Abstract

We report a simple and robust Doppler-free spectroscopic technique to stabilize a laser frequency to the atomic transition. By employing Doppler Effect on the atomic beam, we obtained a very stable dispersive signal with a high signal-to-noise ratio and no Doppler-background, which served as an error signal to electronically stabilize a laser frequency without modulation. For validating the performance of this technique, we locked a DFB laser to the 133Cs D2 line and observed an efficient suppression of the frequency noise and a long-term reduction of the frequency drifts in a laboratory environment.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor

Yutaka Yoshikawa, Takeshi Umeki, Takuro Mukae, Yoshio Torii, and Takahiro Kuga
Appl. Opt. 42(33) 6645-6649 (2003)

Application of sub-Doppler DAVLL to laser frequency stabilization in atomic cesium

Dian-Qiang Su, Teng-Fei Meng, Zhong-Hua Ji, Jin-Peng Yuan, Yan-Ting Zhao, Lian-Tuan Xiao, and Suo-Tang Jia
Appl. Opt. 53(30) 7011-7016 (2014)

Two-beam nonlinear Kerr effect to stabilize laser frequency with sub-Doppler resolution

Weliton Soares Martins, Hugo L. D. de S. Cavalcante, Thierry Passerat de Silans, Marcos Oriá, and Martine Chevrollier
Appl. Opt. 51(21) 5080-5084 (2012)

References

  • View by:
  • |
  • |
  • |

  1. N. Vansteenkiste, C. Gerz, R. Kaiser, L. Hollberg, C. Salomon, and A. Aspect, “A frequency-stabilized LNA laser at 1083 um: application to the manipulation of helium 4 atoms,” J. Phys. II 1, 1407–1428 (1991).
  2. G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the Caesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
    [Crossref]
  3. T. Mitsui, K. Yamashita, and K. Sakurai, “Diode laser-frequency stabilization by use of frequency modulation by a vibrating mirror,” Appl. Opt. 36, 5494–5498 (1997).
    [Crossref] [PubMed]
  4. K.L. Corwin, Z.T. Lu, C.F. Hand, R.J. Epstein, and C.E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998).
    [Crossref]
  5. T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
    [Crossref]
  6. K. Wilbur, “Polarization Modulated Excitation Spectroscopy,” Appl. Spectrosc. 18, 9–12 (1964).
    [Crossref]
  7. C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
    [Crossref]
  8. Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, “Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor,” Appl. Opt. 42, 6645–6649 (2003).
    [Crossref] [PubMed]
  9. F. Queiroga, W. SoaresMartins, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B 107, 313–316 (2012).
    [Crossref]
  10. A. Weis and S. Derler, “Doppler modulation and Zeeman modulation: laser frequency stabilization without direct frequency modulation,” Appl. Opt. 27, 2662 (1988).
    [Crossref] [PubMed]
  11. W. Jitschin, “Locking the Laser Frequency to an Atomic Transition,” Appl. Phys. B 33, 7–8 (1984).
    [Crossref]
  12. N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695 (1950).
    [Crossref]
  13. G. Avila, V. Giordano, V. Candelier, E. de Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728(1987).
    [Crossref] [PubMed]
  14. N. Dimarcq, V. Giordano, and P. Cerez, “Statistical properties of laser-induced fluorescence signals,” Appl. Phys. B 59,135–145 (1994).
    [Crossref]

2012 (1)

F. Queiroga, W. SoaresMartins, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B 107, 313–316 (2012).
[Crossref]

2003 (2)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[Crossref]

Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, “Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor,” Appl. Opt. 42, 6645–6649 (2003).
[Crossref] [PubMed]

1998 (1)

1997 (1)

1994 (2)

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the Caesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[Crossref]

N. Dimarcq, V. Giordano, and P. Cerez, “Statistical properties of laser-induced fluorescence signals,” Appl. Phys. B 59,135–145 (1994).
[Crossref]

1991 (1)

N. Vansteenkiste, C. Gerz, R. Kaiser, L. Hollberg, C. Salomon, and A. Aspect, “A frequency-stabilized LNA laser at 1083 um: application to the manipulation of helium 4 atoms,” J. Phys. II 1, 1407–1428 (1991).

1988 (1)

1987 (1)

G. Avila, V. Giordano, V. Candelier, E. de Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728(1987).
[Crossref] [PubMed]

1984 (1)

W. Jitschin, “Locking the Laser Frequency to an Atomic Transition,” Appl. Phys. B 33, 7–8 (1984).
[Crossref]

1976 (1)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

1964 (1)

1950 (1)

N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695 (1950).
[Crossref]

Aspect, A.

N. Vansteenkiste, C. Gerz, R. Kaiser, L. Hollberg, C. Salomon, and A. Aspect, “A frequency-stabilized LNA laser at 1083 um: application to the manipulation of helium 4 atoms,” J. Phys. II 1, 1407–1428 (1991).

Avila, G.

