Abstract

A refractive index (RI) insensitive temperature sensor based on specialty triple-clad fiber (STCF) is proposed. Based on coupling mode theory, the STCF can be equivalent to a rod waveguide and two tube waveguides. Then the cladding mode resonance characteristic of STCF is analyzed by calculating different mode dispersion curves, which indicates that it works only on the mode resonance from core to the fluorine-doped silica cladding, and finally a resonance wavelength can be obtained. Two straightforward experiments are performed to prove its sensing properties. Experimental results show that it has sensitivities of 72.17 pm/°C at temperature range from 35°C~95°C with characteristics of insensitive to external RI in the range from 1.3450 to 1.4607. Thus, this proposed sensor can be used for solution temperature monitoring in real time.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-temperature crosstalk and surrounding refractive index insensitive vector bending sensor based on hole-assistant dual-core fiber

Jing Yang, Chunying Guan, Jiaming Zhang, Mingjie Wang, Min Yang, Zheng Zhu, Pengfei Wang, Jun Yang, and Libo Yuan
Appl. Opt. 58(24) 6597-6603 (2019)

In-series double cladding fibers for simultaneous refractive index and temperature measurement

Huanhuan Liu, Fufei Pang, Hairui Guo, Wenxin Cao, Yunqi Liu, Na Chen, Zhenyi Chen, and Tingyun Wang
Opt. Express 18(12) 13072-13082 (2010)

Sensor based on macrobent fiber Bragg grating structure for simultaneous measurement of refractive index and temperature

Tiegen Liu, Yaofei Chen, Qun Han, Fangchao Liu, and Yunzhi Yao
Appl. Opt. 55(4) 791-795 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6(3), 6801307 (2014).
    [Crossref]
  2. A. Van Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Correa, and A. Schülzgen, “Optimization of multicore fiber for high-temperature sensing,” Opt. Lett. 39(16), 4812–4815 (2014).
    [Crossref] [PubMed]
  3. F. F. Pang, W. C. Xiang, H. R. Guo, N. Chen, X. L. Zeng, Z. Y. Chen, and T. Y. Wang, “Special optical fiber for temperature sensing based on cladding-mode resonance,” Opt. Express 16(17), 12967–12972 (2008).
    [Crossref] [PubMed]
  4. L. L. Xian, P. Wang, and H. P. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
    [PubMed]
  5. W. Huang, Y. G. Liu, Z. Wang, B. Liu, J. Wang, M. M. Luo, J. Q. Guo, and L. Lin, “Multi-component-intermodal-interference mechanism and characteristics of a long period grating assistant fluid-filled photonic crystal fiber interferometer,” Opt. Express 22(5), 5883–5894 (2014).
    [Crossref] [PubMed]
  6. L. Chen, W. G. Zhang, Y. J. Liu, L. Wang, J. Sieg, B. Wang, Q. Zhou, L. Y. Zhang, and T. Y. Yan, “Real time and simultaneous measurement of displacement and temperature using fiber loop with polymer coating and fiber Bragg grating,” Rev. Sci. Instrum. 85(7), 075002 (2014).
    [Crossref] [PubMed]
  7. Z. B. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
    [Crossref]
  8. B. Dong and E. J. Z. Hao, “Core-offset hollow core photonic bandgap fiber-based intermodal interferometer for strain and temperature measurements,” Appl. Opt. 50(18), 3011–3014 (2011).
    [Crossref] [PubMed]
  9. O. Frazao and J. L. Santos, “Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate fibres,” J. Opt. A, Pure Appl. Opt. 6(6), 553–556 (2004).
    [Crossref]
  10. A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Optik (Stuttg.) 125(1), 457–460 (2014).
    [Crossref]
  11. J. W. Attrigde, J. R. Cozens, and K. D. Leaver, “Coxial fiber sensors,” J. Lightwave Technol. 3(5), 1084–1091 (1985).
    [Crossref]
  12. J. W. Fleming, “Dispersion in step-index silicone-clad fibers,” Appl. Opt. 18(23), 4000–4002 (1979).
    [Crossref] [PubMed]
  13. Z. N. Xu and Z. J. Liu, “Light propagation in a circular double clad fiber using coupled mode method,” Acta Photonica Sinica 39(10), 1857–1860 (2010).
    [Crossref]
  14. R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators and filter using alternating Δβ techniques,” IEEE Trans. Circ. Syst. CAS-26(12), 1099–1108 (1979).
    [Crossref]
  15. J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
    [Crossref] [PubMed]
  16. A. Koike and N. Sugimoto, “Temperatrue dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6616, 61160Y (2006).
    [Crossref]
  17. H. Z. Lin, L. N. Ma, Y. M. Hu, and W. Wang, “Elimination of polarization-induced signal fading and reduction of phase noise in interferometric optical fiber sensor using polarization diversity receivers,” Optik (Stuttg.) 124(21), 4976–4979 (2013).
    [Crossref]
  18. A. Zhou, Q. Xu, T. Zheng, J. Yang, Y. Y. Yang, and L. B. Yuan, “In-fiber modal interferometer based on coaxial dual-waveguide fiber for temperature sensing,” IEEE Photon. Technol. Lett. 26(3), 264–266 (2014).
    [Crossref]

