Abstract

The explosive growth of the traffic between data centers has led to an urgent demand for high-performance short-reach optical interconnects with data rate beyond 100G per wavelength and transmission distance over hundreds of kilometers. Since direct detection (DD) provides a cost-efficient solution for short-reach interconnects, various advanced modulation formats have been intensively studied to improve the performance of DD for high-performance short-reach optical interconnects. In this paper, we report the recent progress on the advanced DD modulation formats that provide superior electrical spectral efficiency (SE) and transmission reach beyond that of simple direct modulation (DM) based direct detection (DM/DD). We first provide a review of the current advanced modulation formats for high-performance short-reach optical interconnects. Among these formats, Stokes vector direct detection (SV-DD) achieves the highest electrical spectrum efficiency, presenting itself as a promising candidate for future short-reach networks. We then expound some novel algorithms to achieve high-performance SV-DD systems under severe impairments of either polarization mode dispersion (PMD) or polarization dependent loss (PDL).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectrally efficient optical transmission based on Stokes vector direct detection

An Li, Di Che, Vivian Chen, and William Shieh
Opt. Express 22(13) 15662-15667 (2014)

Advanced modulation formats for 400-Gbps short-reach optical inter-connection

Xiaogeng Xu, Enbo Zhou, Gordon Ning Liu, Tianjian Zuo, Qiwen Zhong, Liang Zhang, Yuan Bao, Xuebing Zhang, Jianping Li, and Zhaohui Li
Opt. Express 23(1) 492-500 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
    [Crossref] [PubMed]
  2. X. Liu, F. Buchali, and R. W. Tkach, “Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission,” J. Lightwave Technol. 27(16), 3632–3640 (2009).
    [Crossref]
  3. W. Shieh, Q. Yang, and Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express 16(9), 6378–6386 (2008).
    [Crossref] [PubMed]
  4. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006).
    [Crossref] [PubMed]
  5. W. R. Peng, X. Wu, K. M. Feng, V. R. Arbab, B. Shamee, J. Y. Yang, L. C. Christen, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express 17(11), 9099–9111 (2009).
    [Crossref] [PubMed]
  6. J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptive modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
    [Crossref]
  7. B. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol. 26(1), 196–203 (2008).
    [Crossref]
  8. W. R. Peng, X. Wu, V. Arbab, B. Shamee, L. Christen, J. Yang, K. Feng, A. Willner, and S. Chi, “Experimental demonstration of a coherently modulated and directly detected optical OFDM system using an RF-tone insertion,” OFC 2008, San Diego, CA, paper OMU2.
  9. W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol. 27(24), 5723–5735 (2009).
    [Crossref]
  10. B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightwave Technol. 28(4), 328–335 (2010).
    [Crossref]
  11. M. Nazarathy and A. Agmon, “Doubling direct-detection data rate by polarization multiplexing of 16-QAM without a polarization controller,” ECOC 2013, London, UK, paper Mo4.C.4.
  12. X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, and W. Shieh, “Block-wise phase switching for double-sideband direct detected optical OFDM signals,” Opt. Express 21(11), 13436–13441 (2013).
    [Crossref] [PubMed]
  13. X. Chen, D. Che, A. Li, J. He, and W. Shieh, “Signal-carrier interleaved optical OFDM for direct detection optical communication,” Opt. Express 21(26), 32501–32507 (2013).
    [Crossref] [PubMed]
  14. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” OFC 2014, San Francisco, CA, paper Th5C.7.
  15. D. Che, X. Chen, J. He, A. Li, and W. Shieh, “102.4-Gb/s single-polarization derect-detection reception using signal carrier interleaved optical OFDM,” OFC 2014, San Francisco, CA, paper Tu3G.7.
  16. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
    [Crossref] [PubMed]
  17. M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1λx 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signal using 1.3 μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Proceedings of ECOC 2014, Cannes, France, paper PD.4.4.
  18. J. Estaran, M. A. Usuga, E. Porto, M. Piels, M. I. Olmedo, and I. T. Monroy, “Quad-polarization transmission for high-capacity IM/DD links,” in Proceedings of ECOC 2014, Cannes, France, paper PD.4.3.
  19. G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9(11), 1439–1456 (1991).
    [Crossref]
  20. Q. Hu, D. Che, and W. Shieh, “Mitigation of PMD induced nonlinear noise in Stokes vector direct detection system,” in Proceedings of ECOC 2014, Cannes, France, paper P.3.4.
  21. C. Xie and L. F. Mollenauer, “Performance degradation induced by polarization-dependent loss in optical fiber transmission systems with and without polarization-mode dispersion,” J. Lightwave Technol. 21(9), 1953–1957 (2003).
    [Crossref]

2013 (2)

2010 (1)

2009 (3)

2008 (2)

2007 (1)

2006 (2)

2003 (1)

2000 (1)

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[Crossref] [PubMed]

1991 (1)

G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9(11), 1439–1456 (1991).
[Crossref]

Arbab, V. R.

