. Liu, X. Kang, and C. B. Wen, “Study on the performance of ZnO nanomaterial-based surface acoustic wave ultraviolet detectors,” J. Micromech. Microeng. 23(12), 125008 (2013).
[Crossref]

W. S. Wang, C. J. Tsai, and C. C. Ma, “Qualitative and quantitative analysis of surface-acoustic-wave-based ultraviolet photodetectors,” J. Appl. Phys. 114(6), 064911 (2013).
[Crossref]

R. Y. Ro, R. Y. Lee, Z. X. Lin, C. C. Sung, Y. F. Chiang, and S. Wu, “Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure,” Thin Solid Films 529, 470–474 (2013).
[Crossref]

2012 (2)

W. B. Peng, Y. N. He, C. B. Wen, and K. Ma, “Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer,” Sensor. Actuat, A-Phys. 184, 34–40 (2012).

D. Nardi, E. Zagato, G. Ferrini, C. Giannetti, and F. Banfi, “Design of a surface acoustic wave mass sensor in the 100 GHz range,” Appl. Phys. Lett. 100(25), 253106 (2012).
[Crossref]

2011 (1)

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

2010 (2)

C. L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, and P. S. Cheng, “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator,” Thin Solid Films 518(11), 3059–3062 (2010).
[Crossref]

G. M. Ali and P. Chakrabarti, “ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors,” J. Phys. D Appl. Phys. 43(41), 415103 (2010).
[Crossref]

2009 (1)

H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, H. Huang, C. Zhou, and X. Zhao, “Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature,” Appl. Phys. Lett. 94(1), 013503 (2009).
[Crossref]

2008 (1)

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

2007 (1)

Y. Zhang, H. Zheng, J. Su, B. Lin, and Z. Fu, “Effects of sic buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates,” J. Lumin. 124(2), 252–256 (2007).
[Crossref]

2006 (1)

R. C. Chang, S. Y. Chu, C. S. Hong, and Y. T. Chuang, “A study of Love wave devices in ZnO/Quartz and ZnO/LiTaO3 structures,” Thin Solid Films 498(1–2), 146–151 (2006).
[Crossref]

2005 (1)

M. Tomar, V. Gupta, K. Sreenivas, and A. Mansingh, “Temperature stability of ZnO thin film SAW device on fused quartz,” IEEE T. Device Mat. Re. 5(3), 494–500 (2005).
[Crossref]

2004 (1)

N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. M. Chen, and Y. C. Lu, “Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire,” Appl. Phys. Lett. 85(17), 3702–3704 (2004).
[Crossref]

2003 (2)

M. Kadota and H. Kando, “Small and low-loss intermediate frequency surface acoustic wave filters using zinc oxide film on quartz substrate,” Jpn. J. Appl. Phys. 42(5B), 3139–3142 (2003).
[Crossref]

P. Sharma and K. Sreenivas, “Highly sensitive ultraviolet detector based on ZnO/LiNbO3 hybrid surface acoustic wave filter,” Appl. Phys. Lett. 83(17), 3617–3619 (2003).
[Crossref]

2002 (1)

D. Ciplys, R. Rimeika, M. S. Shur, S. Rumyantsev, R. Gaska, A. Sereika, J. Yang, and M. Asif Khan, “Visible-blind photoresponse of GaN-based surface acoustic wave oscillator,” Appl. Phys. Lett. 80(11), 2020–2022 (2002).
[Crossref]

2001 (2)

D. Ciplys, R. Rimeika, A. Sereika, R. Gaska, M. S. Shur, J. W. Yang, and M. A. Khan, “GaN-based SAW delay-line oscillator,” Electron. Lett. 37(8), 545–546 (2001).
[Crossref]

S. H. Lee, H. H. Jeong, S. B. Bae, H. C. Choi, J. H. Lee, and Y. H. Lee, “Epitaxially grown GaN thin-film SAW filter with high velocity and low insertion loss,” IEEE T, Electron Dev. 48(3), 524–529 (2001).
[Crossref]

1999 (1)

N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu, “Epitaxial ZnO piezoelectric thin films for SAW filters,” Mater. Sci. Semicond. Process. 2(3), 247–252 (1999).
[Crossref]

1998 (1)

Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett. 72(25), 3270–3272 (1998).
[Crossref]

1994 (1)

H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahashi, T. Kajiwara, and Y. Yamamoto, “High frequency surface acoustic wave filter using ZnO/diamond/Si-structure,” Jpn. J. Appl. Phys. 33(1A), 324–328 (1994).
[Crossref]

1989 (1)

C. K. Campbell, “Applications of surface acoustic and shallow bulk acoustic wave devices,” Proc. IEEE 77(10), 1453–1484 (1989).
[Crossref]

1988 (1)

S. Bethe, H. Pan, and B. W. Wesseis, “Luminescence of heteroepitaxial zinc oxide,” Appl. Phys. Lett. 52(2), 138–140 (1988).
[Crossref]

1977 (1)

T. Shiosaki and A. Kawabata, “58 MHz surface-acoustic-wave TV-intermediate-frequency filter using ZnO sputtered film,” Jpn. J. Appl. Phys. 16(S1), 483–486 (1977).
[Crossref]

Akasaka, S.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Ali, G. M.

G. M. Ali and P. Chakrabarti, “ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors,” J. Phys. D Appl. Phys. 43(41), 415103 (2010).
[Crossref]

Alnot, P.

A. Talbi, F. Sarry, F. Moreira, M. Elhakiki, O. Elmazria, L. Le Brizoual, and P. Alnot, “Zero TCF ZnO/quartz SAW structure for gas sensing applications,” in Proceedings of IEEE Conference on Frequency Control Symposium and Exposition (IEEE, 2004), pp. 542–545.