2014 (8)

L. L. Xian, P. Wang, and H. P. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
[PubMed]

W. Huang, Y. G. Liu, Z. Wang, B. Liu, J. Wang, M. M. Luo, J. Q. Guo, and L. Lin, “Multi-component-intermodal-interference mechanism and characteristics of a long period grating assistant fluid-filled photonic crystal fiber interferometer,” Opt. Express 22(5), 5883–5894 (2014).
[Crossref] [PubMed]

L. Chen, W. G. Zhang, Y. J. Liu, L. Wang, J. Sieg, B. Wang, Q. Zhou, L. Y. Zhang, and T. Y. Yan, “Real time and simultaneous measurement of displacement and temperature using fiber loop with polymer coating and fiber Bragg grating,” Rev. Sci. Instrum. 85(7), 075002 (2014).
[Crossref] [PubMed]

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6(3), 6801307 (2014).
[Crossref]

A. Van Newkirk, E. Antonio-Lopez, G. Salceda-Delgado, R. Amezcua-Correa, and A. Schülzgen, “Optimization of multicore fiber for high-temperature sensing,” Opt. Lett. 39(16), 4812–4815 (2014).
[Crossref] [PubMed]

A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Optik (Stuttg.) 125(1), 457–460 (2014).
[Crossref]

J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
[Crossref] [PubMed]

A. Zhou, Q. Xu, T. Zheng, J. Yang, Y. Y. Yang, and L. B. Yuan, “In-fiber modal interferometer based on coaxial dual-waveguide fiber for temperature sensing,” IEEE Photon. Technol. Lett. 26(3), 264–266 (2014).
[Crossref]

2013 (1)

H. Z. Lin, L. N. Ma, Y. M. Hu, and W. Wang, “Elimination of polarization-induced signal fading and reduction of phase noise in interferometric optical fiber sensor using polarization diversity receivers,” Optik (Stuttg.) 124(21), 4976–4979 (2013).
[Crossref]

2011 (1)

2010 (1)

Z. N. Xu and Z. J. Liu, “Light propagation in a circular double clad fiber using coupled mode method,” Acta Photonica Sinica 39(10), 1857–1860 (2010).
[Crossref]

2009 (1)

Z. B. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

2008 (1)

2006 (1)

A. Koike and N. Sugimoto, “Temperatrue dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6616, 61160Y (2006).
[Crossref]

2004 (1)

O. Frazao and J. L. Santos, “Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate fibres,” J. Opt. A, Pure Appl. Opt. 6(6), 553–556 (2004).
[Crossref]

1985 (1)

J. W. Attrigde, J. R. Cozens, and K. D. Leaver, “Coxial fiber sensors,” J. Lightwave Technol. 3(5), 1084–1091 (1985).
[Crossref]

1979 (2)

J. W. Fleming, “Dispersion in step-index silicone-clad fibers,” Appl. Opt. 18(23), 4000–4002 (1979).
[Crossref] [PubMed]

R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators and filter using alternating Δβ techniques,” IEEE Trans. Circ. Syst. CAS-26(12), 1099–1108 (1979).
[Crossref]

Alferness, R. C.

R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators and filter using alternating Δβ techniques,” IEEE Trans. Circ. Syst. CAS-26(12), 1099–1108 (1979).
[Crossref]

Amezcua-Correa, R.

Antonio-Lopez, E.

Antonio-Lopez, J. E.

Attrigde, J. W.

J. W. Attrigde, J. R. Cozens, and K. D. Leaver, “Coxial fiber sensors,” J. Lightwave Technol. 3(5), 1084–1091 (1985).
[Crossref]

Chen, L.

