Abstract

Measurements of polarization of filamenting light pulses at 800 nm are presented. Electronic nonlinearity, molecular alignment and nonlinear losses all contribute to modify the polarization of a femtosecond filamenting pulse. The polarization is modified in each stage of preparation, filamentation and divergence after the filament.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Moving focus in the propagation of ultrashort laser pulses in air

A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov
Opt. Lett. 22(5) 304-306 (1997)

Nonlinear polarization evolution of ultrashort pulses in polarization maintaining fibers

Jan Szczepanek, Tomasz M. Kardaś, Czesław Radzewicz, and Yuriy Stepanenko
Opt. Express 26(10) 13590-13604 (2018)

Ultrashort laser pulse filamentation from spontaneous X Wave formation in air

Daniele Faccio, Alessandro Averchi, Antonio Lotti, Paolo Di Trapani, Arnaud Couairon, Dimitris Papazoglou, and Stelios Tzortzakis
Opt. Express 16(3) 1565-1570 (2008)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Askar’yan, “Effects of gradients of a strong electromagnetic beam on electrons and atoms,” Sov. Phys. JETP 15, 1088–1090 (1962).
  2. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports 441, 49–189 (2007).
    [Crossref]
  3. L. Arissian and J.-C. Diels, “Ultrafast electron plasma index; an ionization perspective,” Journal of Lasers, Optics & Photonics 1, 107–111 (2014).
  4. J. P. Palastro, “Time-dependent polarization states of high-power, ultrashort laser pulses during atmospheric propagation,” Phys. Rev. A 89, 013804 (2014).
    [Crossref]
  5. Y. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys Rev Lett 105, 215005 (2010).
    [Crossref]
  6. H. Schillinger and R. Sauerbrey, “Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses,” Appl. Phys. B 68, 753–756 (1999).
    [Crossref]
  7. S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).
  8. B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106, 255002 (2011).
    [Crossref] [PubMed]
  9. J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103, 023001 (2009).
    [Crossref] [PubMed]
  10. M. Artamanov and T. Seideman, “Theory of three-dimensional alignment by intense laser pulses,” J. Chem. Phys. 128, 154313 (2008).
    [Crossref]
  11. V. S. Popov, “Tunnel and multiphoton ionization of atoms and ions in a strong laser field (kelysh theory),” Phys.-Usp 47, 855 (2004).
    [Crossref]
  12. L. Arissian, D. Mirell, S. Rostami, A. Bernstein, D. Faccio, and J.-C. Diels, “The effect of propagation in air on the filament spectrum,” Opt. Express 20, 8337–8343 (2012).
    [Crossref] [PubMed]
  13. J.-C. Diels, J. Yeak, D. Mirell, R. Fuentes, S. Rostami, D. Faccio, and P. di Trapani, “Air filaments and vacuum,” Laser Phys. 20, 1101–1106 (2010).
    [Crossref]
  14. J. H. Odhner, D. Romanov, and R. J. Levis, “Observation of impulsively stimulated vibrational Raman from filamentation in air,” in Proceedings of the SPIE Photonics West Conference 2010, (San Jose, CA, 2010), (SPIE Vol 7582), pp. 75820M.
  15. J. H. Odhner, E. McCole, and R. J. Levis, “Filament-driven impulsive Raman spectroscopy,” J. Phys. Chem. A 115, 13407–13412 (2011).
    [Crossref] [PubMed]
  16. J. Yu, D. Mondelain, G. Ange, R. Volk, S. Niedermeier, and J. P. Wolf, “Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air,” Opt. Lett. 26, 533–535 (2001).
    [Crossref]
  17. A. Bernstein, T. Luk, T. Nelson, A. McPherson, J.-C. Diels, and S. Cameron, “Asymmetric ultra-short pulse splitting measured in air using FROG,” Appl. Phys. B. B75, 119–122 (2002).
    [Crossref]
  18. D. Faccio, A. Averchi, A. Lotti, P. D. Trapani, A. Couairon, D. Papazoglou, and S. Tzortzakis, “Ultrashort laser pulse filamentation from spontaneous X-Wave formation in air,” Opt. Express 16, 1565–1570 (2008).
    [Crossref] [PubMed]
  19. F. Théberge, M. Châteauneuf, V. Ross, P. Mathieu, and J. Dubois, “Ultrabroadband conical emission generated from the ultraviolet up to the far-infrared during the optical filamentation in air,” Opt. Lett. 33, 2515–2517 (2008).
    [Crossref] [PubMed]
  20. D. Faccio, A. Porras, A. Dubietis, G. Tamosauskas, E. Kucinskas, A. Couairon, and P. D. Trapani, “Angular and chromatic dispersion in kerr-driven conical emission,” Opt. Commun. 265, 672–677 (2006).
    [Crossref]
  21. W. Boyd, Nonlinear Optics (Academic Press, New York, 1991).
  22. D. Close, C. Giuliano, R. Hellwarth, F. McClung, and W. Wagner, “Evolution of circularly polarized light in a kerr medium,” IEEE J. Quantum Electron. 2, 553–557 (1966).
    [Crossref]