Asif Khan, M.

D. Ciplys, R. Rimeika, M. S. Shur, S. Rumyantsev, R. Gaska, A. Sereika, J. Yang, and M. Asif Khan, “Visible-blind photoresponse of GaN-based surface acoustic wave oscillator,” Appl. Phys. Lett. 80(11), 2020–2022 (2002).
[Crossref]

Bae, S. B.

S. H. Lee, H. H. Jeong, S. B. Bae, H. C. Choi, J. H. Lee, and Y. H. Lee, “Epitaxially grown GaN thin-film SAW filter with high velocity and low insertion loss,” IEEE T, Electron Dev. 48(3), 524–529 (2001).
[Crossref]

Banfi, F.

D. Nardi, E. Zagato, G. Ferrini, C. Giannetti, and F. Banfi, “Design of a surface acoustic wave mass sensor in the 100 GHz range,” Appl. Phys. Lett. 100(25), 253106 (2012).
[Crossref]

Bethe, S.

S. Bethe, H. Pan, and B. W. Wesseis, “Luminescence of heteroepitaxial zinc oxide,” Appl. Phys. Lett. 52(2), 138–140 (1988).
[Crossref]

Campbell, C. K.

C. K. Campbell, “Applications of surface acoustic and shallow bulk acoustic wave devices,” Proc. IEEE 77(10), 1453–1484 (1989).
[Crossref]

Chakrabarti, P.

G. M. Ali and P. Chakrabarti, “ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors,” J. Phys. D Appl. Phys. 43(41), 415103 (2010).
[Crossref]

Chakrabarti, S.

S. Nagar and S. Chakrabarti, “UV electroluminescence from p-ZnO:P/n-ZnO homojunction diode,” Electron. Lett. 50(18), 1307–1309 (2014).
[Crossref]

Chang, R. C.

R. C. Chang, S. Y. Chu, C. S. Hong, and Y. T. Chuang, “A study of Love wave devices in ZnO/Quartz and ZnO/LiTaO3 structures,” Thin Solid Films 498(1–2), 146–151 (2006).
[Crossref]

Chen, W.

L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, and L. Liao, “Tunable electrical properties in high-valent transition-metal-doped ZnO thin-film transistors,” IEEE Electron Device Lett. 35(7), 759–761 (2014).
[Crossref]

Chen, Y.

N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. M. Chen, and Y. C. Lu, “Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire,” Appl. Phys. Lett. 85(17), 3702–3704 (2004).
[Crossref]

Chen, Y. C.

C. L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, and P. S. Cheng, “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator,” Thin Solid Films 518(11), 3059–3062 (2010).
[Crossref]

Chen, Y. M.

N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. M. Chen, and Y. C. Lu, “Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire,” Appl. Phys. Lett. 85(17), 3702–3704 (2004).
[Crossref]

Cheng, C. C.

C. L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, and P. S. Cheng, “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator,” Thin Solid Films 518(11), 3059–3062 (2010).
[Crossref]

Cheng, D. L.

C. L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, and P. S. Cheng, “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator,” Thin Solid Films 518(11), 3059–3062 (2010).
[Crossref]

Cheng, G.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

Cheng, P. S.

C. L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, and P. S. Cheng, “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator,” Thin Solid Films 518(11), 3059–3062 (2010).
[Crossref]

Chiang, Y. F.

R. Y. Ro, R. Y. Lee, Z. X. Lin, C. C. Sung, Y. F. Chiang, and S. Wu, “Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure,” Thin Solid Films 529, 470–474 (2013).
[Crossref]

Choi, H. C.

S. H. Lee, H. H. Jeong, S. B. Bae, H. C. Choi, J. H. Lee, and Y. H. Lee, “Epitaxially grown GaN thin-film SAW filter with high velocity and low insertion loss,” IEEE T, Electron Dev. 48(3), 524–529 (2001).
[Crossref]

Chu, S. Y.

R. C. Chang, S. Y. Chu, C. S. Hong, and Y. T. Chuang, “A study of Love wave devices in ZnO/Quartz and ZnO/LiTaO3 structures,” Thin Solid Films 498(1–2), 146–151 (2006).
[Crossref]

Chuang, Y. T.

R. C. Chang, S. Y. Chu, C. S. Hong, and Y. T. Chuang, “A study of Love wave devices in ZnO/Quartz and ZnO/LiTaO3 structures,” Thin Solid Films 498(1–2), 146–151 (2006).
[Crossref]

Ciplys, D.

D. Ciplys, R. Rimeika, M. S. Shur, S. Rumyantsev, R. Gaska, A. Sereika, J. Yang, and M. Asif Khan, “Visible-blind photoresponse of GaN-based surface acoustic wave oscillator,” Appl. Phys. Lett. 80(11), 2020–2022 (2002).
[Crossref]

D. Ciplys, R. Rimeika, A. Sereika, R. Gaska, M. S. Shur, J. W. Yang, and M. A. Khan, “GaN-based SAW delay-line oscillator,” Electron. Lett. 37(8), 545–546 (2001).
[Crossref]

Du, Z.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

Elhakiki, M.

A. Talbi, F. Sarry, F. Moreira, M. Elhakiki, O. Elmazria, L. Le Brizoual, and P. Alnot, “Zero TCF ZnO/quartz SAW structure for gas sensing applications,” in Proceedings of IEEE Conference on Frequency Control Symposium and Exposition (IEEE, 2004), pp. 542–545.

Elmazria, O.

