Abstract

We investigate a time-domain implementation of generalized phase-conjugated twin waves which we call conjugate data repetition. A theory based on time-domain perturbation analysis explaining the mitigation of nonlinear effects is provided, and the concept is evaluated using numerical simulations. Compared to PM-QPSK at the same channel bit rate, the single-channel transmission reach in a conventional system with standard single-mode fiber of conjugate data repetition-QPSK is increased by approximately a factor of 2.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mitigation of nonlinear distortion in hybrid Raman/phase-sensitive amplifier links

Henrik Eliasson, Samuel L. I. Olsson, Magnus Karlsson, and Peter A. Andrekson
Opt. Express 24(2) 888-900 (2016)

Modified phase-conjugate twin wave schemes for fiber nonlinearity mitigation

Yukui Yu and Jian Zhao
Opt. Express 23(23) 30399-30413 (2015)

Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations

Hao Hu, Robert M. Jopson, Alan H. Gnauck, Sebastian Randel, and S. Chandrasekhar
Opt. Express 25(3) 1618-1628 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technology 26, 3416–3425 (2008).
    [Crossref]
  2. R. A. Fisher, B. R. Suydam, and D. Yevick, “Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects,” Opt. Lett. 8, 611–613 (1983).
    [Crossref] [PubMed]
  3. A. D. Shiner, M. Reimer, A. Borowiec, S. O. Gharan, J. Gaudette, P. Mehta, D. Charlton, K. Roberts, and M. O’Sullivan, “Demonstration of an 8-dimensional modulation format with reduced inter-channel nonlinearities in a polarization multiplexed coherent system,” Opt. Express 22, 20366–20374 (2014).
    [Crossref] [PubMed]
  4. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
    [Crossref]
  5. X. Liu, S. Chandrasekhar, P. J. Winzer, R. W. Tkach, and A. R. Chraplyvy, “Fiber-nonlinearity-tolerant superchannel transmission via nonlinear noise squeezing and generalized phase-conjugated twin waves,” J. Lightwave Technology 32, 766–775 (2014).
    [Crossref]
  6. X. Liu, S. Chandrasekhar, and P. Winzer, “Phase-conjugated twin waves and fiber nonlinearity compensation,” in Optical Fibre Technology, OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (2014), pp. 938–940.
  7. A. Ghazisaeidi, J. Renaudier, M. Salsi, P. Tran, G. Charlet, and S. Bigo, “System benefits of digital dispersion pre-compensation for non-dispersion-managed PDM-WDM transmission,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.4.D.4.
  8. X. Liu, S. Chandrasekhar, A. H. Gnauck, P. J. Winzer, S. Randel, S. Corteselli, A. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, and M. Fishteyn, “Digital coherent superposition for performance improvement of spatially multiplexed coherent optical OFDM superchannels,” Opt. Express 20, B595–B600 (2012).
    [Crossref] [PubMed]
  9. X. Liu, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, M. Fishteyn, and D. J. DiGiovanni, “Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime,” Opt. Express 20, 19088–19095 (2012).
    [Crossref] [PubMed]
  10. Y. Tian, Y.-K. Huang, S. Zhang, P. R. Prucnal, and T. Wang, “Demonstration of digital phase-sensitive boosting to extend signal reach for long-haul WDM systems using optical phase-conjugated copy,” Opt. Express 21, 5099–5106 (2013).
    [Crossref] [PubMed]
  11. S. L. I. Olsson, B. Corcoran, C. Lundström, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified optical link operating in the nonlinear transmission regime,” in Proc. European Conference on Optical Communications (ECOC) (2012), p. Th.2.F.1.
  12. B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.3.A.1.
  13. H. Eliasson, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Comparison between coherent superposition in DSP and PSA for mitigation of nonlinearities in a single-span link,” in Proc. European Conference on Optical Communications (ECOC) (2014), p. Mo.3.5.2.
  14. S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Long-haul (3465 km) transmission of a 10 GBd QPSK signal with low noise phase-sensitive in-line amplification,” in Proc. European Conference on Optical Communications (ECOC) (2014), p. PD.2.2.
  15. X. Liu, H. Hu, S. Chandrasekhar, R. M. Jopson, A. H. Gnauck, M. Dinu, C. Xie, and P. J. Winzer, “Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission,” Opt. Express 22, 6478–6485 (2014).
    [Crossref] [PubMed]
  16. T. Yoshida, T. Sugihara, K. Ishida, and T. Mizuochi, “Spectrally-efficient dual phase-conjugate twin waves with orthogonally multiplexed quadrature pulse-shaped signals,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2014), p. M3C.6.
  17. W.-R. Peng, T. Tsuritani, and I. Morita, “Digital nonlinear noise cancellation approach for long-haul optical transmission systems,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. Mo.3.D.2.
  18. X. Liu, S. Chandrasekhar, P. Winzer, R. W. Tkach, and A. R. Chraplyvy, “406.6-Gb/s PDM-BPSK superchannel transmission over 12,800-km TWRS fiber via nonlinear noise squeezing,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2013), p. PDP5B.10.
  19. P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19, 7734–7741 (2011).
    [Crossref] [PubMed]
  20. J. Fischer, S. Alreesh, R. Elschner, F. Frey, M. Nölle, and C. Schubert, “Bandwidth-variable transceivers based on 4d modulation formats for future flexible networks,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on (2013), p. Tu.3.C.1.
  21. A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” Photon. Technol. Lett. 12, 392–394 (2000).
    [Crossref]
  22. P. Johannisson, “Nonlinear intrachannel distortion in high-speed optical transmission systems,” Ph.D. thesis, Chalmers University of Technology (2006).
  23. M. J. Ablowitz and T. Hirooka, “Resonant nonlinear intrachannel interactions in strongly dispersion-managed transmission systems,” Opt. Lett. 25, 1750–1752 (2000).
    [Crossref]
  24. A. Mecozzi, M. Tabacchiera, F. Matera, and M. Settembre, “Dispersion management in phase modulated optical transmission systems,” in Proc. European Conference on Optical Communications (ECOC) (2010), p. Mo.2.C.2.
  25. D. Wang and C. R. Menyuk, “Polarization evolution due to the Kerr nonlinearity and chromatic dispersion,” J. Lightwave Technology 17, 2520–2529 (1999).
    [Crossref]

