Abstract

In this paper, we report the formation of extremely sharp (Quality factor Q~ + ∞) FR in a single layer of dielectric nanorods with perturbed periodicity. The interference between the broadband Fabry-Perot (F-P) resonance and defect induced dark mode results in refractive index sensitivity (S) of 1312.75 nm/RIU and figure of merit (FOM) of 500, offering an excellent platform for biological sensing and detection.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of Fano resonance in planar metamaterial with perturbed periodicity

Mingbo Pu, Chenggang Hu, Cheng Huang, Changtao Wang, Zeyu Zhao, Yanqin Wang, and Xiangang Luo
Opt. Express 21(1) 992-1001 (2013)

High Q-factor multiple Fano resonances for high-sensitivity sensing in all-dielectric metamaterials

Wudeng Wang, Li Zheng, Li Xiong, Jianguang Qi, and Baoying Li
OSA Continuum 2(10) 2818-2825 (2019)

Sharp Fano resonances in THz metamaterials

Ranjan Singh, Ibraheem A. I. Al-Naib, Martin Koch, and Weili Zhang
Opt. Express 19(7) 6312-6319 (2011)

References

  • View by:
  • |
  • |
  • |

  1. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [Crossref] [PubMed]
  2. M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, and X. Luo, “Conversion of broadband energy to narrowband emission through double-sided metamaterials,” Opt. Express 21(26), 32207–32216 (2013).
    [PubMed]
  3. J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010).
    [Crossref] [PubMed]
  4. M. Rahmani, B. Lukiyanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser & Photon. Rev. 7(3), 329–349 (2013).
    [Crossref]
  5. M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
    [Crossref] [PubMed]
  6. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
    [Crossref] [PubMed]
  7. B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
    [Crossref]
  8. M. König, M. Rahmani, L. Zhang, D. Y. Lei, T. R. Roschuk, V. Giannini, C. W. Qiu, M. Hong, S. Schlücker, and S. A. Maier, “Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers,” ACS Nano 8(9), 9188–9198 (2014).
    [Crossref] [PubMed]
  9. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
    [Crossref] [PubMed]
  10. B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
    [Crossref] [PubMed]
  11. Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
    [Crossref] [PubMed]
  12. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystals slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [Crossref]
  13. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [Crossref] [PubMed]
  14. Y. Shuai, D. Zhao, Z. Tian, J. H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
    [Crossref] [PubMed]
  15. M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, and X. Luo, “Fano resonance induced by mode coupling in all-dielectric nanorods array,” Appl. Phys. Express 7(3), 032002 (2014).
    [Crossref]
  16. F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
    [Crossref]
  17. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref] [PubMed]
  18. E. D. Palik, Handbook of Optical Constant of Solids (Academic, 1985).
  19. Y. Moritake, Y. Kanamori, and K. Hane, “Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars,” Opt. Lett. 39(13), 4057–4060 (2014).
    [Crossref] [PubMed]
  20. J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
    [Crossref] [PubMed]
  21. J. Shu, W. Gao, and Q. Xu, “Fano resonance in concentric ring apertures,” Opt. Express 21(9), 11101–11106 (2013).
    [Crossref] [PubMed]
  22. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light (Academic, 2008).
  23. X. Wei, M. Altissimo, T. J. Davis, and P. Mulvaney, “Fano resonances in three-dimensional dual cut-wire pairs,” Nanoscale 6(10), 5372–5377 (2014).
    [Crossref] [PubMed]
  24. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  25. X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
    [Crossref] [PubMed]
  26. V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
    [Crossref] [PubMed]
  27. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
    [Crossref] [PubMed]
  28. M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
    [Crossref] [PubMed]
  29. X. Ci, B. Wu, M. Song, Y. Liu, G. Chen, E. Wu, and H. Zeng, “Tunable Fano resonances in heterogenous Al-Ag nanorod dimers,” Appl. Phys., A Mater. Sci. Process. 117(2), 955–960 (2014).
    [Crossref]

2014 (9)

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

M. König, M. Rahmani, L. Zhang, D. Y. Lei, T. R. Roschuk, V. Giannini, C. W. Qiu, M. Hong, S. Schlücker, and S. A. Maier, “Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers,” ACS Nano 8(9), 9188–9198 (2014).
[Crossref] [PubMed]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, and X. Luo, “Fano resonance induced by mode coupling in all-dielectric nanorods array,” Appl. Phys. Express 7(3), 032002 (2014).
[Crossref]

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Y. Moritake, Y. Kanamori, and K. Hane, “Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars,” Opt. Lett. 39(13), 4057–4060 (2014).
[Crossref] [PubMed]