A. Talbi, F. Sarry, F. Moreira, M. Elhakiki, O. Elmazria, L. Le Brizoual, and P. Alnot, “Zero TCF ZnO/quartz SAW structure for gas sensing applications,” in Proceedings of IEEE Conference on Frequency Control Symposium and Exposition (IEEE, 2004), pp. 542–545.

Emanetoglu, N. W.

N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. M. Chen, and Y. C. Lu, “Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire,” Appl. Phys. Lett. 85(17), 3702–3704 (2004).
[Crossref]

N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu, “Epitaxial ZnO piezoelectric thin films for SAW filters,” Mater. Sci. Semicond. Process. 2(3), 247–252 (1999).
[Crossref]

Fang, G.

H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, H. Huang, C. Zhou, and X. Zhao, “Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature,” Appl. Phys. Lett. 94(1), 013503 (2009).
[Crossref]

Ferrini, G.

D. Nardi, E. Zagato, G. Ferrini, C. Giannetti, and F. Banfi, “Design of a surface acoustic wave mass sensor in the 100 GHz range,” Appl. Phys. Lett. 100(25), 253106 (2012).
[Crossref]

Fu, Z.

Y. Zhang, H. Zheng, J. Su, B. Lin, and Z. Fu, “Effects of sic buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates,” J. Lumin. 124(2), 252–256 (2007).
[Crossref]

Fujimori, N.

H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahashi, T. Kajiwara, and Y. Yamamoto, “High frequency surface acoustic wave filter using ZnO/diamond/Si-structure,” Jpn. J. Appl. Phys. 33(1A), 324–328 (1994).
[Crossref]

Fukumura, T.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Gaska, R.

D. Ciplys, R. Rimeika, M. S. Shur, S. Rumyantsev, R. Gaska, A. Sereika, J. Yang, and M. Asif Khan, “Visible-blind photoresponse of GaN-based surface acoustic wave oscillator,” Appl. Phys. Lett. 80(11), 2020–2022 (2002).
[Crossref]

D. Ciplys, R. Rimeika, A. Sereika, R. Gaska, M. S. Shur, J. W. Yang, and M. A. Khan, “GaN-based SAW delay-line oscillator,” Electron. Lett. 37(8), 545–546 (2001).
[Crossref]

Giannetti, C.

D. Nardi, E. Zagato, G. Ferrini, C. Giannetti, and F. Banfi, “Design of a surface acoustic wave mass sensor in the 100 GHz range,” Appl. Phys. Lett. 100(25), 253106 (2012).
[Crossref]

Gorla, C.

N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu, “Epitaxial ZnO piezoelectric thin films for SAW filters,” Mater. Sci. Semicond. Process. 2(3), 247–252 (1999).
[Crossref]

Gupta, V.

M. Tomar, V. Gupta, K. Sreenivas, and A. Mansingh, “Temperature stability of ZnO thin film SAW device on fused quartz,” IEEE T. Device Mat. Re. 5(3), 494–500 (2005).
[Crossref]

Hachigo, A.

H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahashi, T. Kajiwara, and Y. Yamamoto, “High frequency surface acoustic wave filter using ZnO/diamond/Si-structure,” Jpn. J. Appl. Phys. 33(1A), 324–328 (1994).
[Crossref]

He, Y. N.

W. B. Peng, Y. N. He, X. L. Zhao, H. Liu, X. Kang, and C. B. Wen, “Study on the performance of ZnO nanomaterial-based surface acoustic wave ultraviolet detectors,” J. Micromech. Microeng. 23(12), 125008 (2013).
[Crossref]

W. B. Peng, Y. N. He, C. B. Wen, and K. Ma, “Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer,” Sensor. Actuat, A-Phys. 184, 34–40 (2012).

Higaki, K.

H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahashi, T. Kajiwara, and Y. Yamamoto, “High frequency surface acoustic wave filter using ZnO/diamond/Si-structure,” Jpn. J. Appl. Phys. 33(1A), 324–328 (1994).
[Crossref]

Hong, C. S.

R. C. Chang, S. Y. Chu, C. S. Hong, and Y. T. Chuang, “A study of Love wave devices in ZnO/Quartz and ZnO/LiTaO3 structures,” Thin Solid Films 498(1–2), 146–151 (2006).
[Crossref]

Huang, H.

H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, H. Huang, C. Zhou, and X. Zhao, “Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature,” Appl. Phys. Lett. 94(1), 013503 (2009).
[Crossref]

Jeong, H. H.

S. H. Lee, H. H. Jeong, S. B. Bae, H. C. Choi, J. H. Lee, and Y. H. Lee, “Epitaxially grown GaN thin-film SAW filter with high velocity and low insertion loss,” IEEE T, Electron Dev. 48(3), 524–529 (2001).
[Crossref]

Jiang, C. Z.

L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, and L. Liao, “Tunable electrical properties in high-valent transition-metal-doped ZnO thin-film transistors,” IEEE Electron Device Lett. 35(7), 759–761 (2014).
[Crossref]

Kadota, M.

M. Kadota and H. Kando, “Small and low-loss intermediate frequency surface acoustic wave filters using zinc oxide film on quartz substrate,” Jpn. J. Appl. Phys. 42(5B), 3139–3142 (2003).
[Crossref]

M. Kadota, “Combination of ZnO film and quartz to realize large coupling factor and excellent temperature coefficient for SAW devices,” in Proceedings of IEEE Conference on Ultrasonics Symposium (IEEE, 1997), pp. 261–266.
[Crossref]

Kajiwara, T.