2014 (2)

L. Arissian and J.-C. Diels, “Ultrafast electron plasma index; an ionization perspective,” Journal of Lasers, Optics & Photonics 1, 107–111 (2014).

J. P. Palastro, “Time-dependent polarization states of high-power, ultrashort laser pulses during atmospheric propagation,” Phys. Rev. A 89, 013804 (2014).
[Crossref]

2012 (1)

2011 (2)

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106, 255002 (2011).
[Crossref] [PubMed]

J. H. Odhner, E. McCole, and R. J. Levis, “Filament-driven impulsive Raman spectroscopy,” J. Phys. Chem. A 115, 13407–13412 (2011).
[Crossref] [PubMed]

2010 (2)

Y. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys Rev Lett 105, 215005 (2010).
[Crossref]

J.-C. Diels, J. Yeak, D. Mirell, R. Fuentes, S. Rostami, D. Faccio, and P. di Trapani, “Air filaments and vacuum,” Laser Phys. 20, 1101–1106 (2010).
[Crossref]

2009 (1)

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103, 023001 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports 441, 49–189 (2007).
[Crossref]

2006 (1)

D. Faccio, A. Porras, A. Dubietis, G. Tamosauskas, E. Kucinskas, A. Couairon, and P. D. Trapani, “Angular and chromatic dispersion in kerr-driven conical emission,” Opt. Commun. 265, 672–677 (2006).
[Crossref]

2004 (1)

V. S. Popov, “Tunnel and multiphoton ionization of atoms and ions in a strong laser field (kelysh theory),” Phys.-Usp 47, 855 (2004).
[Crossref]

2002 (1)

A. Bernstein, T. Luk, T. Nelson, A. McPherson, J.-C. Diels, and S. Cameron, “Asymmetric ultra-short pulse splitting measured in air using FROG,” Appl. Phys. B. B75, 119–122 (2002).
[Crossref]

2001 (1)

1999 (1)

H. Schillinger and R. Sauerbrey, “Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses,” Appl. Phys. B 68, 753–756 (1999).
[Crossref]

1966 (1)

D. Close, C. Giuliano, R. Hellwarth, F. McClung, and W. Wagner, “Evolution of circularly polarized light in a kerr medium,” IEEE J. Quantum Electron. 2, 553–557 (1966).
[Crossref]

1962 (1)

G. A. Askar’yan, “Effects of gradients of a strong electromagnetic beam on electrons and atoms,” Sov. Phys. JETP 15, 1088–1090 (1962).

Ange, G.

Antonsen, T. M.

Y. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys Rev Lett 105, 215005 (2010).
[Crossref]

Arissian, L.

L. Arissian and J.-C. Diels, “Ultrafast electron plasma index; an ionization perspective,” Journal of Lasers, Optics & Photonics 1, 107–111 (2014).