J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
[Crossref] [PubMed]

X. Wei, M. Altissimo, T. J. Davis, and P. Mulvaney, “Fano resonances in three-dimensional dual cut-wire pairs,” Nanoscale 6(10), 5372–5377 (2014).
[Crossref] [PubMed]

X. Ci, B. Wu, M. Song, Y. Liu, G. Chen, E. Wu, and H. Zeng, “Tunable Fano resonances in heterogenous Al-Ag nanorod dimers,” Appl. Phys., A Mater. Sci. Process. 117(2), 955–960 (2014).
[Crossref]

2013 (6)

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

J. Shu, W. Gao, and Q. Xu, “Fano resonance in concentric ring apertures,” Opt. Express 21(9), 11101–11106 (2013).
[Crossref] [PubMed]

Y. Shuai, D. Zhao, Z. Tian, J. H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[Crossref] [PubMed]

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, and X. Luo, “Conversion of broadband energy to narrowband emission through double-sided metamaterials,” Opt. Express 21(26), 32207–32216 (2013).
[PubMed]

M. Rahmani, B. Lukiyanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser & Photon. Rev. 7(3), 329–349 (2013).
[Crossref]

2012 (1)

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

2011 (2)

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

2010 (3)

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010).
[Crossref] [PubMed]

2009 (3)

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
[Crossref] [PubMed]

2007 (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

2003 (1)

2002 (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystals slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Ahn, J. S.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

Ahn, K. J.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

Altissimo, M.

X. Wei, M. Altissimo, T. J. Davis, and P. Mulvaney, “Fano resonances in three-dimensional dual cut-wire pairs,” Nanoscale 6(10), 5372–5377 (2014).
[Crossref] [PubMed]

Altug, H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
[Crossref] [PubMed]

Artar, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Bartoli, F. J.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Bitzer, A.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

Braun, J.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

Buchwald, W. R.

Cetin, A. E.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Chang, T. Y.

Chen, G.

X. Ci, B. Wu, M. Song, Y. Liu, G. Chen, E. Wu, and H. Zeng, “Tunable Fano resonances in heterogenous Al-Ag nanorod dimers,” Appl. Phys., A Mater. Sci. Process. 117(2), 955–960 (2014).
[Crossref]

Chen, J.

Chen, K.

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Chen, L.

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Chen, X.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

Chen, Z.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ci, X.

X. Ci, B. Wu, M. Song, Y. Liu, G. Chen, E. Wu, and H. Zeng, “Tunable Fano resonances in heterogenous Al-Ag nanorod dimers,” Appl. Phys., A Mater. Sci. Process. 117(2), 955–960 (2014).
[Crossref]

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Cui, T. J.

Davis, T. J.

X. Wei, M. Altissimo, T. J. Davis, and P. Mulvaney, “Fano resonances in three-dimensional dual cut-wire pairs,” Nanoscale 6(10), 5372–5377 (2014).
[Crossref] [PubMed]

Dressel, M.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

Fan, S.

Fedotov, V. A.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Gao, W.

Gao, Y.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Giannini, V.

M. König, M. Rahmani, L. Zhang, D. Y. Lei, T. R. Roschuk, V. Giannini, C. W. Qiu, M. Hong, S. Schlücker, and S. A. Maier, “Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers,” ACS Nano 8(9), 9188–9198 (2014).
[Crossref] [PubMed]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gompf, B.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hane, K.

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

He, X.

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Hong, M.

M. König, M. Rahmani, L. Zhang, D. Y. Lei, T. R. Roschuk, V. Giannini, C. W. Qiu, M. Hong, S. Schlücker, and S. A. Maier, “Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers,” ACS Nano 8(9), 9188–9198 (2014).
[Crossref] [PubMed]

M. Rahmani, B. Lukiyanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser & Photon. Rev. 7(3), 329–349 (2013).
[Crossref]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Hu, C.

M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, and X. Luo, “Fano resonance induced by mode coupling in all-dielectric nanorods array,” Appl. Phys. Express 7(3), 032002 (2014).
[Crossref]

M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, and X. Luo, “Conversion of broadband energy to narrowband emission through double-sided metamaterials,” Opt. Express 21(26), 32207–32216 (2013).
[PubMed]

Huang, M.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
[Crossref] [PubMed]

Huang, X.

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Im, H.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

Jiang, W. X.

Joannopoulos, J. D.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystals slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Kanamori, Y.

Khanikaev, A. B.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Kim, D. S.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

Kim, J.