G. Avila, V. Giordano, V. Candelier, E. de Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728(1987).
[Crossref] [PubMed]

Candelier, V.

G. Avila, V. Giordano, V. Candelier, E. de Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728(1987).
[Crossref] [PubMed]

Cerez, P.

N. Dimarcq, V. Giordano, and P. Cerez, “Statistical properties of laser-induced fluorescence signals,” Appl. Phys. B 59,135–145 (1994).
[Crossref]

G. Avila, V. Giordano, V. Candelier, E. de Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728(1987).
[Crossref] [PubMed]

Chevrollier, M.

F. Queiroga, W. SoaresMartins, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B 107, 313–316 (2012).
[Crossref]

Clairon, A.

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the Caesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[Crossref]

Corwin, K.L.

de Clercq, E.

G. Avila, V. Giordano, V. Candelier, E. de Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728(1987).
[Crossref] [PubMed]

Derler, S.

Dimarcq, N.

N. Dimarcq, V. Giordano, and P. Cerez, “Statistical properties of laser-induced fluorescence signals,” Appl. Phys. B 59,135–145 (1994).
[Crossref]

Epstein, R.J.

Fattori, M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[Crossref]

Gerz, C.

N. Vansteenkiste, C. Gerz, R. Kaiser, L. Hollberg, C. Salomon, and A. Aspect, “A frequency-stabilized LNA laser at 1083 um: application to the manipulation of helium 4 atoms,” J. Phys. II 1, 1407–1428 (1991).

Giordano, V.

N. Dimarcq, V. Giordano, and P. Cerez, “Statistical properties of laser-induced fluorescence signals,” Appl. Phys. B 59,135–145 (1994).
[Crossref]

G. Avila, V. Giordano, V. Candelier, E. de Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728(1987).
[Crossref] [PubMed]

Hand, C.F.

Hänsch, T. W.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

Hollberg, L.

N. Vansteenkiste, C. Gerz, R. Kaiser, L. Hollberg, C. Salomon, and A. Aspect, “A frequency-stabilized LNA laser at 1083 um: application to the manipulation of helium 4 atoms,” J. Phys. II 1, 1407–1428 (1991).

Jitschin, W.

W. Jitschin, “Locking the Laser Frequency to an Atomic Transition,” Appl. Phys. B 33, 7–8 (1984).
[Crossref]

Kaiser, R.

N. Vansteenkiste, C. Gerz, R. Kaiser, L. Hollberg, C. Salomon, and A. Aspect, “A frequency-stabilized LNA laser at 1083 um: application to the manipulation of helium 4 atoms,” J. Phys. II 1, 1407–1428 (1991).

Kuga, T.

Lamporesi, G.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[Crossref]

Lu, Z.T.

Mestre, V.

F. Queiroga, W. SoaresMartins, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B 107, 313–316 (2012).
[Crossref]

Mitsui, T.

Mukae, T.

Oriá, M.

F. Queiroga, W. SoaresMartins, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B 107, 313–316 (2012).
[Crossref]

Passerat de Silans, T.

F. Queiroga, W. SoaresMartins, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B 107, 313–316 (2012).
[Crossref]

Petelski, T.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[Crossref]

Queiroga, F.

F. Queiroga, W. SoaresMartins, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B 107, 313–316 (2012).
[Crossref]

Ramsey, N. F.

N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695 (1950).
[Crossref]

Rovera, G. D.

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the Caesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[Crossref]

Sakurai, K.

Salomon, C.

N. Vansteenkiste, C. Gerz, R. Kaiser, L. Hollberg, C. Salomon, and A. Aspect, “A frequency-stabilized LNA laser at 1083 um: application to the manipulation of helium 4 atoms,” J. Phys. II 1, 1407–1428 (1991).

Santarelli, G.

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the Caesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[Crossref]

SoaresMartins, W.

F. Queiroga, W. SoaresMartins, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B 107, 313–316 (2012).
[Crossref]

Stuhler, J.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[Crossref]

Theobald, G.

G. Avila, V. Giordano, V. Candelier, E. de Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728(1987).
[Crossref] [PubMed]

Tino, G. M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[Crossref]

Torii, Y.

Umeki, T.

Vansteenkiste, N.

N. Vansteenkiste, C. Gerz, R. Kaiser, L. Hollberg, C. Salomon, and A. Aspect, “A frequency-stabilized LNA laser at 1083 um: application to the manipulation of helium 4 atoms,” J. Phys. II 1, 1407–1428 (1991).

Vidal, I.

F. Queiroga, W. SoaresMartins, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B 107, 313–316 (2012).
[Crossref]

Weis, A.

Wieman, C.

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

Wieman, C.E.

Wilbur, K.

Yamashita, K.

Yoshikawa, Y.

