Abstract

High-power narrow-linewidth photonic bandgap fiber amplifier was demonstrated. In order to suppress stimulated Brillouin scattering, the seed linewidth was broadened by applying a random phase noise with an electro-optical modulator. A factor of 15 in terms of Brillouin gain suppression can be theoretically expected. An 87 W linearly-polarized (11 dB PER) and narrow-linewidth (780 MHz FWHM) output was obtained.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-frequency ytterbium doped photonic bandgap fiber amplifier at 1178 nm

Mingchen Chen, Akira Shirakawa, Xinyan Fan, Ken-ichi Ueda, Christina B. Olausson, Jens K. Lyngsø, and Jes Broeng
Opt. Express 20(19) 21044-21052 (2012)

High power Yb-doped photonic bandgap fiber oscillator at 1178 nm

Xinyan Fan, Meishin Chen, Akira Shirakawa, Ken-ichi Ueda, Christina B. Olausson, Jens K. Lyngsø, and Jes Broeng
Opt. Express 20(13) 14471-14476 (2012)

167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178nm

C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda
Opt. Express 18(16) 16345-16352 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Isomki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14, 9238–9243 (2006).
    [Crossref]
  2. J. Riishede, J. Laegsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” Pure Appl. Opt. 6, 667–670 (2004).
    [Crossref]
  3. O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-μ m mode-field diameter,” Opt. Express 16, 11735–11740 (2008).
    [Crossref] [PubMed]
  4. T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier,” Opt. Express 19, 7398–7409 (2011).
    [Crossref] [PubMed]
  5. G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22, 13962–13968 (2014).
    [Crossref] [PubMed]
  6. A. Wang, A. K. George, and J. C. Knight, “Three-level neodymium fiber laser incorporating photonic bandgap fiber,” Opt. Lett. 31, 1388–1390 (2006).
    [Crossref] [PubMed]
  7. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
    [Crossref]
  8. R. Goto, E. C. Mgi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178 nm,” Electron. Lett. 45, 877–878 (2009).
    [Crossref]
  9. C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngs, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbiumdoped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 18, 16345–16352 (2010).
    [Crossref] [PubMed]
  10. X. Fan, M. Chen, A. Shirakawa, K. Ueda, C. B. Olausson, J. K. Lyngs, and J. Broeng, “High power Yb-doped photonic bandgap fiber oscillator at 1178 nm,” Opt. Express 20, 14471–14476 (2012).
    [Crossref] [PubMed]
  11. M. Chen, A. Shirakawa, X. Fan, K. Ueda, C. B. Olausson, J. K. Lyngs, and J. Broeng, “Single-frequency ytterbium doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 20, 21044–21052 (2012).
    [Crossref] [PubMed]
  12. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
    [Crossref] [PubMed]
  13. C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
    [Crossref]
  14. C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N (2008).
    [Crossref]
  15. N. Saito, K. Akagawa, M. Ito, A. Takazawa, Y. Hayano, Y. Saito, M. Ito, H. Takami, M. Iye, and S. Wada, “Sodium D2 resonance radiation in single-pass sum-frequency generation with actively mode-locked Nd:YAG lasers,” Opt. Lett. 32, 1965–1967 (2007).
    [Crossref] [PubMed]
  16. Y. Feng, L. R. Taylor, and D. Bonaccini Calia, “25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star,” Opt. Express 17, 19021–19026 (2009).
    [Crossref]
  17. I. Dajani, C. Vergien, C. Robin, and B. Ward, “Investigations of single-frequency Raman fiber amplifiers operating at 1178 nm,” Opt. Express 21, 12038–12052 (2013).
    [Crossref] [PubMed]
  18. H. Zhang, P. Zhou, H. Xiao, X. Wang, and X. Xu, “536 W 1178 nm Yb-Raman Amplifier Feed by Three-Tone Seed,” in Advanced Solid State Lasers, paper ATu3A.6 (2014).
    [Crossref]
  19. G. P. Agrawal, “Nonlinear fiber optics, 4th ed,” (Academic Press, 2007).
  20. V. R. Supradeepa, “Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise,” Opt. Express 21, 4677–4687 (2013).
    [Crossref] [PubMed]
  21. B. Anderson, C. Robin, A. Flores, and I. Dajani, “Experimental study of SBS suppression via white noise phase modulation,” Proc. SPIE8961, 89611W (2014).
  22. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, and S. R. Bickham, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005).
    [Crossref] [PubMed]
  23. V. Lanticq, S. Jiang, R. Gabet, Y. Jaoun, F. Tailladde, G. Moreau, and G. P. Agrawal, “Self-referenced and single-ended method to measure Brillouin gain in monomode optical fibers,” Opt. Lett. 34, 1018–1020 (2009).
    [Crossref] [PubMed]
  24. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
    [Crossref]
  25. I. Kelson and A. Hardy, “Strongly pumped fiber lasers,” IEEE J. Quantum Electron. 34, 1570–1577 (1998).
    [Crossref]
  26. S. R. Petersen, T. T. Alkeskjold, F. Poli, E. Coscelli, M. M. Jrgensen, M. Laurila, J. Lgsgaard, and J. Broeng, “Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths,” Opt. Express 20, 6010–6020 (2012).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

