Abstract

We investigated the dependence of the negative dispersion of birefringence of smectic liquid crystal-polymer composites on the constituent molecules and temperature. The dispersion of birefringence was significantly varied from positive dispersion to negative dispersion by the change of the relative fraction of the constituent monomers. For the temperature dependence of the dispersion, a composite with more fraction of monomers located at the inter-layer space showed a wider temperature range of the negative dispersion of birefringence.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single layer retarder with negative dispersion of birefringence and wide field-of-view

Jiyong Hwang, Seungbin Yang, Yu-Jin Choi, Yumin Lee, Kwang-Un Jeong, and Ji-Hoon Lee
Opt. Express 24(17) 19934-19939 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Ind. Acad. Sci. A 41, 130 (1955).
  2. D. Clarke, “Achromatic halfwave plates and linear polarization rotators,” Opt. Acta (Lond.) 14(4), 343–350 (1967).
    [Crossref]
  3. P. Hariharan, “Achromatic and apochromatic halfwave and quarterwave retarders,” Opt. Eng. 35(11), 3335 (1996).
    [Crossref]
  4. Y.-C. Yang and D.-K. Yang, “Achromatic reduction of off-axis light leakage in LCDs by self-compensated phase retardation (SPR) film,” Proc. SID Digest 1955 (2008).
    [Crossref]
  5. S.-W. Oh, B. Wok Park, J.-H. Lee, and T.-H. Yoon, “Achromatic optical compensation using dispersion of uniaxial films for elimination of off-axis light leakage in a liquid crystal cell,” Appl. Opt. 52(32), 7785–7790 (2013).
    [Crossref] [PubMed]
  6. S. Shen, J. She, and T. Tao, “Optimal design of achromatic true zero-order waveplates using twisted nematic liquid crystal,” J. Opt. Soc. Am. A 22(5), 961–965 (2005).
    [Crossref] [PubMed]
  7. R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21(1), 404–420 (2013).
    [Crossref] [PubMed]
  8. A. Uchiyama and T. Yatabe, “Control of wavelength dispersion of birefringence for oriented copolycarbonate films containing positive and negative birefreingent units,” Jpn. J. Appl. Phys. 42(11), 6941–6945 (2003).
    [Crossref]
  9. A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
    [Crossref]
  10. K. Kuboyama, T. Kuroda, and T. Ougizawa, “Control of wavelength dispersion of birefringence by miscible polymer blends,” Macromol. Symp. 249(1), 641–646 (2007).
    [Crossref]
  11. O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
    [Crossref]
  12. H. Lee and J.-H. Lee, “Negative dispersion of birefringence in two-dimensionally self-organized smectic liquid crystal and monomer thin film,” Opt. Lett. 39(17), 5146–5149 (2014).
    [Crossref] [PubMed]
  13. H. Lee, S. Yang, and J.-H. Lee, “Electro-optical properties of smectic liquid crystal-polymer composite with negative dispersion of birefringence,” Curr. Appl. Phys.submitted.
  14. C. A. Guymon, E. N. Hoggan, N. A. Clark, T. P. Rieker, D. M. Walba, and C. N. Bowman, “Effects of monomer structure on their organization and polymerization in a smectic liquid crystal,” Science 275(5296), 57–59 (1997).
    [Crossref] [PubMed]
  15. J.-H. Lee and T.-K. Lim, “Inducing an antiferroelectric phase by segregating the layers of an intrinsically ferroelectric phase-only liquid crystal with linear-shaped molecules,” J. Appl. Phys. 98(9), 094110 (2005).
    [Crossref]
  16. J.-H. Lee, T.-K. Lim, Y.-W. Kwon, and J.-I. Jin, “Memory effects in polymer stabilized ferroelectric liquid crystals, and their dependence on the morphology of the constituent molecules,” J. Appl. Phys. 97(8), 084907 (2005).
    [Crossref]
  17. T. Takahashi, T. Umeda, H. Furue, and S. Kobayashi, “Modeling and computer simulation of the electrooptic response of polymer-stabilized ferroelectric liquid crystal cells,” Jpn. J. Appl. Phys. 38(10), 5991–5995 (1999).
    [Crossref]

