Abstract

a stand-off Raman spectrometer has been developed to make observations of liquid samples within a gas pipeline. The instrument is based on a static Fourier Transform spectrometer. The high etendue offered by the instrument enabled four liquid samples to be measured from a distance of 2.4 m within a gas pipeline. Liquids were identified with depths less than 5 mm demonstrating that the concept is viable for active pipeline measurement.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband transmission Raman measurements using a field-widened spatial heterodyne Raman spectrometer with mosaic grating structure

Jun Qiu, Xiangdong Qi, Xiaotian Li, Yuguo Tang, Jiriga Lantu, Xiaotao Mi, and Heshig Bayan
Opt. Express 26(20) 26106-26119 (2018)

Spatial-heterodyne spectrometer for transmission-Raman observations

M. J. Foster, J. Storey, and M. A. Zentile
Opt. Express 25(2) 1598-1604 (2017)

Stand-off detection of explosives particles by multispectral imaging Raman spectroscopy

Henric Östmark, Markus Nordberg, and Torgny E. Carlsson
Appl. Opt. 50(28) 5592-5599 (2011)

References

  • View by:
  • |
  • |
  • |

  1. USA National Transportation Safety Board “Natural Gas Pipeline Rupture and Fire Near Carlsbad, New Mexico,” NTSB/PAR-03/01, PB2003–916501 pp 49–51 (2003)
  2. J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial Heterodyne Spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
    [Crossref]
  3. J. Harlander, “Spatial Heterodyne Spectroscopy, interferometric performance at any wavelength with scanning,” Ph.D. Thesis, University of Wisconsin –Madison (1991)
  4. N. R. Gomer, C. M. Gordon, P. Lucey, S. K. Sharma, J. C. Carter, and S. M. Angel, “Raman spectroscopy using a Spatial Heterodyne Spectrometer: proof of concept,” Appl. Spectrosc. 65(8Issue 8), 849–857 (2011).
    [Crossref] [PubMed]
  5. B. B. Praveen, P. C. Ashok, M. Mazilu, A. Riches, S. Herrington, and K. Dholakia, “Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis,” J. Biomed. Opt. 17(7), 077006 (2012).
    [Crossref] [PubMed]
  6. P. Stockwell, D. Widdup, M. J. Foster, and J. Storey, “Optical chemical analyser and liquid depth sensor,” Patent Application No PCT/GB2014/050050 (2014)
  7. J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of Methanol and Ethanol at pressures up to 100 Kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
    [Crossref]
  8. J. K. Wilmshurst and H. J. Bernstein, “The Infrared and Raman spectra of Toluene, Toluene-α-d3, m-Xylene and m-Xylene-αα-d6,” Can. J. Chem. 35(8), 911–925 (1957).
    [Crossref]

2012 (1)

B. B. Praveen, P. C. Ashok, M. Mazilu, A. Riches, S. Herrington, and K. Dholakia, “Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis,” J. Biomed. Opt. 17(7), 077006 (2012).
[Crossref] [PubMed]

2011 (1)

1992 (1)

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial Heterodyne Spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

1980 (1)

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of Methanol and Ethanol at pressures up to 100 Kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

1957 (1)

J. K. Wilmshurst and H. J. Bernstein, “The Infrared and Raman spectra of Toluene, Toluene-α-d3, m-Xylene and m-Xylene-αα-d6,” Can. J. Chem. 35(8), 911–925 (1957).
[Crossref]

Angel, S. M.

Ashok, P. C.

B. B. Praveen, P. C. Ashok, M. Mazilu, A. Riches, S. Herrington, and K. Dholakia, “Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis,” J. Biomed. Opt. 17(7), 077006 (2012).
[Crossref] [PubMed]

Bernstein, H. J.

J. K. Wilmshurst and H. J. Bernstein, “The Infrared and Raman spectra of Toluene, Toluene-α-d3, m-Xylene and m-Xylene-αα-d6,” Can. J. Chem. 35(8), 911–925 (1957).
[Crossref]

Carter, J. C.

Dholakia, K.

B. B. Praveen, P. C. Ashok, M. Mazilu, A. Riches, S. Herrington, and K. Dholakia, “Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis,” J. Biomed. Opt. 17(7), 077006 (2012).
[Crossref] [PubMed]

Gomer, N. R.