L. Chen, W. G. Zhang, Y. J. Liu, L. Wang, J. Sieg, B. Wang, Q. Zhou, L. Y. Zhang, and T. Y. Yan, “Real time and simultaneous measurement of displacement and temperature using fiber loop with polymer coating and fiber Bragg grating,” Rev. Sci. Instrum. 85(7), 075002 (2014).
[Crossref] [PubMed]

Chen, N.

Chen, Z. Y.

Cozens, J. R.

J. W. Attrigde, J. R. Cozens, and K. D. Leaver, “Coxial fiber sensors,” J. Lightwave Technol. 3(5), 1084–1091 (1985).
[Crossref]

Dong, B.

Engles, D.

A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Optik (Stuttg.) 125(1), 457–460 (2014).
[Crossref]

Eznaveh, Z. S.

Fleming, J. W.

Frazao, O.

O. Frazao and J. L. Santos, “Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate fibres,” J. Opt. A, Pure Appl. Opt. 6(6), 553–556 (2004).
[Crossref]

Guo, H. R.

Guo, J. Q.

Hao, C. J.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6(3), 6801307 (2014).
[Crossref]

Hao, E. J. Z.

Hu, Y. M.

H. Z. Lin, L. N. Ma, Y. M. Hu, and W. Wang, “Elimination of polarization-induced signal fading and reduction of phase noise in interferometric optical fiber sensor using polarization diversity receivers,” Optik (Stuttg.) 124(21), 4976–4979 (2013).
[Crossref]

Huang, W.

Koike, A.

A. Koike and N. Sugimoto, “Temperatrue dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6616, 61160Y (2006).
[Crossref]

Leaver, K. D.

J. W. Attrigde, J. R. Cozens, and K. D. Leaver, “Coxial fiber sensors,” J. Lightwave Technol. 3(5), 1084–1091 (1985).
[Crossref]

Li, H. P.

LiKamWa, P.

Lin, H. Z.

H. Z. Lin, L. N. Ma, Y. M. Hu, and W. Wang, “Elimination of polarization-induced signal fading and reduction of phase noise in interferometric optical fiber sensor using polarization diversity receivers,” Optik (Stuttg.) 124(21), 4976–4979 (2013).
[Crossref]

Lin, L.

Liu, B.

Liu, Y. G.

Liu, Y. J.

L. Chen, W. G. Zhang, Y. J. Liu, L. Wang, J. Sieg, B. Wang, Q. Zhou, L. Y. Zhang, and T. Y. Yan, “Real time and simultaneous measurement of displacement and temperature using fiber loop with polymer coating and fiber Bragg grating,” Rev. Sci. Instrum. 85(7), 075002 (2014).
[Crossref] [PubMed]

Liu, Z. J.

Z. N. Xu and Z. J. Liu, “Light propagation in a circular double clad fiber using coupled mode method,” Acta Photonica Sinica 39(10), 1857–1860 (2010).
[Crossref]

Lu, Y.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6(3), 6801307 (2014).
[Crossref]

Luo, M. M.

Ma, L. N.

H. Z. Lin, L. N. Ma, Y. M. Hu, and W. Wang, “Elimination of polarization-induced signal fading and reduction of phase noise in interferometric optical fiber sensor using polarization diversity receivers,” Optik (Stuttg.) 124(21), 4976–4979 (2013).
[Crossref]

Pang, F. F.

Salceda-Delgado, G.

Santos, J. L.

O. Frazao and J. L. Santos, “Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate fibres,” J. Opt. A, Pure Appl. Opt. 6(6), 553–556 (2004).
[Crossref]

Schmidt, R. V.

R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators and filter using alternating Δβ techniques,” IEEE Trans. Circ. Syst. CAS-26(12), 1099–1108 (1979).
[Crossref]

Schülzgen, A.

Sharma, A.

A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Optik (Stuttg.) 125(1), 457–460 (2014).
[Crossref]

Sieg, J.

L. Chen, W. G. Zhang, Y. J. Liu, L. Wang, J. Sieg, B. Wang, Q. Zhou, L. Y. Zhang, and T. Y. Yan, “Real time and simultaneous measurement of displacement and temperature using fiber loop with polymer coating and fiber Bragg grating,” Rev. Sci. Instrum. 85(7), 075002 (2014).
[Crossref] [PubMed]

Singh, A.

A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Optik (Stuttg.) 125(1), 457–460 (2014).
[Crossref]

Singh, M.

A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Optik (Stuttg.) 125(1), 457–460 (2014).
[Crossref]

Sugimoto, N.

A. Koike and N. Sugimoto, “Temperatrue dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6616, 61160Y (2006).
[Crossref]

Tian, Z. B.

Z. B. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Van Newkirk, A.

Wang, B.