2014 (3)

2013 (2)

Y. Tian, Y.-K. Huang, S. Zhang, P. R. Prucnal, and T. Wang, “Demonstration of digital phase-sensitive boosting to extend signal reach for long-haul WDM systems using optical phase-conjugated copy,” Opt. Express 21, 5099–5106 (2013).
[Crossref] [PubMed]

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

2012 (2)

2011 (1)

2008 (1)

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technology 26, 3416–3425 (2008).
[Crossref]

2000 (2)

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” Photon. Technol. Lett. 12, 392–394 (2000).
[Crossref]

M. J. Ablowitz and T. Hirooka, “Resonant nonlinear intrachannel interactions in strongly dispersion-managed transmission systems,” Opt. Lett. 25, 1750–1752 (2000).
[Crossref]

1999 (1)

D. Wang and C. R. Menyuk, “Polarization evolution due to the Kerr nonlinearity and chromatic dispersion,” J. Lightwave Technology 17, 2520–2529 (1999).
[Crossref]

1983 (1)

Ablowitz, M. J.

Agrell, E.

Alreesh, S.

J. Fischer, S. Alreesh, R. Elschner, F. Frey, M. Nölle, and C. Schubert, “Bandwidth-variable transceivers based on 4d modulation formats for future flexible networks,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on (2013), p. Tu.3.C.1.

Andrekson, P. A.

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19, 7734–7741 (2011).
[Crossref] [PubMed]

H. Eliasson, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Comparison between coherent superposition in DSP and PSA for mitigation of nonlinearities in a single-span link,” in Proc. European Conference on Optical Communications (ECOC) (2014), p. Mo.3.5.2.

S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Long-haul (3465 km) transmission of a 10 GBd QPSK signal with low noise phase-sensitive in-line amplification,” in Proc. European Conference on Optical Communications (ECOC) (2014), p. PD.2.2.

S. L. I. Olsson, B. Corcoran, C. Lundström, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified optical link operating in the nonlinear transmission regime,” in Proc. European Conference on Optical Communications (ECOC) (2012), p. Th.2.F.1.

B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.3.A.1.

Bigo, S.

A. Ghazisaeidi, J. Renaudier, M. Salsi, P. Tran, G. Charlet, and S. Bigo, “System benefits of digital dispersion pre-compensation for non-dispersion-managed PDM-WDM transmission,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.4.D.4.

Borowiec, A.

Chandrasekhar, S.