2014 (1)

2013 (2)

2012 (1)

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

2011 (1)

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

2007 (1)

K. Kuboyama, T. Kuroda, and T. Ougizawa, “Control of wavelength dispersion of birefringence by miscible polymer blends,” Macromol. Symp. 249(1), 641–646 (2007).
[Crossref]

2005 (3)

S. Shen, J. She, and T. Tao, “Optimal design of achromatic true zero-order waveplates using twisted nematic liquid crystal,” J. Opt. Soc. Am. A 22(5), 961–965 (2005).
[Crossref] [PubMed]

J.-H. Lee and T.-K. Lim, “Inducing an antiferroelectric phase by segregating the layers of an intrinsically ferroelectric phase-only liquid crystal with linear-shaped molecules,” J. Appl. Phys. 98(9), 094110 (2005).
[Crossref]

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, and J.-I. Jin, “Memory effects in polymer stabilized ferroelectric liquid crystals, and their dependence on the morphology of the constituent molecules,” J. Appl. Phys. 97(8), 084907 (2005).
[Crossref]

2003 (1)

A. Uchiyama and T. Yatabe, “Control of wavelength dispersion of birefringence for oriented copolycarbonate films containing positive and negative birefreingent units,” Jpn. J. Appl. Phys. 42(11), 6941–6945 (2003).
[Crossref]

1999 (1)

T. Takahashi, T. Umeda, H. Furue, and S. Kobayashi, “Modeling and computer simulation of the electrooptic response of polymer-stabilized ferroelectric liquid crystal cells,” Jpn. J. Appl. Phys. 38(10), 5991–5995 (1999).
[Crossref]

1997 (1)

C. A. Guymon, E. N. Hoggan, N. A. Clark, T. P. Rieker, D. M. Walba, and C. N. Bowman, “Effects of monomer structure on their organization and polymerization in a smectic liquid crystal,” Science 275(5296), 57–59 (1997).
[Crossref] [PubMed]

1996 (1)

P. Hariharan, “Achromatic and apochromatic halfwave and quarterwave retarders,” Opt. Eng. 35(11), 3335 (1996).
[Crossref]

1967 (1)

D. Clarke, “Achromatic halfwave plates and linear polarization rotators,” Opt. Acta (Lond.) 14(4), 343–350 (1967).
[Crossref]

1955 (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Ind. Acad. Sci. A 41, 130 (1955).

Bowman, C. N.

C. A. Guymon, E. N. Hoggan, N. A. Clark, T. P. Rieker, D. M. Walba, and C. N. Bowman, “Effects of monomer structure on their organization and polymerization in a smectic liquid crystal,” Science 275(5296), 57–59 (1997).
[Crossref] [PubMed]

Clark, N. A.

C. A. Guymon, E. N. Hoggan, N. A. Clark, T. P. Rieker, D. M. Walba, and C. N. Bowman, “Effects of monomer structure on their organization and polymerization in a smectic liquid crystal,” Science 275(5296), 57–59 (1997).
[Crossref] [PubMed]

Clarke, D.

D. Clarke, “Achromatic halfwave plates and linear polarization rotators,” Opt. Acta (Lond.) 14(4), 343–350 (1967).
[Crossref]

Escuti, M. J.

Furue, H.

T. Takahashi, T. Umeda, H. Furue, and S. Kobayashi, “Modeling and computer simulation of the electrooptic response of polymer-stabilized ferroelectric liquid crystal cells,” Jpn. J. Appl. Phys. 38(10), 5991–5995 (1999).
[Crossref]

Gardiner, I.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Guymon, C. A.

C. A. Guymon, E. N. Hoggan, N. A. Clark, T. P. Rieker, D. M. Walba, and C. N. Bowman, “Effects of monomer structure on their organization and polymerization in a smectic liquid crystal,” Science 275(5296), 57–59 (1997).
[Crossref] [PubMed]

Harding, R.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Hariharan, P.