L. Arissian, D. Mirell, S. Rostami, A. Bernstein, D. Faccio, and J.-C. Diels, “The effect of propagation in air on the filament spectrum,” Opt. Express 20, 8337–8343 (2012).
[Crossref] [PubMed]

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106, 255002 (2011).
[Crossref] [PubMed]

Artamanov, M.

M. Artamanov and T. Seideman, “Theory of three-dimensional alignment by intense laser pulses,” J. Chem. Phys. 128, 154313 (2008).
[Crossref]

Askar’yan, G. A.

G. A. Askar’yan, “Effects of gradients of a strong electromagnetic beam on electrons and atoms,” Sov. Phys. JETP 15, 1088–1090 (1962).

Averchi, A.

Azarma, A.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Bernstein, A.

L. Arissian, D. Mirell, S. Rostami, A. Bernstein, D. Faccio, and J.-C. Diels, “The effect of propagation in air on the filament spectrum,” Opt. Express 20, 8337–8343 (2012).
[Crossref] [PubMed]

A. Bernstein, T. Luk, T. Nelson, A. McPherson, J.-C. Diels, and S. Cameron, “Asymmetric ultra-short pulse splitting measured in air using FROG,” Appl. Phys. B. B75, 119–122 (2002).
[Crossref]

Boyd, W.

W. Boyd, Nonlinear Optics (Academic Press, New York, 1991).

Cameron, S.

A. Bernstein, T. Luk, T. Nelson, A. McPherson, J.-C. Diels, and S. Cameron, “Asymmetric ultra-short pulse splitting measured in air using FROG,” Appl. Phys. B. B75, 119–122 (2002).
[Crossref]

Châteauneuf, M.

Chen, Y.

Y. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys Rev Lett 105, 215005 (2010).
[Crossref]

Chen, Y. P.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Chin, S. L.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Close, D.

D. Close, C. Giuliano, R. Hellwarth, F. McClung, and W. Wagner, “Evolution of circularly polarized light in a kerr medium,” IEEE J. Quantum Electron. 2, 553–557 (1966).
[Crossref]

Corkum, P.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106, 255002 (2011).
[Crossref] [PubMed]

Couairon, A.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106, 255002 (2011).
[Crossref] [PubMed]

D. Faccio, A. Averchi, A. Lotti, P. D. Trapani, A. Couairon, D. Papazoglou, and S. Tzortzakis, “Ultrashort laser pulse filamentation from spontaneous X-Wave formation in air,” Opt. Express 16, 1565–1570 (2008).
[Crossref] [PubMed]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports 441, 49–189 (2007).
[Crossref]

D. Faccio, A. Porras, A. Dubietis, G. Tamosauskas, E. Kucinskas, A. Couairon, and P. D. Trapani, “Angular and chromatic dispersion in kerr-driven conical emission,” Opt. Commun. 265, 672–677 (2006).
[Crossref]

Dai, J.

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103, 023001 (2009).
[Crossref] [PubMed]

Daigle, J.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

di Trapani, P.

J.-C. Diels, J. Yeak, D. Mirell, R. Fuentes, S. Rostami, D. Faccio, and P. di Trapani, “Air filaments and vacuum,” Laser Phys. 20, 1101–1106 (2010).
[Crossref]

Diels, J.-C.

L. Arissian and J.-C. Diels, “Ultrafast electron plasma index; an ionization perspective,” Journal of Lasers, Optics & Photonics 1, 107–111 (2014).

L. Arissian, D. Mirell, S. Rostami, A. Bernstein, D. Faccio, and J.-C. Diels, “The effect of propagation in air on the filament spectrum,” Opt. Express 20, 8337–8343 (2012).
[Crossref] [PubMed]

J.-C. Diels, J. Yeak, D. Mirell, R. Fuentes, S. Rostami, D. Faccio, and P. di Trapani, “Air filaments and vacuum,” Laser Phys. 20, 1101–1106 (2010).
[Crossref]

A. Bernstein, T. Luk, T. Nelson, A. McPherson, J.-C. Diels, and S. Cameron, “Asymmetric ultra-short pulse splitting measured in air using FROG,” Appl. Phys. B. B75, 119–122 (2002).
[Crossref]

Dubietis, A.