Armstrong, J.

Bayvel, P.

Buchali, F.

Che, D.

Chen, X.

Chi, S.

Christen, L. C.

Du, L. B.

Feng, K. M.

Foschini, G. J.

G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9(11), 1439–1456 (1991).
[Crossref]

Gavioli, G.

Gordon, J. P.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[Crossref] [PubMed]

He, J.

Hu, Q.

Killey, R. I.

Kogelnik, H.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[Crossref] [PubMed]

Lane, P. M.

Li, A.

Liu, X.

Lowery, A. J.

Ma, Y.

Mollenauer, L. F.

Peng, W. R.

Poole, C. D.

G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9(11), 1439–1456 (1991).
[Crossref]

Savory, S. J.

Schmidt, B.

Schmidt, B. J. C.

Shamee, B.

Shieh, W.

Shore, K. A.

Tang, J. M.

Tkach, R. W.

Wang, Y.

Willner, A. E.

Wu, X.

Wu, X. X.

Xie, C.

Yang, J. Y.

Yang, Q.

Zan, Z.

Zhang, B.

J. Lightwave Technol. (7)

G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9(11), 1439–1456 (1991).
[Crossref]

C. Xie and L. F. Mollenauer, “Performance degradation induced by polarization-dependent loss in optical fiber transmission systems with and without polarization-mode dispersion,” J. Lightwave Technol. 21(9), 1953–1957 (2003).
[Crossref]

J. M. Tang, P. M. Lane, and K. A. Shore, “High-speed transmission of adaptive modulated optical OFDM signals over multimode fibers using directly modulated DFBs,” J. Lightwave Technol. 24(1), 429–441 (2006).
[Crossref]

B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightwave Technol. 28(4), 328–335 (2010).
[Crossref]

B. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol. 26(1), 196–203 (2008).
[Crossref]

X. Liu, F. Buchali, and R. W. Tkach, “Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission,” J. Lightwave Technol. 27(16), 3632–3640 (2009).
[Crossref]

W. R. Peng, B. Zhang, K. M. Feng, X. X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” J. Lightwave Technol. 27(24), 5723–5735 (2009).
[Crossref]

Opt. Express (6)

Proc. Natl. Acad. Sci. U.S.A. (1)

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[Crossref] [PubMed]

Other (7)

M. Morsy-Osman, M. Chagnon, M. Poulin, S. Lessard, and D. V. Plant, “1λx 224 Gb/s 10 km transmission of polarization division multiplexed PAM-4 signal using 1.3 μm SiP intensity modulator and a direct-detection MIMO-based receiver,” in Proceedings of ECOC 2014, Cannes, France, paper PD.4.4.

J. Estaran, M. A. Usuga, E. Porto, M. Piels, M. I. Olmedo, and I. T. Monroy, “Quad-polarization transmission for high-capacity IM/DD links,” in Proceedings of ECOC 2014, Cannes, France, paper PD.4.3.

Q. Hu, D. Che, and W. Shieh, “Mitigation of PMD induced nonlinear noise in Stokes vector direct detection system,” in Proceedings of ECOC 2014, Cannes, France, paper P.3.4.

W. R. Peng, X. Wu, V. Arbab, B. Shamee, L. Christen, J. Yang, K. Feng, A. Willner, and S. Chi, “Experimental demonstration of a coherently modulated and directly detected optical OFDM system using an RF-tone insertion,” OFC 2008, San Diego, CA, paper OMU2.

M. Nazarathy and A. Agmon, “Doubling direct-detection data rate by polarization multiplexing of 16-QAM without a polarization controller,” ECOC 2013, London, UK, paper Mo4.C.4.

D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “160-Gb/s Stokes vector direct detection for short reach optical communication,” OFC 2014, San Francisco, CA, paper Th5C.7.