H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahashi, T. Kajiwara, and Y. Yamamoto, “High frequency surface acoustic wave filter using ZnO/diamond/Si-structure,” Jpn. J. Appl. Phys. 33(1A), 324–328 (1994).
[Crossref]

Kamisawa, A.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Kando, H.

M. Kadota and H. Kando, “Small and low-loss intermediate frequency surface acoustic wave filters using zinc oxide film on quartz substrate,” Jpn. J. Appl. Phys. 42(5B), 3139–3142 (2003).
[Crossref]

Kang, X.

W. B. Peng, Y. N. He, X. L. Zhao, H. Liu, X. Kang, and C. B. Wen, “Study on the performance of ZnO nanomaterial-based surface acoustic wave ultraviolet detectors,” J. Micromech. Microeng. 23(12), 125008 (2013).
[Crossref]

Kao, K. S.

C. L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, and P. S. Cheng, “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator,” Thin Solid Films 518(11), 3059–3062 (2010).
[Crossref]

Kawabata, A.

T. Shiosaki and A. Kawabata, “58 MHz surface-acoustic-wave TV-intermediate-frequency filter using ZnO sputtered film,” Jpn. J. Appl. Phys. 16(S1), 483–486 (1977).
[Crossref]

Kawasaki, M.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett. 72(25), 3270–3272 (1998).
[Crossref]

Khan, M. A.

D. Ciplys, R. Rimeika, A. Sereika, R. Gaska, M. S. Shur, J. W. Yang, and M. A. Khan, “GaN-based SAW delay-line oscillator,” Electron. Lett. 37(8), 545–546 (2001).
[Crossref]

Koinuma, H.

Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett. 72(25), 3270–3272 (1998).
[Crossref]

Le Brizoual, L.

A. Talbi, F. Sarry, F. Moreira, M. Elhakiki, O. Elmazria, L. Le Brizoual, and P. Alnot, “Zero TCF ZnO/quartz SAW structure for gas sensing applications,” in Proceedings of IEEE Conference on Frequency Control Symposium and Exposition (IEEE, 2004), pp. 542–545.

Lee, J. H.

S. H. Lee, H. H. Jeong, S. B. Bae, H. C. Choi, J. H. Lee, and Y. H. Lee, “Epitaxially grown GaN thin-film SAW filter with high velocity and low insertion loss,” IEEE T, Electron Dev. 48(3), 524–529 (2001).
[Crossref]

Lee, R. Y.

R. Y. Ro, R. Y. Lee, Z. X. Lin, C. C. Sung, Y. F. Chiang, and S. Wu, “Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure,” Thin Solid Films 529, 470–474 (2013).
[Crossref]

Lee, S. H.

S. H. Lee, H. H. Jeong, S. B. Bae, H. C. Choi, J. H. Lee, and Y. H. Lee, “Epitaxially grown GaN thin-film SAW filter with high velocity and low insertion loss,” IEEE T, Electron Dev. 48(3), 524–529 (2001).
[Crossref]

Lee, Y. H.

S. H. Lee, H. H. Jeong, S. B. Bae, H. C. Choi, J. H. Lee, and Y. H. Lee, “Epitaxially grown GaN thin-film SAW filter with high velocity and low insertion loss,” IEEE T, Electron Dev. 48(3), 524–529 (2001).
[Crossref]

Li, B.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

Li, J. C.

L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, and L. Liao, “Tunable electrical properties in high-valent transition-metal-doped ZnO thin-film transistors,” IEEE Electron Device Lett. 35(7), 759–761 (2014).
[Crossref]

Li, Z.

L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, and L. Liao, “Tunable electrical properties in high-valent transition-metal-doped ZnO thin-film transistors,” IEEE Electron Device Lett. 35(7), 759–761 (2014).
[Crossref]

Liang, S.

N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu, “Epitaxial ZnO piezoelectric thin films for SAW filters,” Mater. Sci. Semicond. Process. 2(3), 247–252 (1999).
[Crossref]

Liao, L.

L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, and L. Liao, “Tunable electrical properties in high-valent transition-metal-doped ZnO thin-film transistors,” IEEE Electron Device Lett. 35(7), 759–761 (2014).
[Crossref]

Lin, B.

Y. Zhang, H. Zheng, J. Su, B. Lin, and Z. Fu, “Effects of sic buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates,” J. Lumin. 124(2), 252–256 (2007).
[Crossref]

Lin, Z. X.

R. Y. Ro, R. Y. Lee, Z. X. Lin, C. C. Sung, Y. F. Chiang, and S. Wu, “Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure,” Thin Solid Films 529, 470–474 (2013).
[Crossref]

Liu, B.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

Liu, H.

W. B. Peng, Y. N. He, X. L. Zhao, H. Liu, X. Kang, and C. B. Wen, “Study on the performance of ZnO nanomaterial-based surface acoustic wave ultraviolet detectors,” J. Micromech. Microeng. 23(12), 125008 (2013).
[Crossref]

Liu, X. Q.

L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, and L. Liao, “Tunable electrical properties in high-valent transition-metal-doped ZnO thin-film transistors,” IEEE Electron Device Lett. 35(7), 759–761 (2014).
[Crossref]

Liu, Y.

N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu, “Epitaxial ZnO piezoelectric thin films for SAW filters,” Mater. Sci. Semicond. Process. 2(3), 247–252 (1999).
[Crossref]

Liu, Y. L.

L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, and L. Liao, “Tunable electrical properties in high-valent transition-metal-doped ZnO thin-film transistors,” IEEE Electron Device Lett. 35(7), 759–761 (2014).
[Crossref]

Lu, Y.

N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu, “Epitaxial ZnO piezoelectric thin films for SAW filters,” Mater. Sci. Semicond. Process. 2(3), 247–252 (1999).
[Crossref]

Lu, Y. C.