X. Liu, S. Chandrasekhar, P. J. Winzer, R. W. Tkach, and A. R. Chraplyvy, “Fiber-nonlinearity-tolerant superchannel transmission via nonlinear noise squeezing and generalized phase-conjugated twin waves,” J. Lightwave Technology 32, 766–775 (2014).
[Crossref]

X. Liu, H. Hu, S. Chandrasekhar, R. M. Jopson, A. H. Gnauck, M. Dinu, C. Xie, and P. J. Winzer, “Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission,” Opt. Express 22, 6478–6485 (2014).
[Crossref] [PubMed]

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

X. Liu, S. Chandrasekhar, A. H. Gnauck, P. J. Winzer, S. Randel, S. Corteselli, A. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, and M. Fishteyn, “Digital coherent superposition for performance improvement of spatially multiplexed coherent optical OFDM superchannels,” Opt. Express 20, B595–B600 (2012).
[Crossref] [PubMed]

X. Liu, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, M. Fishteyn, and D. J. DiGiovanni, “Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime,” Opt. Express 20, 19088–19095 (2012).
[Crossref] [PubMed]

X. Liu, S. Chandrasekhar, and P. Winzer, “Phase-conjugated twin waves and fiber nonlinearity compensation,” in Optical Fibre Technology, OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (2014), pp. 938–940.

X. Liu, S. Chandrasekhar, P. Winzer, R. W. Tkach, and A. R. Chraplyvy, “406.6-Gb/s PDM-BPSK superchannel transmission over 12,800-km TWRS fiber via nonlinear noise squeezing,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2013), p. PDP5B.10.

Charlet, G.

A. Ghazisaeidi, J. Renaudier, M. Salsi, P. Tran, G. Charlet, and S. Bigo, “System benefits of digital dispersion pre-compensation for non-dispersion-managed PDM-WDM transmission,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.4.D.4.

Charlton, D.

Chraplyvy, A. R.

X. Liu, S. Chandrasekhar, P. J. Winzer, R. W. Tkach, and A. R. Chraplyvy, “Fiber-nonlinearity-tolerant superchannel transmission via nonlinear noise squeezing and generalized phase-conjugated twin waves,” J. Lightwave Technology 32, 766–775 (2014).
[Crossref]

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

X. Liu, S. Chandrasekhar, A. H. Gnauck, P. J. Winzer, S. Randel, S. Corteselli, A. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, and M. Fishteyn, “Digital coherent superposition for performance improvement of spatially multiplexed coherent optical OFDM superchannels,” Opt. Express 20, B595–B600 (2012).
[Crossref] [PubMed]

X. Liu, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, M. Fishteyn, and D. J. DiGiovanni, “Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime,” Opt. Express 20, 19088–19095 (2012).
[Crossref] [PubMed]

X. Liu, S. Chandrasekhar, P. Winzer, R. W. Tkach, and A. R. Chraplyvy, “406.6-Gb/s PDM-BPSK superchannel transmission over 12,800-km TWRS fiber via nonlinear noise squeezing,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2013), p. PDP5B.10.

Clausen, C. B.

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” Photon. Technol. Lett. 12, 392–394 (2000).
[Crossref]

Corcoran, B.

B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.3.A.1.

S. L. I. Olsson, B. Corcoran, C. Lundström, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified optical link operating in the nonlinear transmission regime,” in Proc. European Conference on Optical Communications (ECOC) (2012), p. Th.2.F.1.

Corteselli, S.

DiGiovanni, D. J.

Dinu, M.

Eliasson, H.

H. Eliasson, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Comparison between coherent superposition in DSP and PSA for mitigation of nonlinearities in a single-span link,” in Proc. European Conference on Optical Communications (ECOC) (2014), p. Mo.3.5.2.

Elschner, R.

J. Fischer, S. Alreesh, R. Elschner, F. Frey, M. Nölle, and C. Schubert, “Bandwidth-variable transceivers based on 4d modulation formats for future flexible networks,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on (2013), p. Tu.3.C.1.

Fischer, J.

J. Fischer, S. Alreesh, R. Elschner, F. Frey, M. Nölle, and C. Schubert, “Bandwidth-variable transceivers based on 4d modulation formats for future flexible networks,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on (2013), p. Tu.3.C.1.

Fisher, R. A.

Fishteyn, M.

Frey, F.

J. Fischer, S. Alreesh, R. Elschner, F. Frey, M. Nölle, and C. Schubert, “Bandwidth-variable transceivers based on 4d modulation formats for future flexible networks,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on (2013), p. Tu.3.C.1.