Kim, Y. J.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

Kobiela, G.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

König, M.

M. König, M. Rahmani, L. Zhang, D. Y. Lei, T. R. Roschuk, V. Giannini, C. W. Qiu, M. Hong, S. Schlücker, and S. A. Maier, “Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers,” ACS Nano 8(9), 9188–9198 (2014).
[Crossref] [PubMed]

Kuo, P.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

Lei, D. Y.

M. König, M. Rahmani, L. Zhang, D. Y. Lei, T. R. Roschuk, V. Giannini, C. W. Qiu, M. Hong, S. Schlücker, and S. A. Maier, “Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers,” ACS Nano 8(9), 9188–9198 (2014).
[Crossref] [PubMed]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Li, C.

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Li, H.

Li, Q.

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Li, Y.

Liao, Z.

Liew, T. Y. F.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Lindquist, N. C.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

Liu, Y.

X. Ci, B. Wu, M. Song, Y. Liu, G. Chen, E. Wu, and H. Zeng, “Tunable Fano resonances in heterogenous Al-Ag nanorod dimers,” Appl. Phys., A Mater. Sci. Process. 117(2), 955–960 (2014).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Lukiyanchuk, B.

M. Rahmani, B. Lukiyanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser & Photon. Rev. 7(3), 329–349 (2013).
[Crossref]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Luo, J.

M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, and X. Luo, “Fano resonance induced by mode coupling in all-dielectric nanorods array,” Appl. Phys. Express 7(3), 032002 (2014).
[Crossref]

M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, and X. Luo, “Conversion of broadband energy to narrowband emission through double-sided metamaterials,” Opt. Express 21(26), 32207–32216 (2013).
[PubMed]

Luo, X.

M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, and X. Luo, “Fano resonance induced by mode coupling in all-dielectric nanorods array,” Appl. Phys. Express 7(3), 032002 (2014).
[Crossref]

M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, and X. Luo, “Conversion of broadband energy to narrowband emission through double-sided metamaterials,” Opt. Express 21(26), 32207–32216 (2013).
[PubMed]

Ma, H. F.

Ma, Z.

Maier, S. A.

M. König, M. Rahmani, L. Zhang, D. Y. Lei, T. R. Roschuk, V. Giannini, C. W. Qiu, M. Hong, S. Schlücker, and S. A. Maier, “Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers,” ACS Nano 8(9), 9188–9198 (2014).
[Crossref] [PubMed]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Moritake, Y.

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Mousavi, S. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Mulvaney, P.

X. Wei, M. Altissimo, T. J. Davis, and P. Mulvaney, “Fano resonances in three-dimensional dual cut-wire pairs,” Nanoscale 6(10), 5372–5377 (2014).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Oh, S. H.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

Pan, B. C.

Papasimakis, N.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Park, H. R.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

Park, N.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

Pelton, M.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

Piao, X.

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

Plant, D. V.

Plum, E.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Pu, M.

M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, and X. Luo, “Fano resonance induced by mode coupling in all-dielectric nanorods array,” Appl. Phys. Express 7(3), 032002 (2014).
[Crossref]

M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, and X. Luo, “Conversion of broadband energy to narrowband emission through double-sided metamaterials,” Opt. Express 21(26), 32207–32216 (2013).
[PubMed]

Qi, J.

Qiang, W.

Qiu, C. W.

M. König, M. Rahmani, L. Zhang, D. Y. Lei, T. R. Roschuk, V. Giannini, C. W. Qiu, M. Hong, S. Schlücker, and S. A. Maier, “Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers,” ACS Nano 8(9), 9188–9198 (2014).
[Crossref] [PubMed]

Rahmani, M.

M. König, M. Rahmani, L. Zhang, D. Y. Lei, T. R. Roschuk, V. Giannini, C. W. Qiu, M. Hong, S. Schlücker, and S. A. Maier, “Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers,” ACS Nano 8(9), 9188–9198 (2014).
[Crossref] [PubMed]

M. Rahmani, B. Lukiyanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser & Photon. Rev. 7(3), 329–349 (2013).
[Crossref]

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Ranjbar, M.

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

Roschuk, T. R.

M. König, M. Rahmani, L. Zhang, D. Y. Lei, T. R. Roschuk, V. Giannini, C. W. Qiu, M. Hong, S. Schlücker, and S. A. Maier, “Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers,” ACS Nano 8(9), 9188–9198 (2014).
[Crossref] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Schlücker, S.