2012 (3)

2011 (1)

2010 (1)

2009 (3)

2008 (2)

2007 (1)

2006 (2)

2005 (1)

2004 (1)

J. Riishede, J. Laegsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” Pure Appl. Opt. 6, 667–670 (2004).
[Crossref]

2003 (1)

1998 (1)

I. Kelson and A. Hardy, “Strongly pumped fiber lasers,” IEEE J. Quantum Electron. 34, 1570–1577 (1998).
[Crossref]

1997 (2)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Agrawal, G. P.

Akagawa, K.

Alkeskjold, T. T.

An, J.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Anderson, B.

B. Anderson, C. Robin, A. Flores, and I. Dajani, “Experimental study of SBS suppression via white noise phase modulation,” Proc. SPIE8961, 89611W (2014).

Avicola, K.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Beeman, B. V.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Bickham, S. R.

Bigot, L.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

Biriukov, A. S.

Bissinger, H. D.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Bjarklev, A.

C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngs, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbiumdoped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 18, 16345–16352 (2010).
[Crossref] [PubMed]

J. Riishede, J. Laegsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” Pure Appl. Opt. 6, 667–670 (2004).
[Crossref]

Bonaccini Calia, D.

Bouwmans, G.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

Boyer, C.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N (2008).
[Crossref]

Brase, J. M.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Broeng, J.

Chen, M.

Chowdhury, D. Q.

Coscelli, E.

Dajani, I.

I. Dajani, C. Vergien, C. Robin, and B. Ward, “Investigations of single-frequency Raman fiber amplifiers operating at 1178 nm,” Opt. Express 21, 12038–12052 (2013).
[Crossref] [PubMed]

B. Anderson, C. Robin, A. Flores, and I. Dajani, “Experimental study of SBS suppression via white noise phase modulation,” Proc. SPIE8961, 89611W (2014).

de Sterke, C. M.

Denisov, A. N.

Dianov, E. M.

Dong, L.

Douay, M.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

Dunn, C.

Dunn, S. C.

Eggleton, B. J.

Egorova, O. N.

Ellerbroek, B.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N (2008).
[Crossref]

Erbert, G. V.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Fan, X.

Feng, Y.

Flores, A.

B. Anderson, C. Robin, A. Flores, and I. Dajani, “Experimental study of SBS suppression via white noise phase modulation,” Proc. SPIE8961, 89611W (2014).

Friedman, H. W.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Gabet, R.

Gaponov, D. A.

Gavel, D. T.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Gedig, M.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N (2008).
[Crossref]

George, A. K.

Goto, R.

R. Goto, E. C. Mgi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178 nm,” Electron. Lett. 45, 877–878 (2009).
[Crossref]

Gu, G.

Gurianov, A. N.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Hansen, K. P.

Hardy, A.

I. Kelson and A. Hardy, “Strongly pumped fiber lasers,” IEEE J. Quantum Electron. 34, 1570–1577 (1998).
[Crossref]

Hawkins, T.

Hayano, Y.

Hileman, E.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N (2008).
[Crossref]

Isomki, A.

Ito, M.

Iye, M.

Jackson, S. D.

R. Goto, E. C. Mgi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178 nm,” Electron. Lett. 45, 877–878 (2009).
[Crossref]

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

Jaoun, Y.

Jiang, S.

Jones, M.

Joyce, R.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N (2008).
[Crossref]

Jrgensen, M. M.

Kalichevsky-Dong, M. T.

Kanz, K.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Kelson, I.

I. Kelson and A. Hardy, “Strongly pumped fiber lasers,” IEEE J. Quantum Electron. 34, 1570–1577 (1998).
[Crossref]

Khopin, V. F.

Knight, J. C.

Kobyakov, A.

Kong, F.

Kosolapov, A. F.

Kuksenkov, D. V.

Kumar, S.

Laegsgaard, J.