Gaudette, J.

Gharan, S. O.

Ghazisaeidi, A.

A. Ghazisaeidi, J. Renaudier, M. Salsi, P. Tran, G. Charlet, and S. Bigo, “System benefits of digital dispersion pre-compensation for non-dispersion-managed PDM-WDM transmission,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.4.D.4.

Gnauck, A. H.

Hirooka, T.

Hu, H.

Huang, Y.-K.

Ip, E.

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technology 26, 3416–3425 (2008).
[Crossref]

Ishida, K.

T. Yoshida, T. Sugihara, K. Ishida, and T. Mizuochi, “Spectrally-efficient dual phase-conjugate twin waves with orthogonally multiplexed quadrature pulse-shaped signals,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2014), p. M3C.6.

Johannisson, P.

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19, 7734–7741 (2011).
[Crossref] [PubMed]

P. Johannisson, “Nonlinear intrachannel distortion in high-speed optical transmission systems,” Ph.D. thesis, Chalmers University of Technology (2006).

Jopson, R. M.

Kahn, J. M.

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technology 26, 3416–3425 (2008).
[Crossref]

Karlsson, M.

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19, 7734–7741 (2011).
[Crossref] [PubMed]

S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Long-haul (3465 km) transmission of a 10 GBd QPSK signal with low noise phase-sensitive in-line amplification,” in Proc. European Conference on Optical Communications (ECOC) (2014), p. PD.2.2.

H. Eliasson, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Comparison between coherent superposition in DSP and PSA for mitigation of nonlinearities in a single-span link,” in Proc. European Conference on Optical Communications (ECOC) (2014), p. Mo.3.5.2.

B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.3.A.1.

S. L. I. Olsson, B. Corcoran, C. Lundström, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified optical link operating in the nonlinear transmission regime,” in Proc. European Conference on Optical Communications (ECOC) (2012), p. Th.2.F.1.

Liu, X.

X. Liu, S. Chandrasekhar, P. J. Winzer, R. W. Tkach, and A. R. Chraplyvy, “Fiber-nonlinearity-tolerant superchannel transmission via nonlinear noise squeezing and generalized phase-conjugated twin waves,” J. Lightwave Technology 32, 766–775 (2014).
[Crossref]

X. Liu, H. Hu, S. Chandrasekhar, R. M. Jopson, A. H. Gnauck, M. Dinu, C. Xie, and P. J. Winzer, “Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission,” Opt. Express 22, 6478–6485 (2014).
[Crossref] [PubMed]

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

X. Liu, S. Chandrasekhar, A. H. Gnauck, P. J. Winzer, S. Randel, S. Corteselli, A. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, and M. Fishteyn, “Digital coherent superposition for performance improvement of spatially multiplexed coherent optical OFDM superchannels,” Opt. Express 20, B595–B600 (2012).
[Crossref] [PubMed]

X. Liu, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, M. Fishteyn, and D. J. DiGiovanni, “Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime,” Opt. Express 20, 19088–19095 (2012).
[Crossref] [PubMed]

X. Liu, S. Chandrasekhar, and P. Winzer, “Phase-conjugated twin waves and fiber nonlinearity compensation,” in Optical Fibre Technology, OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (2014), pp. 938–940.

X. Liu, S. Chandrasekhar, P. Winzer, R. W. Tkach, and A. R. Chraplyvy, “406.6-Gb/s PDM-BPSK superchannel transmission over 12,800-km TWRS fiber via nonlinear noise squeezing,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2013), p. PDP5B.10.

Lundström, C.

S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Long-haul (3465 km) transmission of a 10 GBd QPSK signal with low noise phase-sensitive in-line amplification,” in Proc. European Conference on Optical Communications (ECOC) (2014), p. PD.2.2.

B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.3.A.1.

S. L. I. Olsson, B. Corcoran, C. Lundström, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified optical link operating in the nonlinear transmission regime,” in Proc. European Conference on Optical Communications (ECOC) (2012), p. Th.2.F.1.

Matera, F.

A. Mecozzi, M. Tabacchiera, F. Matera, and M. Settembre, “Dispersion management in phase modulated optical transmission systems,” in Proc. European Conference on Optical Communications (ECOC) (2010), p. Mo.2.C.2.

Mecozzi, A.