N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. M. Chen, and Y. C. Lu, “Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire,” Appl. Phys. Lett. 85(17), 3702–3704 (2004).
[Crossref]

Ma, C. C.

W. S. Wang, C. J. Tsai, and C. C. Ma, “Qualitative and quantitative analysis of surface-acoustic-wave-based ultraviolet photodetectors,” J. Appl. Phys. 114(6), 064911 (2013).
[Crossref]

Ma, K.

W. B. Peng, Y. N. He, C. B. Wen, and K. Ma, “Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer,” Sensor. Actuat, A-Phys. 184, 34–40 (2012).

Makino, T.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Mansingh, A.

M. Tomar, V. Gupta, K. Sreenivas, and A. Mansingh, “Temperature stability of ZnO thin film SAW device on fused quartz,” IEEE T. Device Mat. Re. 5(3), 494–500 (2005).
[Crossref]

Moreira, F.

A. Talbi, F. Sarry, F. Moreira, M. Elhakiki, O. Elmazria, L. Le Brizoual, and P. Alnot, “Zero TCF ZnO/quartz SAW structure for gas sensing applications,” in Proceedings of IEEE Conference on Frequency Control Symposium and Exposition (IEEE, 2004), pp. 542–545.

Nagar, S.

S. Nagar and S. Chakrabarti, “UV electroluminescence from p-ZnO:P/n-ZnO homojunction diode,” Electron. Lett. 50(18), 1307–1309 (2014).
[Crossref]

Nakahara, K.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Nakahata, H.

H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahashi, T. Kajiwara, and Y. Yamamoto, “High frequency surface acoustic wave filter using ZnO/diamond/Si-structure,” Jpn. J. Appl. Phys. 33(1A), 324–328 (1994).
[Crossref]

Nakano, M.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Nardi, D.

D. Nardi, E. Zagato, G. Ferrini, C. Giannetti, and F. Banfi, “Design of a surface acoustic wave mass sensor in the 100 GHz range,” Appl. Phys. Lett. 100(25), 253106 (2012).
[Crossref]

Ohtomo, A.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett. 72(25), 3270–3272 (1998).
[Crossref]

Pan, H.

S. Bethe, H. Pan, and B. W. Wesseis, “Luminescence of heteroepitaxial zinc oxide,” Appl. Phys. Lett. 52(2), 138–140 (1988).
[Crossref]

Peng, W. B.

W. B. Peng, Y. N. He, X. L. Zhao, H. Liu, X. Kang, and C. B. Wen, “Study on the performance of ZnO nanomaterial-based surface acoustic wave ultraviolet detectors,” J. Micromech. Microeng. 23(12), 125008 (2013).
[Crossref]

W. B. Peng, Y. N. He, C. B. Wen, and K. Ma, “Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer,” Sensor. Actuat, A-Phys. 184, 34–40 (2012).

Rimeika, R.

D. Ciplys, R. Rimeika, M. S. Shur, S. Rumyantsev, R. Gaska, A. Sereika, J. Yang, and M. Asif Khan, “Visible-blind photoresponse of GaN-based surface acoustic wave oscillator,” Appl. Phys. Lett. 80(11), 2020–2022 (2002).
[Crossref]

D. Ciplys, R. Rimeika, A. Sereika, R. Gaska, M. S. Shur, J. W. Yang, and M. A. Khan, “GaN-based SAW delay-line oscillator,” Electron. Lett. 37(8), 545–546 (2001).
[Crossref]

Ro, R. Y.

R. Y. Ro, R. Y. Lee, Z. X. Lin, C. C. Sung, Y. F. Chiang, and S. Wu, “Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure,” Thin Solid Films 529, 470–474 (2013).
[Crossref]

Rumyantsev, S.

D. Ciplys, R. Rimeika, M. S. Shur, S. Rumyantsev, R. Gaska, A. Sereika, J. Yang, and M. Asif Khan, “Visible-blind photoresponse of GaN-based surface acoustic wave oscillator,” Appl. Phys. Lett. 80(11), 2020–2022 (2002).
[Crossref]

Sarry, F.

A. Talbi, F. Sarry, F. Moreira, M. Elhakiki, O. Elmazria, L. Le Brizoual, and P. Alnot, “Zero TCF ZnO/quartz SAW structure for gas sensing applications,” in Proceedings of IEEE Conference on Frequency Control Symposium and Exposition (IEEE, 2004), pp. 542–545.

Segawa, Y.

Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett. 72(25), 3270–3272 (1998).
[Crossref]

Sereika, A.

D. Ciplys, R. Rimeika, M. S. Shur, S. Rumyantsev, R. Gaska, A. Sereika, J. Yang, and M. Asif Khan, “Visible-blind photoresponse of GaN-based surface acoustic wave oscillator,” Appl. Phys. Lett. 80(11), 2020–2022 (2002).
[Crossref]

D. Ciplys, R. Rimeika, A. Sereika, R. Gaska, M. S. Shur, J. W. Yang, and M. A. Khan, “GaN-based SAW delay-line oscillator,” Electron. Lett. 37(8), 545–546 (2001).
[Crossref]

Sharma, P.

P. Sharma and K. Sreenivas, “Highly sensitive ultraviolet detector based on ZnO/LiNbO3 hybrid surface acoustic wave filter,” Appl. Phys. Lett. 83(17), 3617–3619 (2003).
[Crossref]

Shikata, S.

H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahashi, T. Kajiwara, and Y. Yamamoto, “High frequency surface acoustic wave filter using ZnO/diamond/Si-structure,” Jpn. J. Appl. Phys. 33(1A), 324–328 (1994).
[Crossref]

Shiosaki, T.