P. Hariharan, “Achromatic and apochromatic halfwave and quarterwave retarders,” Opt. Eng. 35(11), 3335 (1996).
[Crossref]

Hoggan, E. N.

C. A. Guymon, E. N. Hoggan, N. A. Clark, T. P. Rieker, D. M. Walba, and C. N. Bowman, “Effects of monomer structure on their organization and polymerization in a smectic liquid crystal,” Science 275(5296), 57–59 (1997).
[Crossref] [PubMed]

Ikeda, Y.

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

Jin, J.-I.

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, and J.-I. Jin, “Memory effects in polymer stabilized ferroelectric liquid crystals, and their dependence on the morphology of the constituent molecules,” J. Appl. Phys. 97(8), 084907 (2005).
[Crossref]

Kobayashi, S.

T. Takahashi, T. Umeda, H. Furue, and S. Kobayashi, “Modeling and computer simulation of the electrooptic response of polymer-stabilized ferroelectric liquid crystal cells,” Jpn. J. Appl. Phys. 38(10), 5991–5995 (1999).
[Crossref]

Komanduri, R. K.

Kuboyama, K.

K. Kuboyama, T. Kuroda, and T. Ougizawa, “Control of wavelength dispersion of birefringence by miscible polymer blends,” Macromol. Symp. 249(1), 641–646 (2007).
[Crossref]

Kuroda, T.

K. Kuboyama, T. Kuroda, and T. Ougizawa, “Control of wavelength dispersion of birefringence by miscible polymer blends,” Macromol. Symp. 249(1), 641–646 (2007).
[Crossref]

Kwon, Y.-W.

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, and J.-I. Jin, “Memory effects in polymer stabilized ferroelectric liquid crystals, and their dependence on the morphology of the constituent molecules,” J. Appl. Phys. 97(8), 084907 (2005).
[Crossref]

Lawler, K. F.

Lee, H.

H. Lee and J.-H. Lee, “Negative dispersion of birefringence in two-dimensionally self-organized smectic liquid crystal and monomer thin film,” Opt. Lett. 39(17), 5146–5149 (2014).
[Crossref] [PubMed]

H. Lee, S. Yang, and J.-H. Lee, “Electro-optical properties of smectic liquid crystal-polymer composite with negative dispersion of birefringence,” Curr. Appl. Phys.submitted.

Lee, J.-H.

H. Lee and J.-H. Lee, “Negative dispersion of birefringence in two-dimensionally self-organized smectic liquid crystal and monomer thin film,” Opt. Lett. 39(17), 5146–5149 (2014).
[Crossref] [PubMed]

S.-W. Oh, B. Wok Park, J.-H. Lee, and T.-H. Yoon, “Achromatic optical compensation using dispersion of uniaxial films for elimination of off-axis light leakage in a liquid crystal cell,” Appl. Opt. 52(32), 7785–7790 (2013).
[Crossref] [PubMed]

J.-H. Lee and T.-K. Lim, “Inducing an antiferroelectric phase by segregating the layers of an intrinsically ferroelectric phase-only liquid crystal with linear-shaped molecules,” J. Appl. Phys. 98(9), 094110 (2005).
[Crossref]

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, and J.-I. Jin, “Memory effects in polymer stabilized ferroelectric liquid crystals, and their dependence on the morphology of the constituent molecules,” J. Appl. Phys. 97(8), 084907 (2005).
[Crossref]

H. Lee, S. Yang, and J.-H. Lee, “Electro-optical properties of smectic liquid crystal-polymer composite with negative dispersion of birefringence,” Curr. Appl. Phys.submitted.

Lim, T.-K.

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, and J.-I. Jin, “Memory effects in polymer stabilized ferroelectric liquid crystals, and their dependence on the morphology of the constituent molecules,” J. Appl. Phys. 97(8), 084907 (2005).
[Crossref]

J.-H. Lee and T.-K. Lim, “Inducing an antiferroelectric phase by segregating the layers of an intrinsically ferroelectric phase-only liquid crystal with linear-shaped molecules,” J. Appl. Phys. 98(9), 094110 (2005).
[Crossref]

Oh, S.-W.