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” Photon. Technol. Lett. 12, 392–394 (2000).
[Crossref]

A. Mecozzi, M. Tabacchiera, F. Matera, and M. Settembre, “Dispersion management in phase modulated optical transmission systems,” in Proc. European Conference on Optical Communications (ECOC) (2010), p. Mo.2.C.2.

Mehta, P.

Menyuk, C. R.

D. Wang and C. R. Menyuk, “Polarization evolution due to the Kerr nonlinearity and chromatic dispersion,” J. Lightwave Technology 17, 2520–2529 (1999).
[Crossref]

Mizuochi, T.

T. Yoshida, T. Sugihara, K. Ishida, and T. Mizuochi, “Spectrally-efficient dual phase-conjugate twin waves with orthogonally multiplexed quadrature pulse-shaped signals,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2014), p. M3C.6.

Morita, I.

W.-R. Peng, T. Tsuritani, and I. Morita, “Digital nonlinear noise cancellation approach for long-haul optical transmission systems,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. Mo.3.D.2.

Nölle, M.

J. Fischer, S. Alreesh, R. Elschner, F. Frey, M. Nölle, and C. Schubert, “Bandwidth-variable transceivers based on 4d modulation formats for future flexible networks,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on (2013), p. Tu.3.C.1.

O’Sullivan, M.

Olsson, S. L. I.

H. Eliasson, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Comparison between coherent superposition in DSP and PSA for mitigation of nonlinearities in a single-span link,” in Proc. European Conference on Optical Communications (ECOC) (2014), p. Mo.3.5.2.

S. L. I. Olsson, B. Corcoran, C. Lundström, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified optical link operating in the nonlinear transmission regime,” in Proc. European Conference on Optical Communications (ECOC) (2012), p. Th.2.F.1.

B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.3.A.1.

S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Long-haul (3465 km) transmission of a 10 GBd QPSK signal with low noise phase-sensitive in-line amplification,” in Proc. European Conference on Optical Communications (ECOC) (2014), p. PD.2.2.

Peng, W.-R.

W.-R. Peng, T. Tsuritani, and I. Morita, “Digital nonlinear noise cancellation approach for long-haul optical transmission systems,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. Mo.3.D.2.

Prucnal, P. R.

Randel, S.

Reimer, M.

Renaudier, J.

A. Ghazisaeidi, J. Renaudier, M. Salsi, P. Tran, G. Charlet, and S. Bigo, “System benefits of digital dispersion pre-compensation for non-dispersion-managed PDM-WDM transmission,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.4.D.4.

Roberts, K.

Salsi, M.

A. Ghazisaeidi, J. Renaudier, M. Salsi, P. Tran, G. Charlet, and S. Bigo, “System benefits of digital dispersion pre-compensation for non-dispersion-managed PDM-WDM transmission,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.4.D.4.

Schubert, C.

J. Fischer, S. Alreesh, R. Elschner, F. Frey, M. Nölle, and C. Schubert, “Bandwidth-variable transceivers based on 4d modulation formats for future flexible networks,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on (2013), p. Tu.3.C.1.

Settembre, M.

A. Mecozzi, M. Tabacchiera, F. Matera, and M. Settembre, “Dispersion management in phase modulated optical transmission systems,” in Proc. European Conference on Optical Communications (ECOC) (2010), p. Mo.2.C.2.

Shiner, A. D.

Shtaif, M.

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” Photon. Technol. Lett. 12, 392–394 (2000).
[Crossref]

Sjödin, M.

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19, 7734–7741 (2011).
[Crossref] [PubMed]

S. L. I. Olsson, B. Corcoran, C. Lundström, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified optical link operating in the nonlinear transmission regime,” in Proc. European Conference on Optical Communications (ECOC) (2012), p. Th.2.F.1.

Sugihara, T.

T. Yoshida, T. Sugihara, K. Ishida, and T. Mizuochi, “Spectrally-efficient dual phase-conjugate twin waves with orthogonally multiplexed quadrature pulse-shaped signals,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2014), p. M3C.6.

Suydam, B. R.

Tabacchiera, M.

A. Mecozzi, M. Tabacchiera, F. Matera, and M. Settembre, “Dispersion management in phase modulated optical transmission systems,” in Proc. European Conference on Optical Communications (ECOC) (2010), p. Mo.2.C.2.

Taunay, T. F.

Tian, Y.

Tkach, R. W.