T. Shiosaki and A. Kawabata, “58 MHz surface-acoustic-wave TV-intermediate-frequency filter using ZnO sputtered film,” Jpn. J. Appl. Phys. 16(S1), 483–486 (1977).
[Crossref]

Shur, M. S.

D. Ciplys, R. Rimeika, M. S. Shur, S. Rumyantsev, R. Gaska, A. Sereika, J. Yang, and M. Asif Khan, “Visible-blind photoresponse of GaN-based surface acoustic wave oscillator,” Appl. Phys. Lett. 80(11), 2020–2022 (2002).
[Crossref]

D. Ciplys, R. Rimeika, A. Sereika, R. Gaska, M. S. Shur, J. W. Yang, and M. A. Khan, “GaN-based SAW delay-line oscillator,” Electron. Lett. 37(8), 545–546 (2001).
[Crossref]

Sreenivas, K.

M. Tomar, V. Gupta, K. Sreenivas, and A. Mansingh, “Temperature stability of ZnO thin film SAW device on fused quartz,” IEEE T. Device Mat. Re. 5(3), 494–500 (2005).
[Crossref]

P. Sharma and K. Sreenivas, “Highly sensitive ultraviolet detector based on ZnO/LiNbO3 hybrid surface acoustic wave filter,” Appl. Phys. Lett. 83(17), 3617–3619 (2003).
[Crossref]

Su, J.

Y. Zhang, H. Zheng, J. Su, B. Lin, and Z. Fu, “Effects of sic buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates,” J. Lumin. 124(2), 252–256 (2007).
[Crossref]

Sung, C. C.

R. Y. Ro, R. Y. Lee, Z. X. Lin, C. C. Sung, Y. F. Chiang, and S. Wu, “Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure,” Thin Solid Films 529, 470–474 (2013).
[Crossref]

Takahashi, Y.

H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahashi, T. Kajiwara, and Y. Yamamoto, “High frequency surface acoustic wave filter using ZnO/diamond/Si-structure,” Jpn. J. Appl. Phys. 33(1A), 324–328 (1994).
[Crossref]

Talbi, A.

A. Talbi, F. Sarry, F. Moreira, M. Elhakiki, O. Elmazria, L. Le Brizoual, and P. Alnot, “Zero TCF ZnO/quartz SAW structure for gas sensing applications,” in Proceedings of IEEE Conference on Frequency Control Symposium and Exposition (IEEE, 2004), pp. 542–545.

Tamura, K.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Tanabe, T.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Tang, Z. K.

Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett. 72(25), 3270–3272 (1998).
[Crossref]

Tomar, M.

M. Tomar, V. Gupta, K. Sreenivas, and A. Mansingh, “Temperature stability of ZnO thin film SAW device on fused quartz,” IEEE T. Device Mat. Re. 5(3), 494–500 (2005).
[Crossref]

Tsai, C. J.

W. S. Wang, C. J. Tsai, and C. C. Ma, “Qualitative and quantitative analysis of surface-acoustic-wave-based ultraviolet photodetectors,” J. Appl. Phys. 114(6), 064911 (2013).
[Crossref]

Tsukazaki, A.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Ueno, K.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Wang, C.

H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, H. Huang, C. Zhou, and X. Zhao, “Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature,” Appl. Phys. Lett. 94(1), 013503 (2009).
[Crossref]

Wang, J. L.

L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, and L. Liao, “Tunable electrical properties in high-valent transition-metal-doped ZnO thin-film transistors,” IEEE Electron Device Lett. 35(7), 759–761 (2014).
[Crossref]

Wang, W. S.

W. S. Wang, C. J. Tsai, and C. C. Ma, “Qualitative and quantitative analysis of surface-acoustic-wave-based ultraviolet photodetectors,” J. Appl. Phys. 114(6), 064911 (2013).
[Crossref]

Wei, C. L.

C. L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, and P. S. Cheng, “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator,” Thin Solid Films 518(11), 3059–3062 (2010).
[Crossref]

Wen, C. B.

W. B. Peng, Y. N. He, X. L. Zhao, H. Liu, X. Kang, and C. B. Wen, “Study on the performance of ZnO nanomaterial-based surface acoustic wave ultraviolet detectors,” J. Micromech. Microeng. 23(12), 125008 (2013).
[Crossref]

W. B. Peng, Y. N. He, C. B. Wen, and K. Ma, “Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer,” Sensor. Actuat, A-Phys. 184, 34–40 (2012).

Wesseis, B. W.

S. Bethe, H. Pan, and B. W. Wesseis, “Luminescence of heteroepitaxial zinc oxide,” Appl. Phys. Lett. 52(2), 138–140 (1988).
[Crossref]

Wong, G. K. L.

Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett. 72(25), 3270–3272 (1998).
[Crossref]

Wu, S.

R. Y. Ro, R. Y. Lee, Z. X. Lin, C. C. Sung, Y. F. Chiang, and S. Wu, “Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure,” Thin Solid Films 529, 470–474 (2013).
[Crossref]

Wu, X.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

Xiao, X. H.

L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, and L. Liao, “Tunable electrical properties in high-valent transition-metal-doped ZnO thin-film transistors,” IEEE Electron Device Lett. 35(7), 759–761 (2014).
[Crossref]

Xu, L.

L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, and L. Liao, “Tunable electrical properties in high-valent transition-metal-doped ZnO thin-film transistors,” IEEE Electron Device Lett. 35(7), 759–761 (2014).
[Crossref]

Yamamoto, Y.