J. Riishede, J. Laegsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” Pure Appl. Opt. 6, 667–670 (2004).
[Crossref]

Lanticq, V.

Laurila, M.

Lgsgaard, J.

Liang, M.

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N (2008).
[Crossref]

Litchinitser, N. M.

Liu, M. C.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Lyngs, J. K.

Macintosh, B.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Max, C. E.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

McPhedran, R. C.

Mgi, E. C.

R. Goto, E. C. Mgi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178 nm,” Electron. Lett. 45, 877–878 (2009).
[Crossref]

Moreau, G.

Neeb, K. P.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Okhotnikov, O. G.

Olausson, C. B.

Olivier, S. S.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Parsons, J.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Patience, J.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Petersen, S. R.

Poli, F.

Pryamikov, A. D.

Pureur, V.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

Quiquempois, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

Riishede, J.

J. Riishede, J. Laegsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” Pure Appl. Opt. 6, 667–670 (2004).
[Crossref]

Robin, C.

I. Dajani, C. Vergien, C. Robin, and B. Ward, “Investigations of single-frequency Raman fiber amplifiers operating at 1178 nm,” Opt. Express 21, 12038–12052 (2013).
[Crossref] [PubMed]

B. Anderson, C. Robin, A. Flores, and I. Dajani, “Experimental study of SBS suppression via white noise phase modulation,” Proc. SPIE8961, 89611W (2014).

Ruffin, A. B.

Saito, N.

Saito, Y.

Saitoh, K.

Salganskii, M. Y.

Sauer, M.

Scolari, L.

Semjonov, S. L.

Shirakawa, A.

Supradeepa, V. R.

Tailladde, F.

Takami, H.

Takazawa, A.

Taylor, L. R.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

Ueda, K.

Usner, B.

Vergien, C.

Wada, S.

Waltjen, K. E.

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Wang, A.

Wang, X.

H. Zhang, P. Zhou, H. Xiao, X. Wang, and X. Xu, “536 W 1178 nm Yb-Raman Amplifier Feed by Three-Tone Seed,” in Advanced Solid State Lasers, paper ATu3A.6 (2014).
[Crossref]

Ward, B.

White, T. P.

Xiao, H.

H. Zhang, P. Zhou, H. Xiao, X. Wang, and X. Xu, “536 W 1178 nm Yb-Raman Amplifier Feed by Three-Tone Seed,” in Advanced Solid State Lasers, paper ATu3A.6 (2014).
[Crossref]

Xu, X.

H. Zhang, P. Zhou, H. Xiao, X. Wang, and X. Xu, “536 W 1178 nm Yb-Raman Amplifier Feed by Three-Tone Seed,” in Advanced Solid State Lasers, paper ATu3A.6 (2014).
[Crossref]

Yashkov, M. V.

Zhang, H.

H. Zhang, P. Zhou, H. Xiao, X. Wang, and X. Xu, “536 W 1178 nm Yb-Raman Amplifier Feed by Three-Tone Seed,” in Advanced Solid State Lasers, paper ATu3A.6 (2014).
[Crossref]

Zhou, P.

H. Zhang, P. Zhou, H. Xiao, X. Wang, and X. Xu, “536 W 1178 nm Yb-Raman Amplifier Feed by Three-Tone Seed,” in Advanced Solid State Lasers, paper ATu3A.6 (2014).
[Crossref]

Appl. Phys. Lett. (1)

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[Crossref]

Electron. Lett. (1)

R. Goto, E. C. Mgi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178 nm,” Electron. Lett. 45, 877–878 (2009).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-Doped Fiber Amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[Crossref]

I. Kelson and A. Hardy, “Strongly pumped fiber lasers,” IEEE J. Quantum Electron. 34, 1570–1577 (1998).
[Crossref]

Opt. Express (13)

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
[Crossref] [PubMed]

A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, and S. R. Bickham, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13, 5338–5346 (2005).
[Crossref] [PubMed]

Y. Feng, L. R. Taylor, and D. Bonaccini Calia, “25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star,” Opt. Express 17, 19021–19026 (2009).
[Crossref]

C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngs, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbiumdoped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 18, 16345–16352 (2010).
[Crossref] [PubMed]

T. T. Alkeskjold, M. Laurila, L. Scolari, and J. Broeng, “Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier,” Opt. Express 19, 7398–7409 (2011).
[Crossref] [PubMed]

S. R. Petersen, T. T. Alkeskjold, F. Poli, E. Coscelli, M. M. Jrgensen, M. Laurila, J. Lgsgaard, and J. Broeng, “Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths,” Opt. Express 20, 6010–6020 (2012).
[Crossref] [PubMed]