X. Liu, S. Chandrasekhar, P. J. Winzer, R. W. Tkach, and A. R. Chraplyvy, “Fiber-nonlinearity-tolerant superchannel transmission via nonlinear noise squeezing and generalized phase-conjugated twin waves,” J. Lightwave Technology 32, 766–775 (2014).
[Crossref]

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

X. Liu, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, M. Fishteyn, and D. J. DiGiovanni, “Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime,” Opt. Express 20, 19088–19095 (2012).
[Crossref] [PubMed]

X. Liu, S. Chandrasekhar, A. H. Gnauck, P. J. Winzer, S. Randel, S. Corteselli, A. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, and M. Fishteyn, “Digital coherent superposition for performance improvement of spatially multiplexed coherent optical OFDM superchannels,” Opt. Express 20, B595–B600 (2012).
[Crossref] [PubMed]

X. Liu, S. Chandrasekhar, P. Winzer, R. W. Tkach, and A. R. Chraplyvy, “406.6-Gb/s PDM-BPSK superchannel transmission over 12,800-km TWRS fiber via nonlinear noise squeezing,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2013), p. PDP5B.10.

Tran, P.

A. Ghazisaeidi, J. Renaudier, M. Salsi, P. Tran, G. Charlet, and S. Bigo, “System benefits of digital dispersion pre-compensation for non-dispersion-managed PDM-WDM transmission,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.4.D.4.

Tsuritani, T.

W.-R. Peng, T. Tsuritani, and I. Morita, “Digital nonlinear noise cancellation approach for long-haul optical transmission systems,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. Mo.3.D.2.

Wang, D.

D. Wang and C. R. Menyuk, “Polarization evolution due to the Kerr nonlinearity and chromatic dispersion,” J. Lightwave Technology 17, 2520–2529 (1999).
[Crossref]

Wang, T.

Winzer, P.

X. Liu, S. Chandrasekhar, and P. Winzer, “Phase-conjugated twin waves and fiber nonlinearity compensation,” in Optical Fibre Technology, OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (2014), pp. 938–940.

X. Liu, S. Chandrasekhar, P. Winzer, R. W. Tkach, and A. R. Chraplyvy, “406.6-Gb/s PDM-BPSK superchannel transmission over 12,800-km TWRS fiber via nonlinear noise squeezing,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2013), p. PDP5B.10.

Winzer, P. J.

Wymeersch, H.

Xie, C.

Yevick, D.

Yoshida, T.

T. Yoshida, T. Sugihara, K. Ishida, and T. Mizuochi, “Spectrally-efficient dual phase-conjugate twin waves with orthogonally multiplexed quadrature pulse-shaped signals,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2014), p. M3C.6.

Zhang, S.

Zhu, B.

J. Lightwave Technology (3)

E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technology 26, 3416–3425 (2008).
[Crossref]

X. Liu, S. Chandrasekhar, P. J. Winzer, R. W. Tkach, and A. R. Chraplyvy, “Fiber-nonlinearity-tolerant superchannel transmission via nonlinear noise squeezing and generalized phase-conjugated twin waves,” J. Lightwave Technology 32, 766–775 (2014).
[Crossref]

D. Wang and C. R. Menyuk, “Polarization evolution due to the Kerr nonlinearity and chromatic dispersion,” J. Lightwave Technology 17, 2520–2529 (1999).
[Crossref]

Nat. Photonics (1)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7, 560–568 (2013).
[Crossref]

Opt. Express (6)

P. Johannisson, M. Sjödin, M. Karlsson, H. Wymeersch, E. Agrell, and P. A. Andrekson, “Modified constant modulus algorithm for polarization-switched QPSK,” Opt. Express 19, 7734–7741 (2011).
[Crossref] [PubMed]

X. Liu, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, M. Fishteyn, and D. J. DiGiovanni, “Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime,” Opt. Express 20, 19088–19095 (2012).
[Crossref] [PubMed]

X. Liu, S. Chandrasekhar, A. H. Gnauck, P. J. Winzer, S. Randel, S. Corteselli, A. R. Chraplyvy, R. W. Tkach, B. Zhu, T. F. Taunay, and M. Fishteyn, “Digital coherent superposition for performance improvement of spatially multiplexed coherent optical OFDM superchannels,” Opt. Express 20, B595–B600 (2012).
[Crossref] [PubMed]

Y. Tian, Y.-K. Huang, S. Zhang, P. R. Prucnal, and T. Wang, “Demonstration of digital phase-sensitive boosting to extend signal reach for long-haul WDM systems using optical phase-conjugated copy,” Opt. Express 21, 5099–5106 (2013).
[Crossref] [PubMed]