L. Chen, W. G. Zhang, Y. J. Liu, L. Wang, J. Sieg, B. Wang, Q. Zhou, L. Y. Zhang, and T. Y. Yan, “Real time and simultaneous measurement of displacement and temperature using fiber loop with polymer coating and fiber Bragg grating,” Rev. Sci. Instrum. 85(7), 075002 (2014).
[Crossref] [PubMed]

Wang, J.

Wang, L.

L. Chen, W. G. Zhang, Y. J. Liu, L. Wang, J. Sieg, B. Wang, Q. Zhou, L. Y. Zhang, and T. Y. Yan, “Real time and simultaneous measurement of displacement and temperature using fiber loop with polymer coating and fiber Bragg grating,” Rev. Sci. Instrum. 85(7), 075002 (2014).
[Crossref] [PubMed]

Wang, M. T.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6(3), 6801307 (2014).
[Crossref]

Wang, P.

Wang, T. Y.

Wang, W.

H. Z. Lin, L. N. Ma, Y. M. Hu, and W. Wang, “Elimination of polarization-induced signal fading and reduction of phase noise in interferometric optical fiber sensor using polarization diversity receivers,” Optik (Stuttg.) 124(21), 4976–4979 (2013).
[Crossref]

Wang, Z.

Xian, L. L.

Xiang, W. C.

Xu, Q.

A. Zhou, Q. Xu, T. Zheng, J. Yang, Y. Y. Yang, and L. B. Yuan, “In-fiber modal interferometer based on coaxial dual-waveguide fiber for temperature sensing,” IEEE Photon. Technol. Lett. 26(3), 264–266 (2014).
[Crossref]

Xu, Z. N.

Z. N. Xu and Z. J. Liu, “Light propagation in a circular double clad fiber using coupled mode method,” Acta Photonica Sinica 39(10), 1857–1860 (2010).
[Crossref]

Yam, S. S.-H.

Z. B. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Yan, T. Y.

L. Chen, W. G. Zhang, Y. J. Liu, L. Wang, J. Sieg, B. Wang, Q. Zhou, L. Y. Zhang, and T. Y. Yan, “Real time and simultaneous measurement of displacement and temperature using fiber loop with polymer coating and fiber Bragg grating,” Rev. Sci. Instrum. 85(7), 075002 (2014).
[Crossref] [PubMed]

Yang, J.

A. Zhou, Q. Xu, T. Zheng, J. Yang, Y. Y. Yang, and L. B. Yuan, “In-fiber modal interferometer based on coaxial dual-waveguide fiber for temperature sensing,” IEEE Photon. Technol. Lett. 26(3), 264–266 (2014).
[Crossref]

Yang, Y. Y.

A. Zhou, Q. Xu, T. Zheng, J. Yang, Y. Y. Yang, and L. B. Yuan, “In-fiber modal interferometer based on coaxial dual-waveguide fiber for temperature sensing,” IEEE Photon. Technol. Lett. 26(3), 264–266 (2014).
[Crossref]

Yao, J. Q.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6(3), 6801307 (2014).
[Crossref]

Yuan, L. B.

A. Zhou, Q. Xu, T. Zheng, J. Yang, Y. Y. Yang, and L. B. Yuan, “In-fiber modal interferometer based on coaxial dual-waveguide fiber for temperature sensing,” IEEE Photon. Technol. Lett. 26(3), 264–266 (2014).
[Crossref]

Zeng, X. L.

Zhang, L. Y.

L. Chen, W. G. Zhang, Y. J. Liu, L. Wang, J. Sieg, B. Wang, Q. Zhou, L. Y. Zhang, and T. Y. Yan, “Real time and simultaneous measurement of displacement and temperature using fiber loop with polymer coating and fiber Bragg grating,” Rev. Sci. Instrum. 85(7), 075002 (2014).
[Crossref] [PubMed]

Zhang, W. G.

L. Chen, W. G. Zhang, Y. J. Liu, L. Wang, J. Sieg, B. Wang, Q. Zhou, L. Y. Zhang, and T. Y. Yan, “Real time and simultaneous measurement of displacement and temperature using fiber loop with polymer coating and fiber Bragg grating,” Rev. Sci. Instrum. 85(7), 075002 (2014).
[Crossref] [PubMed]

Zhao, Z. Q.

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6(3), 6801307 (2014).
[Crossref]

Zheng, T.