M. König, M. Rahmani, L. Zhang, D. Y. Lei, T. R. Roschuk, V. Giannini, C. W. Qiu, M. Hong, S. Schlücker, and S. A. Maier, “Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers,” ACS Nano 8(9), 9188–9198 (2014).
[Crossref] [PubMed]

Seo, J. H.

Shen, X.

Shu, J.

Shuai, Y.

Shvets, G.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Sobhani, H.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Song, M.

M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, and X. Luo, “Fano resonance induced by mode coupling in all-dielectric nanorods array,” Appl. Phys. Express 7(3), 032002 (2014).
[Crossref]

X. Ci, B. Wu, M. Song, Y. Liu, G. Chen, E. Wu, and H. Zeng, “Tunable Fano resonances in heterogenous Al-Ag nanorod dimers,” Appl. Phys., A Mater. Sci. Process. 117(2), 955–960 (2014).
[Crossref]

M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, and X. Luo, “Conversion of broadband energy to narrowband emission through double-sided metamaterials,” Opt. Express 21(26), 32207–32216 (2013).
[PubMed]

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Soref, R.

Suh, W.

Sun, Q.

Tian, Z.

Tsai, D. P.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

Van Dorpe, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Walther, M.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

Wang, M.

M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, and X. Luo, “Fano resonance induced by mode coupling in all-dielectric nanorods array,” Appl. Phys. Express 7(3), 032002 (2014).
[Crossref]

Wang, Y.

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Wei, X.

X. Wei, M. Altissimo, T. J. Davis, and P. Mulvaney, “Fano resonances in three-dimensional dual cut-wire pairs,” Nanoscale 6(10), 5372–5377 (2014).
[Crossref] [PubMed]

Wu, B.

X. Ci, B. Wu, M. Song, Y. Liu, G. Chen, E. Wu, and H. Zeng, “Tunable Fano resonances in heterogenous Al-Ag nanorod dimers,” Appl. Phys., A Mater. Sci. Process. 117(2), 955–960 (2014).
[Crossref]

Wu, E.

X. Ci, B. Wu, M. Song, Y. Liu, G. Chen, E. Wu, and H. Zeng, “Tunable Fano resonances in heterogenous Al-Ag nanorod dimers,” Appl. Phys., A Mater. Sci. Process. 117(2), 955–960 (2014).
[Crossref]

Wu, X.

M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, and X. Luo, “Fano resonance induced by mode coupling in all-dielectric nanorods array,” Appl. Phys. Express 7(3), 032002 (2014).
[Crossref]

Xu, J.

Xu, Q.

Yanik, A. A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
[Crossref] [PubMed]

Yu, H.

M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, and X. Luo, “Fano resonance induced by mode coupling in all-dielectric nanorods array,” Appl. Phys. Express 7(3), 032002 (2014).
[Crossref]

M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, and X. Luo, “Conversion of broadband energy to narrowband emission through double-sided metamaterials,” Opt. Express 21(26), 32207–32216 (2013).
[PubMed]

Zeng, B.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Zeng, H.

X. Ci, B. Wu, M. Song, Y. Liu, G. Chen, E. Wu, and H. Zeng, “Tunable Fano resonances in heterogenous Al-Ag nanorod dimers,” Appl. Phys., A Mater. Sci. Process. 117(2), 955–960 (2014).
[Crossref]

Zhang, F.

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Zhang, L.

M. König, M. Rahmani, L. Zhang, D. Y. Lei, T. R. Roschuk, V. Giannini, C. W. Qiu, M. Hong, S. Schlücker, and S. A. Maier, “Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers,” ACS Nano 8(9), 9188–9198 (2014).
[Crossref] [PubMed]

Zhang, Z.

M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, and X. Luo, “Fano resonance induced by mode coupling in all-dielectric nanorods array,” Appl. Phys. Express 7(3), 032002 (2014).
[Crossref]

M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, and X. Luo, “Conversion of broadband energy to narrowband emission through double-sided metamaterials,” Opt. Express 21(26), 32207–32216 (2013).
[PubMed]

Zhao, D.

Zhao, J.

Zhao, Q.

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

Zheludev, N. I.

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Zhou, W.