X. Liu, H. Hu, S. Chandrasekhar, R. M. Jopson, A. H. Gnauck, M. Dinu, C. Xie, and P. J. Winzer, “Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission,” Opt. Express 22, 6478–6485 (2014).
[Crossref] [PubMed]

A. D. Shiner, M. Reimer, A. Borowiec, S. O. Gharan, J. Gaudette, P. Mehta, D. Charlton, K. Roberts, and M. O’Sullivan, “Demonstration of an 8-dimensional modulation format with reduced inter-channel nonlinearities in a polarization multiplexed coherent system,” Opt. Express 22, 20366–20374 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

Photon. Technol. Lett. (1)

A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission,” Photon. Technol. Lett. 12, 392–394 (2000).
[Crossref]

Other (12)

P. Johannisson, “Nonlinear intrachannel distortion in high-speed optical transmission systems,” Ph.D. thesis, Chalmers University of Technology (2006).

A. Mecozzi, M. Tabacchiera, F. Matera, and M. Settembre, “Dispersion management in phase modulated optical transmission systems,” in Proc. European Conference on Optical Communications (ECOC) (2010), p. Mo.2.C.2.

X. Liu, S. Chandrasekhar, and P. Winzer, “Phase-conjugated twin waves and fiber nonlinearity compensation,” in Optical Fibre Technology, OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology (2014), pp. 938–940.

A. Ghazisaeidi, J. Renaudier, M. Salsi, P. Tran, G. Charlet, and S. Bigo, “System benefits of digital dispersion pre-compensation for non-dispersion-managed PDM-WDM transmission,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.4.D.4.

S. L. I. Olsson, B. Corcoran, C. Lundström, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Phase-sensitive amplified optical link operating in the nonlinear transmission regime,” in Proc. European Conference on Optical Communications (ECOC) (2012), p. Th.2.F.1.

B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. We.3.A.1.

H. Eliasson, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Comparison between coherent superposition in DSP and PSA for mitigation of nonlinearities in a single-span link,” in Proc. European Conference on Optical Communications (ECOC) (2014), p. Mo.3.5.2.

S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Long-haul (3465 km) transmission of a 10 GBd QPSK signal with low noise phase-sensitive in-line amplification,” in Proc. European Conference on Optical Communications (ECOC) (2014), p. PD.2.2.

T. Yoshida, T. Sugihara, K. Ishida, and T. Mizuochi, “Spectrally-efficient dual phase-conjugate twin waves with orthogonally multiplexed quadrature pulse-shaped signals,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2014), p. M3C.6.

W.-R. Peng, T. Tsuritani, and I. Morita, “Digital nonlinear noise cancellation approach for long-haul optical transmission systems,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. Mo.3.D.2.

X. Liu, S. Chandrasekhar, P. Winzer, R. W. Tkach, and A. R. Chraplyvy, “406.6-Gb/s PDM-BPSK superchannel transmission over 12,800-km TWRS fiber via nonlinear noise squeezing,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2013), p. PDP5B.10.

J. Fischer, S. Alreesh, R. Elschner, F. Frey, M. Nölle, and C. Schubert, “Bandwidth-variable transceivers based on 4d modulation formats for future flexible networks,” in Optical Communication (ECOC 2013), 39th European Conference and Exhibition on (2013), p. Tu.3.C.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The transmitted signal for CDR and PCTW. For CDR, a conjugated copy S N * of each signal symbol SN is transmitted in the consecutive pulse slot. Also shown in the figure is the numbering of pulses used to specify pulse triplets in the perturbation analysis of Section 2.1.
Fig. 2.
Fig. 2. The antisymmetric dispersion map used for CDR and PCTW. Bpre is the dispersion which is pre-compensated for, B0 is an arbitrarily chosen accumulated dispersion where the perturbations are evaluated and 2ΔB is a small interval around B0 that sets the limits of the integrals of Eqs. (5) and (6). The red line shows how the optical power varies along the link.
Fig. 3.
Fig. 3. Simulated BER as a function of transmission distance for (a) single channel and (b) 7-channel WDM for 28 GBaud PM-QPSK, 56 GBaud PCTW-QPSK, 56 GBaud CDR-QPSK and 28 GBaud CDR-16QAM. Optimum launch powers are specified in the figures. The distance where the dispersion map is perfectly symmetric is marked with a vertical red line.
Fig. 4.
Fig. 4. The BER as a function of launch power for 28 GBaud PM-QPSK at 8,000 km (blue line) and 56 Gbaud CDR-QPSK at 16,000 km (green line).
Fig. 5.
Fig. 5. (a) The BER as a function of transmission distance for single channel 28 GBaud PM-QPSK and 56 GBaud CDR-QPSK in a system with 3 dB noise figure optical amplifiers. The optimum launch powers are specified in the figure and the distance where the dispersion map is symmetric is marked with a vertical red line. (b) The BER of single channel 56 GBaud CDR-QPSK as a function of dispersion pre-compensation with a link length of 16,000 km, with and without ASE noise added by inline amplifiers.