X. Fan, M. Chen, A. Shirakawa, K. Ueda, C. B. Olausson, J. K. Lyngs, and J. Broeng, “High power Yb-doped photonic bandgap fiber oscillator at 1178 nm,” Opt. Express 20, 14471–14476 (2012).
[Crossref] [PubMed]

M. Chen, A. Shirakawa, X. Fan, K. Ueda, C. B. Olausson, J. K. Lyngs, and J. Broeng, “Single-frequency ytterbium doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express 20, 21044–21052 (2012).
[Crossref] [PubMed]

V. R. Supradeepa, “Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise,” Opt. Express 21, 4677–4687 (2013).
[Crossref] [PubMed]

I. Dajani, C. Vergien, C. Robin, and B. Ward, “Investigations of single-frequency Raman fiber amplifiers operating at 1178 nm,” Opt. Express 21, 12038–12052 (2013).
[Crossref] [PubMed]

G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, and L. Dong, “Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers,” Opt. Express 22, 13962–13968 (2014).
[Crossref] [PubMed]

A. Isomki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14, 9238–9243 (2006).
[Crossref]

O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-μ m mode-field diameter,” Opt. Express 16, 11735–11740 (2008).
[Crossref] [PubMed]

Opt. Lett. (3)

Pure Appl. Opt. (1)

J. Riishede, J. Laegsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm,” Pure Appl. Opt. 6, 667–670 (2004).
[Crossref]

Science (1)

C. E. Max, S. S. Olivier, H. W. Friedman, J. An, K. Avicola, B. V. Beeman, H. D. Bissinger, J. M. Brase, G. V. Erbert, D. T. Gavel, K. Kanz, M. C. Liu, B. Macintosh, K. P. Neeb, J. Patience, and K. E. Waltjen, “Image Improvement from a Sodium-Layer Laser Guide Star Adaptive Optics System,” Science 277, 1649–1652 (1997).
[Crossref]

Other (4)

C. Boyer, B. Ellerbroek, M. Gedig, E. Hileman, R. Joyce, and M. Liang, “Update on the TMT laser guide star facility design,” Proc. SPIE7015, 70152N (2008).
[Crossref]

H. Zhang, P. Zhou, H. Xiao, X. Wang, and X. Xu, “536 W 1178 nm Yb-Raman Amplifier Feed by Three-Tone Seed,” in Advanced Solid State Lasers, paper ATu3A.6 (2014).
[Crossref]

G. P. Agrawal, “Nonlinear fiber optics, 4th ed,” (Academic Press, 2007).

B. Anderson, C. Robin, A. Flores, and I. Dajani, “Experimental study of SBS suppression via white noise phase modulation,” Proc. SPIE8961, 89611W (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Microscope image of the PBGF. (b) Illustration of the fiber cross section.
Fig. 2
Fig. 2 Schematic of the 1178 nm fiber MOPA. HWP: half wave plate, FR: Faraday rotator, PBS: polarization beam splitter.
Fig. 3
Fig. 3 (a) Output power property of the 300 m long FRA. (b) Backscattering vs. forward output power. The cases with and without linewidth broadening were compared in the same FRA setup.
Fig. 4
Fig. 4 Output power property of the Yb-PBGF amplifier: forward (circle), backward (square), and residual pump (triangle). The solid line stands for the linear fit of the initial slope of the forward output. The backward power was scaled by 10 times.
Fig. 5
Fig. 5 (a) Spectra from the Yb-PBGF amplifier measured by use of an integrating sphere. Gray curve shows the seed and red curve shows the amplifier output at the maximum pump power. Black curve shows a white light transmission spectrum of the 1.5 m Yb-PBGF coiled on a 32 cm spool for one round. (b) Spectra measured by coupling the signal into a SM fiber.
Fig. 6
Fig. 6 Beat spectra of the seed (gray) and the output at 87 W (red) measured by delayed self-heterodyne interferometry using a 9 km delay fiber.
Fig. 7
Fig. 7 Calculated output power of the 32 m Yb-PBGF amplifier as a function of seed power and pump power. The SBS-limited output power is indicated in red curves for different EFs. The pink circle indicates the estimated output power with the seed power of 5 W and the pump power of 280 W.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P s a t = I s a t A c o r e = h v σ e m τ A c o r e ,
g B ( Δ v s ) Δ v B Δ v B + Δ v s g B ,
G S B S = C B 0 L P s ( Z ) d z ,

Metrics