D. Che, X. Chen, J. He, A. Li, and W. Shieh, “102.4-Gb/s single-polarization derect-detection reception using signal carrier interleaved optical OFDM,” OFC 2014, San Francisco, CA, paper Tu3G.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Conceptual diagram of a conventional DD system. PD: photo-detector.
Fig. 2
Fig. 2 SSB generation schemes: (a) offset SSB, and (b) RF tone assisted SSB which can be (i) with guard band, or (ii) subcarrier-interleaving, or (iii) without guard band. S: signal, C: (main) carrier, W: signal bandwidth
Fig. 3
Fig. 3 Received baseband spectra for (i) SSB with guard band, (ii) subcarrier-interleaved SSB, and (iii) gapless SSB.
Fig. 4
Fig. 4 Transmitter structure for block-wise phase switching (BPS) DD.
Fig. 5
Fig. 5 Conceptual diagram of three phase switching approaches: (a) carrier phase switching (CPS) where carrier phase is switched by 90 degree, (b) signal phase switching (SPS) where signal phase is switched by 90 degree, and (c) (signal) set phase reversal (SPR) where the phase of lower sideband is switched by 180 degree.
Fig. 6
Fig. 6 Receiver structure for signal carrier interleaved (SCI) DD.
Fig. 7
Fig. 7 Conceptual diagram of signal carrier interleaved (SCI) schemes: (a) SCI-DD with 1/2 SE, and (b) SCI-DD with 2/3 SE.
Fig. 8
Fig. 8 Structures of (a) transmitter and (b) 3-dimensional receiver for the Stokes vector direct detection.
Fig. 9
Fig. 9 Training symbols for Stokes channel estimation.
Fig. 10
Fig. 10 Flow chart of algorithm A. (a) Calculate F using training symbols. (b) Mitigate the PMD induced noise in data symbols.
Fig. 11
Fig. 11 Flow chart of algorithm B. (a) Calculate F using training symbols. (b) Mitigate the PMD induced noise in data symbols.
Fig. 12
Fig. 12 Experimental setup to verify the PMD mitigation algorithms.
Fig. 13
Fig. 13 Q penalty as a function of DGD before and after PMD mitigation.
Fig. 14
Fig. 14 Signal and noise spectra (a) before PMD mitigation, (b) after PMD mitigation using algorithm A, and (c) after PMD mitigation using algorithm B.
Fig. 15
Fig. 15 Q penalty as a function of DGD before and after PMD mitigation.

Tables (1)

Tables Icon

Table 1 Comparison of Advanced DD Modulation Formats. E-SE: electrical spectrum efficiency normalized to single-polarization coherent detection; Mod.: modulator; IM: intensity modulator; IQ-M.: I/Q modulator; PD: photo-detector; B-PD: balance PD.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