Tables (1)

Tables Icon

Table 1. Pulse triplets that generate perturbations on the signal and conjugate pulse of C0 which cancel out after coherent superposition. Also shown is the form of the triplets fulfilling k+l−m = 0 for which it is not possible to find a corresponding triplet so that the nonlinear perturbations cancel. For suitable choices of the integers M and N, the first column includes all possible choices of triplets fulfilling k + l − m = 0.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

C N = a N + ( a N * ) * ,
i ψ z = β 2 2 2 ψ t 2 i α 2 ψ γ | ψ | 2 ψ ,
ψ S ( 0 , t ) = k [ a k ψ 0 ( t 2 k t p ) + a k * ψ 0 ( t ( 2 k + 1 ) t p ) ] ,
ψ P , ( k , l , m ) ( L , t ) = i a k a l a m * 0 L γ p ( z ) 1 + 2 i B + 3 B 2 exp ( 1 2 3 + i B 1 + 3 i B [ ( t t 0 ) 2 2 t t 0 ( 1 + i B ) ( τ k + τ l ) + ( 1 i B ) τ m 3 + i B ] ) exp ( 1 2 1 1 + B 2 [ ( τ k 2 + τ l 2 ) ( 1 + i B ) + τ m 2 ( 1 i B ) { ( τ k + τ l ) ( 1 + i B ) + τ m ( 1 i B ) } 2 i B 1 + 3 i B ] ) d z
ψ P , ( k , l , k + l ) ( B 0 , 0 ) = i a k a l a k + l * B 0 Δ B B 0 + Δ B γ p ( B ) 3 | B | e i 3 ν 2 k l 1 3 B t 0 2 β 2 d B ,
ψ P , ( k , l , k + l 1 ) ( B 0 , t p ) = i a k a l a k + l 1 * B 0 Δ B B 0 + Δ B γ p ( B ) 3 | B | e i 3 ν 2 ( k 1 ) ( l 1 ) 1 3 B t 0 2 β 2 d B .
ψ P , ( 2 N , 2 M , 2 N + 2 M ) ( B 0 , 0 ) = i a N a M a N + M * B 0 Δ B B 0 + Δ B γ p ( B ) 3 | B | e i 12 ν 2 N M 1 3 B t 0 2 β 2 d B = i a N a M a N + M * R 2 N , 2 M ,
ψ P , ( 2 N , 2 M , 2 N + 2 M ) ( B 0 , 0 ) = i a N a M a N + M * R 2 N , 2 M * ,
ψ P , ( 2 N + 1 , 2 M + 1 , 2 N + 2 M + 1 ) ( B 0 , 0 ) = i a N * a M * a N + M B 0 Δ B B 0 + Δ B γ p ( B ) 3 | B | e i 12 ν 2 N M 1 3 B t 0 2 β 2 d B = i a N * a M * a N + M R 2 N , 2 M ,
ψ P , ( 2 N + 1 , 2 M + 1 , 2 N + 2 M + 1 ) ( B 0 , 0 ) = i a N * a M * a N + M R 2 N , 2 M * .
ψ P , ( 2 N , 2 M , 2 N + 2 M ) ( B 0 , 0 ) + ψ P , ( 2 N , 2 M , 2 N + 2 M ) ( B 0 , 0 ) + ( ψ P , ( 2 N + 1 , 2 M + 1 , 2 N + 2 M + 1 ) ( B 0 , 0 ) + ψ P , ( 2 N + 1 , 2 M + 1 , 2 N + 2 M + 1 ) ( B 0 , 0 ) ) * = i a N a M a N + M * R 2 N , 2 M + i a N a M a N + M * R 2 N , 2 M * + ( i a N * a M * a N + M R 2 N , 2 M + i a N * a M * a N + M R 2 N , 2 M * ) * = 0 ,

Metrics