Ono, Y.

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

Ougizawa, T.

K. Kuboyama, T. Kuroda, and T. Ougizawa, “Control of wavelength dispersion of birefringence by miscible polymer blends,” Macromol. Symp. 249(1), 641–646 (2007).
[Crossref]

Pancharatnam, S.

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Ind. Acad. Sci. A 41, 130 (1955).

Parri, O.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Rieker, T. P.

C. A. Guymon, E. N. Hoggan, N. A. Clark, T. P. Rieker, D. M. Walba, and C. N. Bowman, “Effects of monomer structure on their organization and polymerization in a smectic liquid crystal,” Science 275(5296), 57–59 (1997).
[Crossref] [PubMed]

Sargent, J.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

She, J.

Shen, S.

Shuto, H.

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

Skjonnemand, K.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Smith, G.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Takahashi, T.

T. Takahashi, T. Umeda, H. Furue, and S. Kobayashi, “Modeling and computer simulation of the electrooptic response of polymer-stabilized ferroelectric liquid crystal cells,” Jpn. J. Appl. Phys. 38(10), 5991–5995 (1999).
[Crossref]

Tao, T.

Uchiyama, A.

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

A. Uchiyama and T. Yatabe, “Control of wavelength dispersion of birefringence for oriented copolycarbonate films containing positive and negative birefreingent units,” Jpn. J. Appl. Phys. 42(11), 6941–6945 (2003).
[Crossref]

Umeda, T.

T. Takahashi, T. Umeda, H. Furue, and S. Kobayashi, “Modeling and computer simulation of the electrooptic response of polymer-stabilized ferroelectric liquid crystal cells,” Jpn. J. Appl. Phys. 38(10), 5991–5995 (1999).
[Crossref]

Walba, D. M.

C. A. Guymon, E. N. Hoggan, N. A. Clark, T. P. Rieker, D. M. Walba, and C. N. Bowman, “Effects of monomer structure on their organization and polymerization in a smectic liquid crystal,” Science 275(5296), 57–59 (1997).
[Crossref] [PubMed]

Wok Park, B.

Yahata, K.

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

Yang, D.-K.

Y.-C. Yang and D.-K. Yang, “Achromatic reduction of off-axis light leakage in LCDs by self-compensated phase retardation (SPR) film,” Proc. SID Digest 1955 (2008).
[Crossref]

Yang, S.

H. Lee, S. Yang, and J.-H. Lee, “Electro-optical properties of smectic liquid crystal-polymer composite with negative dispersion of birefringence,” Curr. Appl. Phys.submitted.

Yang, Y.-C.

Y.-C. Yang and D.-K. Yang, “Achromatic reduction of off-axis light leakage in LCDs by self-compensated phase retardation (SPR) film,” Proc. SID Digest 1955 (2008).
[Crossref]

Yatabe, T.

A. Uchiyama and T. Yatabe, “Control of wavelength dispersion of birefringence for oriented copolycarbonate films containing positive and negative birefreingent units,” Jpn. J. Appl. Phys. 42(11), 6941–6945 (2003).
[Crossref]

Yoon, H.-J.

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Yoon, T.-H.

Appl. Opt. (1)

J. Appl. Phys. (2)

J.-H. Lee and T.-K. Lim, “Inducing an antiferroelectric phase by segregating the layers of an intrinsically ferroelectric phase-only liquid crystal with linear-shaped molecules,” J. Appl. Phys. 98(9), 094110 (2005).
[Crossref]

J.-H. Lee, T.-K. Lim, Y.-W. Kwon, and J.-I. Jin, “Memory effects in polymer stabilized ferroelectric liquid crystals, and their dependence on the morphology of the constituent molecules,” J. Appl. Phys. 97(8), 084907 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (2)