H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahashi, T. Kajiwara, and Y. Yamamoto, “High frequency surface acoustic wave filter using ZnO/diamond/Si-structure,” Jpn. J. Appl. Phys. 33(1A), 324–328 (1994).
[Crossref]

Yang, J.

D. Ciplys, R. Rimeika, M. S. Shur, S. Rumyantsev, R. Gaska, A. Sereika, J. Yang, and M. Asif Khan, “Visible-blind photoresponse of GaN-based surface acoustic wave oscillator,” Appl. Phys. Lett. 80(11), 2020–2022 (2002).
[Crossref]

Yang, J. W.

D. Ciplys, R. Rimeika, A. Sereika, R. Gaska, M. S. Shur, J. W. Yang, and M. A. Khan, “GaN-based SAW delay-line oscillator,” Electron. Lett. 37(8), 545–546 (2001).
[Crossref]

Yang, X.

H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, H. Huang, C. Zhou, and X. Zhao, “Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature,” Appl. Phys. Lett. 94(1), 013503 (2009).
[Crossref]

Yu, P.

Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett. 72(25), 3270–3272 (1998).
[Crossref]

Yuan, L.

H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, H. Huang, C. Zhou, and X. Zhao, “Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature,” Appl. Phys. Lett. 94(1), 013503 (2009).
[Crossref]

Yuji, H.

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

Zagato, E.

D. Nardi, E. Zagato, G. Ferrini, C. Giannetti, and F. Banfi, “Design of a surface acoustic wave mass sensor in the 100 GHz range,” Appl. Phys. Lett. 100(25), 253106 (2012).
[Crossref]

Zhang, X.

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

Zhang, Y.

Y. Zhang, H. Zheng, J. Su, B. Lin, and Z. Fu, “Effects of sic buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates,” J. Lumin. 124(2), 252–256 (2007).
[Crossref]

Zhao, X.

H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, H. Huang, C. Zhou, and X. Zhao, “Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature,” Appl. Phys. Lett. 94(1), 013503 (2009).
[Crossref]

Zhao, X. L.

W. B. Peng, Y. N. He, X. L. Zhao, H. Liu, X. Kang, and C. B. Wen, “Study on the performance of ZnO nanomaterial-based surface acoustic wave ultraviolet detectors,” J. Micromech. Microeng. 23(12), 125008 (2013).
[Crossref]

Zheng, H.

Y. Zhang, H. Zheng, J. Su, B. Lin, and Z. Fu, “Effects of sic buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates,” J. Lumin. 124(2), 252–256 (2007).
[Crossref]

Zhong, J.

N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. M. Chen, and Y. C. Lu, “Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire,” Appl. Phys. Lett. 85(17), 3702–3704 (2004).
[Crossref]

Zhou, C.

H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, H. Huang, C. Zhou, and X. Zhao, “Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature,” Appl. Phys. Lett. 94(1), 013503 (2009).
[Crossref]

Zhou, H.

H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, H. Huang, C. Zhou, and X. Zhao, “Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature,” Appl. Phys. Lett. 94(1), 013503 (2009).
[Crossref]

Zhu, J.

N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. M. Chen, and Y. C. Lu, “Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire,” Appl. Phys. Lett. 85(17), 3702–3704 (2004).
[Crossref]

Appl. Phys. Lett. (9)

Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett. 72(25), 3270–3272 (1998).
[Crossref]

D. Nardi, E. Zagato, G. Ferrini, C. Giannetti, and F. Banfi, “Design of a surface acoustic wave mass sensor in the 100 GHz range,” Appl. Phys. Lett. 100(25), 253106 (2012).
[Crossref]

H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, H. Huang, C. Zhou, and X. Zhao, “Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature,” Appl. Phys. Lett. 94(1), 013503 (2009).
[Crossref]

M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, “Transparent polymer Schottky contact for a high performance visible-blind ultraviolet photodiode based on ZnO,” Appl. Phys. Lett. 93(12), 123309 (2008).
[Crossref]

G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, and Z. Du, “ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed,” Appl. Phys. Lett. 99(20), 203105 (2011).
[Crossref]

P. Sharma and K. Sreenivas, “Highly sensitive ultraviolet detector based on ZnO/LiNbO3 hybrid surface acoustic wave filter,” Appl. Phys. Lett. 83(17), 3617–3619 (2003).
[Crossref]

N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. M. Chen, and Y. C. Lu, “Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire,” Appl. Phys. Lett. 85(17), 3702–3704 (2004).
[Crossref]

S. Bethe, H. Pan, and B. W. Wesseis, “Luminescence of heteroepitaxial zinc oxide,” Appl. Phys. Lett. 52(2), 138–140 (1988).
[Crossref]

D. Ciplys, R. Rimeika, M. S. Shur, S. Rumyantsev, R. Gaska, A. Sereika, J. Yang, and M. Asif Khan, “Visible-blind photoresponse of GaN-based surface acoustic wave oscillator,” Appl. Phys. Lett. 80(11), 2020–2022 (2002).
[Crossref]

Electron. Lett. (2)

D. Ciplys, R. Rimeika, A. Sereika, R. Gaska, M. S. Shur, J. W. Yang, and M. A. Khan, “GaN-based SAW delay-line oscillator,” Electron. Lett. 37(8), 545–546 (2001).
[Crossref]

S. Nagar and S. Chakrabarti, “UV electroluminescence from p-ZnO:P/n-ZnO homojunction diode,” Electron. Lett. 50(18), 1307–1309 (2014).
[Crossref]

IEEE Electron Device Lett. (1)