D. Faccio, A. Porras, A. Dubietis, G. Tamosauskas, E. Kucinskas, A. Couairon, and P. D. Trapani, “Angular and chromatic dispersion in kerr-driven conical emission,” Opt. Commun. 265, 672–677 (2006).
[Crossref]

Dubois, J.

Faccio, D.

L. Arissian, D. Mirell, S. Rostami, A. Bernstein, D. Faccio, and J.-C. Diels, “The effect of propagation in air on the filament spectrum,” Opt. Express 20, 8337–8343 (2012).
[Crossref] [PubMed]

J.-C. Diels, J. Yeak, D. Mirell, R. Fuentes, S. Rostami, D. Faccio, and P. di Trapani, “Air filaments and vacuum,” Laser Phys. 20, 1101–1106 (2010).
[Crossref]

D. Faccio, A. Averchi, A. Lotti, P. D. Trapani, A. Couairon, D. Papazoglou, and S. Tzortzakis, “Ultrashort laser pulse filamentation from spontaneous X-Wave formation in air,” Opt. Express 16, 1565–1570 (2008).
[Crossref] [PubMed]

D. Faccio, A. Porras, A. Dubietis, G. Tamosauskas, E. Kucinskas, A. Couairon, and P. D. Trapani, “Angular and chromatic dispersion in kerr-driven conical emission,” Opt. Commun. 265, 672–677 (2006).
[Crossref]

Fuentes, R.

J.-C. Diels, J. Yeak, D. Mirell, R. Fuentes, S. Rostami, D. Faccio, and P. di Trapani, “Air filaments and vacuum,” Laser Phys. 20, 1101–1106 (2010).
[Crossref]

Giuliano, C.

D. Close, C. Giuliano, R. Hellwarth, F. McClung, and W. Wagner, “Evolution of circularly polarized light in a kerr medium,” IEEE J. Quantum Electron. 2, 553–557 (1966).
[Crossref]

Hellwarth, R.

D. Close, C. Giuliano, R. Hellwarth, F. McClung, and W. Wagner, “Evolution of circularly polarized light in a kerr medium,” IEEE J. Quantum Electron. 2, 553–557 (1966).
[Crossref]

Houard, A.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106, 255002 (2011).
[Crossref] [PubMed]

Karpowicz, N.

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103, 023001 (2009).
[Crossref] [PubMed]

Kosareva, O.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Kucinskas, E.

D. Faccio, A. Porras, A. Dubietis, G. Tamosauskas, E. Kucinskas, A. Couairon, and P. D. Trapani, “Angular and chromatic dispersion in kerr-driven conical emission,” Opt. Commun. 265, 672–677 (2006).
[Crossref]

Levis, R. J.

J. H. Odhner, E. McCole, and R. J. Levis, “Filament-driven impulsive Raman spectroscopy,” J. Phys. Chem. A 115, 13407–13412 (2011).
[Crossref] [PubMed]

J. H. Odhner, D. Romanov, and R. J. Levis, “Observation of impulsively stimulated vibrational Raman from filamentation in air,” in Proceedings of the SPIE Photonics West Conference 2010, (San Jose, CA, 2010), (SPIE Vol 7582), pp. 75820M.

Li, R.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Liu, J. S.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Liu, W. W.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Liu, Y.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106, 255002 (2011).
[Crossref] [PubMed]

Lotti, A.

Luk, T.

A. Bernstein, T. Luk, T. Nelson, A. McPherson, J.-C. Diels, and S. Cameron, “Asymmetric ultra-short pulse splitting measured in air using FROG,” Appl. Phys. B. B75, 119–122 (2002).
[Crossref]

Marceau, C.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Mathieu, P.