T. Takahashi, T. Umeda, H. Furue, and S. Kobayashi, “Modeling and computer simulation of the electrooptic response of polymer-stabilized ferroelectric liquid crystal cells,” Jpn. J. Appl. Phys. 38(10), 5991–5995 (1999).
[Crossref]

A. Uchiyama and T. Yatabe, “Control of wavelength dispersion of birefringence for oriented copolycarbonate films containing positive and negative birefreingent units,” Jpn. J. Appl. Phys. 42(11), 6941–6945 (2003).
[Crossref]

Macromol. Symp. (1)

K. Kuboyama, T. Kuroda, and T. Ougizawa, “Control of wavelength dispersion of birefringence by miscible polymer blends,” Macromol. Symp. 249(1), 641–646 (2007).
[Crossref]

Opt. Acta (Lond.) (1)

D. Clarke, “Achromatic halfwave plates and linear polarization rotators,” Opt. Acta (Lond.) 14(4), 343–350 (1967).
[Crossref]

Opt. Eng. (1)

P. Hariharan, “Achromatic and apochromatic halfwave and quarterwave retarders,” Opt. Eng. 35(11), 3335 (1996).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Polym. J. (1)

A. Uchiyama, Y. Ono, Y. Ikeda, H. Shuto, and K. Yahata, “Copolycarbonate optical films developed using birefringence dispersion control,” Polym. J. 44(10), 995–1008 (2012).
[Crossref]

Proc. Ind. Acad. Sci. A (1)

S. Pancharatnam, “Achromatic combinations of birefringent plates. Part I. An achromatic circular polarizer,” Proc. Ind. Acad. Sci. A 41, 130 (1955).

Proc. SPIE (1)

O. Parri, G. Smith, R. Harding, H.-J. Yoon, I. Gardiner, J. Sargent, and K. Skjonnemand, “Patterned retarder films using reactive mesogen technology,” Proc. SPIE 7956, 79560W (2011).
[Crossref]

Science (1)

C. A. Guymon, E. N. Hoggan, N. A. Clark, T. P. Rieker, D. M. Walba, and C. N. Bowman, “Effects of monomer structure on their organization and polymerization in a smectic liquid crystal,” Science 275(5296), 57–59 (1997).
[Crossref] [PubMed]

Other (2)

H. Lee, S. Yang, and J.-H. Lee, “Electro-optical properties of smectic liquid crystal-polymer composite with negative dispersion of birefringence,” Curr. Appl. Phys.submitted.

Y.-C. Yang and D.-K. Yang, “Achromatic reduction of off-axis light leakage in LCDs by self-compensated phase retardation (SPR) film,” Proc. SID Digest 1955 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Molecular structure and composition of the reactive monomer mixtures.
Fig. 2
Fig. 2 (a) Retardation α(λ) of the various LC-polymer composites; pure LC, LC-T3H7 (Triallyl 30 wt%, HDDA 70 wt%), LC-T5H5 (Triallyl 47 wt%, HDDA 53 wt%), LC-T7H3 (Triallyl 70 wt%, HDDA 30 wt%), and LC-T9H1 (Triallyl 90 wt%, HDDA 10 wt%). (b) α(λ) of the samples normalized to α(550 nm).
Fig. 3
Fig. 3 Retardation α(λ) of the LC-polymer composites at various temperatures. (a) pure LC, (b) LC-T3H7, (c) LC-T5H5, (d) LC-T7H3, and (e) LC-T9H1 mixtures. (f)-(j) correspond to α(λ) of the corresponding samples normalized to α(550 nm).
Fig. 4
Fig. 4 dα/dλ value of the various LC-polymer composites at λ = 550 nm. Lines are guide to the eyes.
Fig. 5
Fig. 5 (a) SAXS spectra of the pure LC and the LC-polymer mixtures vs. 2θ at 21 °C. (b) Smectic layer spacing l of the mixtures vs. temperature. Lines are guide to the eyes.
Fig. 6
Fig. 6 FT-IR dichroism data of the constituent monomers in the LC-T5H5 composite. The absorption intensity of triallyl and HDDA was measured at 1690 and 1620 cm−1, respectively.

Metrics