L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, and L. Liao, “Tunable electrical properties in high-valent transition-metal-doped ZnO thin-film transistors,” IEEE Electron Device Lett. 35(7), 759–761 (2014).
[Crossref]

IEEE T, Electron Dev. (1)

S. H. Lee, H. H. Jeong, S. B. Bae, H. C. Choi, J. H. Lee, and Y. H. Lee, “Epitaxially grown GaN thin-film SAW filter with high velocity and low insertion loss,” IEEE T, Electron Dev. 48(3), 524–529 (2001).
[Crossref]

IEEE T. Device Mat. Re. (1)

M. Tomar, V. Gupta, K. Sreenivas, and A. Mansingh, “Temperature stability of ZnO thin film SAW device on fused quartz,” IEEE T. Device Mat. Re. 5(3), 494–500 (2005).
[Crossref]

J. Appl. Phys. (1)

W. S. Wang, C. J. Tsai, and C. C. Ma, “Qualitative and quantitative analysis of surface-acoustic-wave-based ultraviolet photodetectors,” J. Appl. Phys. 114(6), 064911 (2013).
[Crossref]

J. Lumin. (1)

Y. Zhang, H. Zheng, J. Su, B. Lin, and Z. Fu, “Effects of sic buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates,” J. Lumin. 124(2), 252–256 (2007).
[Crossref]

J. Micromech. Microeng. (1)

W. B. Peng, Y. N. He, X. L. Zhao, H. Liu, X. Kang, and C. B. Wen, “Study on the performance of ZnO nanomaterial-based surface acoustic wave ultraviolet detectors,” J. Micromech. Microeng. 23(12), 125008 (2013).
[Crossref]

J. Phys. D Appl. Phys. (1)

G. M. Ali and P. Chakrabarti, “ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors,” J. Phys. D Appl. Phys. 43(41), 415103 (2010).
[Crossref]

Jpn. J. Appl. Phys. (3)

M. Kadota and H. Kando, “Small and low-loss intermediate frequency surface acoustic wave filters using zinc oxide film on quartz substrate,” Jpn. J. Appl. Phys. 42(5B), 3139–3142 (2003).
[Crossref]

H. Nakahata, K. Higaki, A. Hachigo, S. Shikata, N. Fujimori, Y. Takahashi, T. Kajiwara, and Y. Yamamoto, “High frequency surface acoustic wave filter using ZnO/diamond/Si-structure,” Jpn. J. Appl. Phys. 33(1A), 324–328 (1994).
[Crossref]

T. Shiosaki and A. Kawabata, “58 MHz surface-acoustic-wave TV-intermediate-frequency filter using ZnO sputtered film,” Jpn. J. Appl. Phys. 16(S1), 483–486 (1977).
[Crossref]

Mater. Sci. Semicond. Process. (1)

N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu, “Epitaxial ZnO piezoelectric thin films for SAW filters,” Mater. Sci. Semicond. Process. 2(3), 247–252 (1999).
[Crossref]

Proc. IEEE (1)

C. K. Campbell, “Applications of surface acoustic and shallow bulk acoustic wave devices,” Proc. IEEE 77(10), 1453–1484 (1989).
[Crossref]

Sensor. Actuat, A-Phys. (1)

W. B. Peng, Y. N. He, C. B. Wen, and K. Ma, “Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer,” Sensor. Actuat, A-Phys. 184, 34–40 (2012).

Thin Solid Films (3)

R. Y. Ro, R. Y. Lee, Z. X. Lin, C. C. Sung, Y. F. Chiang, and S. Wu, “Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure,” Thin Solid Films 529, 470–474 (2013).
[Crossref]

R. C. Chang, S. Y. Chu, C. S. Hong, and Y. T. Chuang, “A study of Love wave devices in ZnO/Quartz and ZnO/LiTaO3 structures,” Thin Solid Films 498(1–2), 146–151 (2006).
[Crossref]

C. L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, and P. S. Cheng, “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator,” Thin Solid Films 518(11), 3059–3062 (2010).
[Crossref]

Other (3)

D. S. Ballantine, Jr., R. M. White, S. J. Martin, A. J. Ricco, G. C. Frye, E. T. Zellers, and H. Wohltjen, Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications (Academic, 1997).

A. Talbi, F. Sarry, F. Moreira, M. Elhakiki, O. Elmazria, L. Le Brizoual, and P. Alnot, “Zero TCF ZnO/quartz SAW structure for gas sensing applications,” in Proceedings of IEEE Conference on Frequency Control Symposium and Exposition (IEEE, 2004), pp. 542–545.

M. Kadota, “Combination of ZnO film and quartz to realize large coupling factor and excellent temperature coefficient for SAW devices,” in Proceedings of IEEE Conference on Ultrasonics Symposium (IEEE, 1997), pp. 261–266.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic diagram of the designed SAW devices.
Fig. 2
Fig. 2 The configuration of the UV response measurement setup.
Fig. 3
Fig. 3 X-ray diffraction of ZnO/ST-cut quartz grown at room temperature.
Fig. 4
Fig. 4 Room temperature PL spectrum of ZnO/ST-cut quartz.
Fig. 5
Fig. 5 Frequency response of SAW devices with and without the ZnO sensing layer.
Fig. 6
Fig. 6 Time-dependent photoresponse of SAW UV devices.
Fig. 7
Fig. 7 Frequency shift of the ZnO/ST-cut quartz SAW device as a function of UV intensity.
Fig. 8
Fig. 8 Relative frequency shift versus temperature of SAW devices.

Tables (1)

Tables Icon

Table 1 Parameters of the SAW devices.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δv v 0 = K 2 2 1 1+ (σ/ σ m ) 2
TCF= 1 f df dT

Metrics