ACS Nano (1)

M. König, M. Rahmani, L. Zhang, D. Y. Lei, T. R. Roschuk, V. Giannini, C. W. Qiu, M. Hong, S. Schlücker, and S. A. Maier, “Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers,” ACS Nano 8(9), 9188–9198 (2014).
[Crossref] [PubMed]

Appl. Phys. Express (1)

M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, and X. Luo, “Fano resonance induced by mode coupling in all-dielectric nanorods array,” Appl. Phys. Express 7(3), 032002 (2014).
[Crossref]

Appl. Phys. Lett. (2)

F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, X. He, C. Li, and K. Chen, “Fano resonance of an asymmetric dielectric wire pair,” Appl. Phys. Lett. 105(17), 172901 (2014).
[Crossref]

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

X. Ci, B. Wu, M. Song, Y. Liu, G. Chen, E. Wu, and H. Zeng, “Tunable Fano resonances in heterogenous Al-Ag nanorod dimers,” Appl. Phys., A Mater. Sci. Process. 117(2), 955–960 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser & Photon. Rev. (1)

M. Rahmani, B. Lukiyanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser & Photon. Rev. 7(3), 329–349 (2013).
[Crossref]

Nano Lett. (2)

M. Rahmani, D. Y. Lei, V. Giannini, B. Lukiyanchuk, M. Ranjbar, T. Y. F. Liew, M. Hong, and S. A. Maier, “Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape,” Nano Lett. 12(4), 2101–2106 (2012).
[Crossref] [PubMed]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[Crossref] [PubMed]

Nanoscale (1)

X. Wei, M. Altissimo, T. J. Davis, and P. Mulvaney, “Fano resonances in three-dimensional dual cut-wire pairs,” Nanoscale 6(10), 5372–5377 (2014).
[Crossref] [PubMed]

Nat Commun (1)

X. Chen, H. R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D. S. Kim, and S. H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat Commun 4, 2361 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Opt. Express (8)

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009).
[Crossref] [PubMed]

J. Kim, R. Soref, and W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18(17), 17997–18002 (2010).
[Crossref] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

J. Shu, W. Gao, and Q. Xu, “Fano resonance in concentric ring apertures,” Opt. Express 21(9), 11101–11106 (2013).
[Crossref] [PubMed]

Y. Shuai, D. Zhao, Z. Tian, J. H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[Crossref] [PubMed]

M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, and X. Luo, “Conversion of broadband energy to narrowband emission through double-sided metamaterials,” Opt. Express 21(26), 32207–32216 (2013).
[PubMed]

J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
[Crossref] [PubMed]

Z. Liao, B. C. Pan, X. Shen, and T. J. Cui, “Multiple Fano resonances in spoof localized surface plasmons,” Opt. Express 22(13), 15710–15717 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystals slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Phys. Rev. Lett. (3)

V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
[Crossref] [PubMed]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. B. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constant of Solids (Academic, 1985).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Design of the single layer of nanorods with the incident TM polarized light.
Fig. 2
Fig. 2 Transmission of the resonators array for different nanorods widths. When the nanorods width equals 420 nm, the spectrum of Fano resonance becomes extremely narrow, the corresponding Q-factor can be as large as 35996.
Fig. 3
Fig. 3 (a) Transmittance (T) and reflectance (R) of a uniform silicon slab with thickness of 500 nm. (b) T and R for the resonators array with w = 420 nm. (c) Zoom-in plots of scattering parameters of the nanorods array for TM polarized light with w = 420 nm. The blue solid curve is fitted by the temporal coupled mode while the red and black curves are calculated by the FEM simulation. (d) Side view of the electric field distributions in the structure. ‘ + ’ and ‘-’ denote the charge distribution in each rod.
Fig. 4
Fig. 4 Simulated transmission spectra for different values of w2 (a) Defining ∆w = w2 - w1, varying ∆w from 0 nm to 5 nm. Where (b) - (f) are zoom-in plots of the five FR-shaped curves in (a), respectively. The inset in (f) shows the side view of the electric field distributions in the structure.
Fig. 5
Fig. 5 Simulated results for different values of ∆w (a) High Q resonant frequencies and the corresponding Q values for different ∆w. (b) Electric field intensity profiles at FR resonance for different ∆w, where ∆w is 0.1 nm represents the sharpest FR for this design.
Fig. 6
Fig. 6 Transmission of the nanorods array when liquid solution is filled in the gaps. Spectral tuning occurs with refractive index n varying from 1.31 to 1.314 with a step of 0.002. The inset shows the transmission spectra when liquid is not filled, the FR peak and dip blueshift to about 91.1 THz.
Fig. 7
Fig. 7 Transmission of the lossy material. The black, red and blue curves indicate the loss tangent of 0, 8.7*10−11 and 8.7*10−9, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R= r 2 (ω ω 0 ) 2 + t 2 γ 2 ±2rt(ω ω 0 )γ (ω ω 0 ) 2 + γ 2
S= λ res (nm) n s (RIU)
FOM= S(nmRI U -1 ) Δλ(nm) .

Metrics