Gordon, C. M.

Harlander, J.

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial Heterodyne Spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

Herrington, S.

B. B. Praveen, P. C. Ashok, M. Mazilu, A. Riches, S. Herrington, and K. Dholakia, “Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis,” J. Biomed. Opt. 17(7), 077006 (2012).
[Crossref] [PubMed]

Lucey, P.

Mammone, J. F.

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of Methanol and Ethanol at pressures up to 100 Kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

Mazilu, M.

B. B. Praveen, P. C. Ashok, M. Mazilu, A. Riches, S. Herrington, and K. Dholakia, “Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis,” J. Biomed. Opt. 17(7), 077006 (2012).
[Crossref] [PubMed]

Nicol, M.

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of Methanol and Ethanol at pressures up to 100 Kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

Praveen, B. B.

B. B. Praveen, P. C. Ashok, M. Mazilu, A. Riches, S. Herrington, and K. Dholakia, “Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis,” J. Biomed. Opt. 17(7), 077006 (2012).
[Crossref] [PubMed]

Reynolds, R. J.

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial Heterodyne Spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

Riches, A.

B. B. Praveen, P. C. Ashok, M. Mazilu, A. Riches, S. Herrington, and K. Dholakia, “Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis,” J. Biomed. Opt. 17(7), 077006 (2012).
[Crossref] [PubMed]

Roesler, F. L.

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial Heterodyne Spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

Sharma, S. K.

Wilmshurst, J. K.

J. K. Wilmshurst and H. J. Bernstein, “The Infrared and Raman spectra of Toluene, Toluene-α-d3, m-Xylene and m-Xylene-αα-d6,” Can. J. Chem. 35(8), 911–925 (1957).
[Crossref]

Appl. Spectrosc. (1)

Astrophys. J. (1)

J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial Heterodyne Spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths,” Astrophys. J. 396, 730–740 (1992).
[Crossref]

Can. J. Chem. (1)

J. K. Wilmshurst and H. J. Bernstein, “The Infrared and Raman spectra of Toluene, Toluene-α-d3, m-Xylene and m-Xylene-αα-d6,” Can. J. Chem. 35(8), 911–925 (1957).
[Crossref]

J. Biomed. Opt. (1)

B. B. Praveen, P. C. Ashok, M. Mazilu, A. Riches, S. Herrington, and K. Dholakia, “Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis,” J. Biomed. Opt. 17(7), 077006 (2012).
[Crossref] [PubMed]

J. Phys. Chem. (1)

J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of Methanol and Ethanol at pressures up to 100 Kbar,” J. Phys. Chem. 84(23), 3130–3134 (1980).
[Crossref]

Other (3)

USA National Transportation Safety Board “Natural Gas Pipeline Rupture and Fire Near Carlsbad, New Mexico,” NTSB/PAR-03/01, PB2003–916501 pp 49–51 (2003)

P. Stockwell, D. Widdup, M. J. Foster, and J. Storey, “Optical chemical analyser and liquid depth sensor,” Patent Application No PCT/GB2014/050050 (2014)

J. Harlander, “Spatial Heterodyne Spectroscopy, interferometric performance at any wavelength with scanning,” Ph.D. Thesis, University of Wisconsin –Madison (1991)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the spectrometer layout.
Fig. 2
Fig. 2 Schematic of the instrument setup.
Fig. 3
Fig. 3 The instrument measurement unit, mounted on the pipeline at Spadeadam.
Fig. 4
Fig. 4 Raman power spectrum measurements from liquids samples within pipeline. (a) 20 mm of xylene, integration time 5 minutes; (b) 20 mm of methanol, integration time 5 minutes; (c) 20 mm of MEG, integration time 5 minutes; (d) 20 mm of compressor oil, integration time 1 minute; (e) 5 mm of TEG, integration time 10 minutes; (f) less than 2 mm of xylene, integration time 10 minutes.

Tables (2)

Tables Icon

Table 1 Instrument requirements

Tables Icon

Table 2 Instrument Design Specifications

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R=2 G L W
Ω= 2π R
SNR= S P S p +S+B+ S D + S R 2
S P = Eα A T ρdQEt O E 4π R 2
W s =  δλ n  W p R SF Δλ

Metrics