A. Zhou, Q. Xu, T. Zheng, J. Yang, Y. Y. Yang, and L. B. Yuan, “In-fiber modal interferometer based on coaxial dual-waveguide fiber for temperature sensing,” IEEE Photon. Technol. Lett. 26(3), 264–266 (2014).
[Crossref]

Zhou, A.

A. Zhou, Q. Xu, T. Zheng, J. Yang, Y. Y. Yang, and L. B. Yuan, “In-fiber modal interferometer based on coaxial dual-waveguide fiber for temperature sensing,” IEEE Photon. Technol. Lett. 26(3), 264–266 (2014).
[Crossref]

Zhou, Q.

L. Chen, W. G. Zhang, Y. J. Liu, L. Wang, J. Sieg, B. Wang, Q. Zhou, L. Y. Zhang, and T. Y. Yan, “Real time and simultaneous measurement of displacement and temperature using fiber loop with polymer coating and fiber Bragg grating,” Rev. Sci. Instrum. 85(7), 075002 (2014).
[Crossref] [PubMed]

Acta Photonica Sinica (1)

Z. N. Xu and Z. J. Liu, “Light propagation in a circular double clad fiber using coupled mode method,” Acta Photonica Sinica 39(10), 1857–1860 (2010).
[Crossref]

Appl. Opt. (2)

IEEE Photon. J. (1)

Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao, and J. Q. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photon. J. 6(3), 6801307 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Z. B. Tian and S. S.-H. Yam, “In-line abrupt taper optical fiber Mach–Zehnder interferometric strain sensor,” IEEE Photon. Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

A. Zhou, Q. Xu, T. Zheng, J. Yang, Y. Y. Yang, and L. B. Yuan, “In-fiber modal interferometer based on coaxial dual-waveguide fiber for temperature sensing,” IEEE Photon. Technol. Lett. 26(3), 264–266 (2014).
[Crossref]

IEEE Trans. Circ. Syst. (1)

R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators and filter using alternating Δβ techniques,” IEEE Trans. Circ. Syst. CAS-26(12), 1099–1108 (1979).
[Crossref]

J. Lightwave Technol. (1)

J. W. Attrigde, J. R. Cozens, and K. D. Leaver, “Coxial fiber sensors,” J. Lightwave Technol. 3(5), 1084–1091 (1985).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

O. Frazao and J. L. Santos, “Simultaneous measurement of strain and temperature using a Bragg grating structure written in germanosilicate fibres,” J. Opt. A, Pure Appl. Opt. 6(6), 553–556 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optik (Stuttg.) (2)

A. Singh, D. Engles, A. Sharma, and M. Singh, “Temperature sensitivity of long period fiber grating in SMF-28 fiber,” Optik (Stuttg.) 125(1), 457–460 (2014).
[Crossref]

H. Z. Lin, L. N. Ma, Y. M. Hu, and W. Wang, “Elimination of polarization-induced signal fading and reduction of phase noise in interferometric optical fiber sensor using polarization diversity receivers,” Optik (Stuttg.) 124(21), 4976–4979 (2013).
[Crossref]

Proc. SPIE (1)

A. Koike and N. Sugimoto, “Temperatrue dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6616, 61160Y (2006).
[Crossref]

Rev. Sci. Instrum. (1)

L. Chen, W. G. Zhang, Y. J. Liu, L. Wang, J. Sieg, B. Wang, Q. Zhou, L. Y. Zhang, and T. Y. Yan, “Real time and simultaneous measurement of displacement and temperature using fiber loop with polymer coating and fiber Bragg grating,” Rev. Sci. Instrum. 85(7), 075002 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Refractive index distribution of the STCF.
Fig. 2
Fig. 2 Three kinds of equivalent waveguide.
Fig. 3
Fig. 3 (a) Dispersion curves of rod waveguide and tube waveguide I; (b) dispersion curves of tube waveguide II.
Fig. 4
Fig. 4 Simulating calculation of the resonant spectrum.
Fig. 5
Fig. 5 (a) The schematic diagram of SSS fiber structure (b) Resonance spectrum of the sensor in air at room temperature.
Fig. 6
Fig. 6 RI experimental setup.
Fig. 7
Fig. 7 (a)The resonance spectrum corresponding to the different refractive index; (b) the fitting relationship between refractive index and wavelength.
Fig. 8
Fig. 8 Temperature experimental setup.
Fig. 9
Fig. 9 (a)The resonance spectrum corresponding to the different temperatures (b) Temperature response characteristic of the resonance spectrum.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P Core = P STCF (1 sin 2 [ κz 1+ ( Δβ κ ) 2 ] 1+ ( Δβ κ ) 2 )

Metrics