I 1 = | S+C | 2 = | C | 2 +2Re{S C * }+ | S | 2
I 2 = | S+iC | 2 = | C | 2 +2Im{S C * }+ | S | 2 ,
I= I 1 +i I 2 =(1+i) | C | 2 +2S C * +(1+i) | S | 2 ,
I 1 = | S R + S L +C | 2 = | C | 2 +2Re{( S R + S L ) C * }+ | S R + S L | 2
I 2 = | S R S L +C | 2 = | C | 2 +2Re{( S R S L ) C * }+ | S R S L | 2 .
I 3 = I 1 + I 2 =2 | C | 2 +4Re{ S R C * }+2 | S R | 2 +2 | S L | 2
I 4 = I 1 I 2 =4Re{ S L C * }+4Re{ S R S L * }.
[ | X out | 2 | Y out | 2 2Re{ X out Y out } 2Im{ X out Y out } ]=V[ | S | 2 | C | 2 2Re{S C } 2Im{S C } ],V=[ h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ],
[ X out (ω) Y out (ω) ]=[ a 2 b 2 b 2 a 2 ][ e jωΔτ/2 0 0 e jωΔτ/2 ][ a 1 b 1 b 1 a 1 ][ X in (ω) Y in (ω) ],
X Y * = i [cos( ω i Δτ/2)+j( | b 1 | 2 | a 1 | 2 )sin( ω i Δτ/2)] S i e j ω i t +2j a 1 b 1 { i [cos( ω i Δτ/2)+j( | b 1 | 2 | a 1 | 2 )sin( ω i Δτ/2)] S i e j ω i t } { i sin( ω i Δτ/2) S i e j ω i t } ,
S(tΔT)S(t+ΔT)= i S i e j ω i t e j ω i ΔT i S i e j ω i t e j ω i ΔT =2j i sin( ω i ΔT) S i e j ω i t .
[ X out Y out ]=[ a 2 b 2 b 2 a 2 ][ 1+α 0 0 1α ][ a 1 b 1 b 1 a 1 ][ S C ],
| X out | 2 | Y out | 2 = A 1 | S | 2 + B 1 | C | 2 + C 1 Re{S C * }+ D 1 Im{S C * }
Re{ X out Y out * }= A 2 | S | 2 + B 2 | C | 2 + C 2 Re{S C * }+ D 2 Im{S C * }
Im{ X out Y out * }= A 3 | S | 2 + B 3 | C | 2 + C 2 Re{S C * }+ D 3 Im{S C * }.
[ | X out | 2 | Y out | 2 Re{ X out Y out } Im{ X out Y out } ]=H[ | S | 2 | C | 2 Re{S C * } Im{S C * } ],H=[ h 11 h 12 h 13 h 14 h 21 h 22 h 23 h 24 h 31 h 32 h 33 h 34 h 41 h 42 h 43 h 44 ],
[ h 11 h 21 h 31 h 41 ] T =( R 2 + R 3 )/2 R 1
[ h 12 h 22 h 32 h 42 ] T = R 1
[ h 13 h 23 h 33 h 43 ] T =( R 2 R 3 )/2
[ h 14 h 24 h 34 h 44 ] T = R 4 ( R 2 + R 3 )/2.
| X out | 2 | Y out | 2 = A 1 ( | S | 2 | C | 2 )+( A 1 + B 1 ) | C | 2 + C 1 Re{S C * }+ D 1 Im{S C * }
Re{ X out Y out * }= A 2 ( | S | 2 | C | 2 )+( A 2 + B 2 ) | C | 2 + C 2 Re{S C * }+ D 2 Im{S C * }
Im{ X out Y out * }= A 3 ( | S | 2 | C | 2 )+( A 3 + B 3 ) | C | 2 + C 2 Re{S C * }+ D 3 Im{S C * }.
A 1 =[( | a 2 | 2 | b 2 | 2 )( | a 1 | 2 (1+α) | b 1 | 2 (1α))2( a 2 b 2 * a 1 b 1 + a 2 * b 2 a 1 * b 1 * ) (1+α)(1α) ]
B 1 =[( | a 2 | 2 | b 2 | 2 )( | b 1 | 2 (1+α) | a 1 | 2 (1α))+2( a 2 b 2 * a 1 b 1 + a 2 * b 2 a 1 * b 1 * ) (1+α)(1α) ]
C 1 =[2( | a 2 | 2 | b 2 | 2 )( a 1 b 1 * + a 1 * b 1 )+2( a 2 b 2 * ( a 1 2 b 1 2 )+ a 2 * b 2 ( a 1 * 2 b 1 * 2 )) (1+α)(1α) ]
D 1 =[2i( | a 2 | 2 | b 2 | 2 )( a 1 b 1 * a 1 * b 1 )+2( a 2 b 2 * ( a 1 2 + b 1 2 ) a 2 * b 2 ( a 1 * 2 + b 1 * 2 )) (1+α)(1α) ]
A 2 =Re{ a 2 b 2 ( | a 1 | 2 (1+α) | b 1 | 2 (1α))( a 2 2 a 1 b 1 b 2 2 a 1 * b 1 * ) (1+α)(1α) }
B 2 =Re{ a 2 b 2 ( | a 1 | 2 (1α) | b 1 | 2 (1+α))+( a 2 2 a 1 b 1 b 2 2 a 1 * b 1 * ) (1+α)(1α) }
C 2 =Re{2 a 2 b 2 ( a 1 b 1 * + a 1 * b 1 )+( a 2 2 ( a 1 2 b 1 2 )+ b 2 2 ( b 1 * 2 a 1 * 2 )) (1+α)(1α) }
D 2 =Im{2 a 2 b 2 ( a 1 b 1 * a 1 * b 1 )+( a 2 2 ( a 1 2 + b 1 2 )+ b 2 2 ( b 1 * 2 + a 1 * 2 )) (1+α)(1α) }
A 3 =Im{ a 2 b 2 ( | a 1 | 2 (1+α) | b 1 | 2 (1α))( a 2 2 a 1 b 1 b 2 2 a 1 * b 1 * ) (1+α)(1α) }
B 3 =Im{ a 2 b 2 ( | a 1 | 2 (1α) | b 1 | 2 (1+α))+( a 2 2 a 1 b 1 b 2 2 a 1 * b 1 * ) (1+α)(1α) }
C 3 =Im{2 a 2 b 2 ( a 1 b 1 * + a 1 * b 1 )+( a 2 2 ( a 1 2 b 1 2 )+ b 2 2 ( b 1 * 2 a 1 * 2 )) (1+α)(1α) }
D 3 =Re{2 a 2 b 2 ( a 1 b 1 * a 1 * b 1 )+( a 2 2 ( a 1 2 + b 1 2 )+ b 2 2 ( b 1 * 2 + a 1 * 2 )) (1+α)(1α) }

Metrics