Appl. Opt. (4)

Appl. Phys. B (3)

N. Dimarcq, V. Giordano, and P. Cerez, “Statistical properties of laser-induced fluorescence signals,” Appl. Phys. B 59,135–145 (1994).
[Crossref]

F. Queiroga, W. SoaresMartins, V. Mestre, I. Vidal, T. Passerat de Silans, M. Oriá, and M. Chevrollier, “Laser stabilization to an atomic transition using an optically generated dispersive lineshape,” Appl. Phys. B 107, 313–316 (2012).
[Crossref]

W. Jitschin, “Locking the Laser Frequency to an Atomic Transition,” Appl. Phys. B 33, 7–8 (1984).
[Crossref]

Appl. Spectrosc. (1)

Eur. Phys. J. D (1)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279–283 (2003).
[Crossref]

J. Phys. II (1)

N. Vansteenkiste, C. Gerz, R. Kaiser, L. Hollberg, C. Salomon, and A. Aspect, “A frequency-stabilized LNA laser at 1083 um: application to the manipulation of helium 4 atoms,” J. Phys. II 1, 1407–1428 (1991).

Phys. Rev. (1)

N. F. Ramsey, “A molecular beam resonance method with separated oscillating fields,” Phys. Rev. 78, 695 (1950).
[Crossref]

Phys. Rev. A (1)

G. Avila, V. Giordano, V. Candelier, E. de Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728(1987).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett. 36, 1170–1173 (1976).
[Crossref]

Rev. Sci. Instrum. (1)

G. D. Rovera, G. Santarelli, and A. Clairon, “A laser diode system stabilized on the Caesium D2 line,” Rev. Sci. Instrum. 65, 1502–1505 (1994).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The laser is orthogonal to the atomic beam. (b) The laser is tilted by an angle θ. (c) Two laser beams tilt by opposite angels.
Fig. 2
Fig. 2 The subtraction of two relatively shifted absorption lines generates a dispersive signal.
Fig. 3
Fig. 3 The dispersive signal versus the residual beam divergence (RBD).
Fig. 4
Fig. 4 (a) Schematic of the experimental setup. Two light beams with opposite tilt angles interact with the atomic beam, then they are detected separately by two photo-diodes. The difference between the outputs of the two balanced PDs forms a dispersive signal. DL, Diode laser; λ/2, half-wave plate; ISO, optical isolator used to prevent feedback into the laser during the experiment; PBS, polarizing beam splitter; OW, optical window; A, aperture; R, reflector; L, lens; PD, photo diode. (b) Calculation of the tilt angle.
Fig. 5
Fig. 5 (a) 133Cs saturated absorption spectrum from an extra cell. (b) Dispersive signal obtained by using atomic beam.
Fig. 6
Fig. 6 Frequency fluctuation for the free running and stabilization cases. The inset figure depicts detailed frequency fluctuation.
Fig. 7
Fig. 7 Scheme of using fluorescence spectrum.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

G ( ω ) = A 1 ( Δ ω 2 ) 2 + ( ω ω 0 ) 2 + B ,
G ( ω ) = A 1 ( Δ ω 2 ) 2 + ( ω ω 0 + δ ω ) 2 + B , δ ω = ω 0 υ c sin θ ,
F ( ω , θ ) = G ( ω , θ ) G ( ω , θ ) = A 4 ( ω 0 ω ) δ ω [ ( Δ ω 2 ) 2 + ( ω ω 0 + δ ω ) 2 ] [ ( Δ ω 2 ) 2 + ( ω ω 0 δ ω ) 2 ] .
F ( ω , θ ) = [ G ( ω , θ ) G ( ω , θ ) ] f ( α ) f ( ν ) d α d ν ,
G ( ω , θ ) = A 1 ( Δ ω 2 ) 2 + ( ω ω 0 + δ ω ) 2 + B , δ ω = ω 0 ν c sin ( θ α ) .
f ( α ) = 1 Ω , ( Ω 2 α Ω 2 ) ,
f ( ν ) = 2 ν 3 υ 4 e ν 2 υ 2 , ( ν 0 ) .
υ = 2 R T M = 2 × 8.314 × 373 0.133 = 216 m / s ,
δ ω = ω 0 υ c sin θ = υ λ sin θ = 4.4 MHz .
θ = 1 2 d 1 + d 2 L 1 + L 2 = 0.024 rad = 1.4 degrees .
F ( ω , θ ) = G 1 ( ω , θ 1 ) G 2 ( ω , θ 2 ) = A 1 1 [ ( Δ ω 2 ) 2 + ( ω ω 0 δ ω 1 ) 2 ] A 2 1 [ ( Δ ω 2 ) 2 + ( ω ω 0 δ ω 2 ) 2 ] + B 1 B 2.
ω = ω 0 + 1 2 ( δ ω 1 + δ ω 2 ) = ω 0 + 1 2 ω 0 υ c sin ( θ 1 + θ 2 ) ,
1 [ ( Δ ω 2 ) 2 + ( ω ω 0 δ ω ) 2 ] A 2 A 1 1 [ ( Δ ω 2 ) 2 + ( ω ω 0 + δ ω ) 2 ] + B A ( 1 A 2 A 1 ) = 0 ,

Metrics