McClung, F.

D. Close, C. Giuliano, R. Hellwarth, F. McClung, and W. Wagner, “Evolution of circularly polarized light in a kerr medium,” IEEE J. Quantum Electron. 2, 553–557 (1966).
[Crossref]

McCole, E.

J. H. Odhner, E. McCole, and R. J. Levis, “Filament-driven impulsive Raman spectroscopy,” J. Phys. Chem. A 115, 13407–13412 (2011).
[Crossref] [PubMed]

McPherson, A.

A. Bernstein, T. Luk, T. Nelson, A. McPherson, J.-C. Diels, and S. Cameron, “Asymmetric ultra-short pulse splitting measured in air using FROG,” Appl. Phys. B. B75, 119–122 (2002).
[Crossref]

Milchberg, H. M.

Y. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys Rev Lett 105, 215005 (2010).
[Crossref]

Mirell, D.

L. Arissian, D. Mirell, S. Rostami, A. Bernstein, D. Faccio, and J.-C. Diels, “The effect of propagation in air on the filament spectrum,” Opt. Express 20, 8337–8343 (2012).
[Crossref] [PubMed]

J.-C. Diels, J. Yeak, D. Mirell, R. Fuentes, S. Rostami, D. Faccio, and P. di Trapani, “Air filaments and vacuum,” Laser Phys. 20, 1101–1106 (2010).
[Crossref]

Mondelain, D.

Mora, P.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106, 255002 (2011).
[Crossref] [PubMed]

Mysyrowicz, A.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106, 255002 (2011).
[Crossref] [PubMed]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports 441, 49–189 (2007).
[Crossref]

Nelson, T.

A. Bernstein, T. Luk, T. Nelson, A. McPherson, J.-C. Diels, and S. Cameron, “Asymmetric ultra-short pulse splitting measured in air using FROG,” Appl. Phys. B. B75, 119–122 (2002).
[Crossref]

Niedermeier, S.

Odhner, J. H.

J. H. Odhner, E. McCole, and R. J. Levis, “Filament-driven impulsive Raman spectroscopy,” J. Phys. Chem. A 115, 13407–13412 (2011).
[Crossref] [PubMed]

J. H. Odhner, D. Romanov, and R. J. Levis, “Observation of impulsively stimulated vibrational Raman from filamentation in air,” in Proceedings of the SPIE Photonics West Conference 2010, (San Jose, CA, 2010), (SPIE Vol 7582), pp. 75820M.

Palastro, J. P.

J. P. Palastro, “Time-dependent polarization states of high-power, ultrashort laser pulses during atmospheric propagation,” Phys. Rev. A 89, 013804 (2014).
[Crossref]

Panov, N.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Papazoglou, D.

Popov, V. S.

V. S. Popov, “Tunnel and multiphoton ionization of atoms and ions in a strong laser field (kelysh theory),” Phys.-Usp 47, 855 (2004).
[Crossref]

Porras, A.

D. Faccio, A. Porras, A. Dubietis, G. Tamosauskas, E. Kucinskas, A. Couairon, and P. D. Trapani, “Angular and chromatic dispersion in kerr-driven conical emission,” Opt. Commun. 265, 672–677 (2006).
[Crossref]

Prade, B.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106, 255002 (2011).
[Crossref] [PubMed]

Richardson, M.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Romanov, D.

J. H. Odhner, D. Romanov, and R. J. Levis, “Observation of impulsively stimulated vibrational Raman from filamentation in air,” in Proceedings of the SPIE Photonics West Conference 2010, (San Jose, CA, 2010), (SPIE Vol 7582), pp. 75820M.

Ross, V.

Rostami, S.

L. Arissian, D. Mirell, S. Rostami, A. Bernstein, D. Faccio, and J.-C. Diels, “The effect of propagation in air on the filament spectrum,” Opt. Express 20, 8337–8343 (2012).
[Crossref] [PubMed]

J.-C. Diels, J. Yeak, D. Mirell, R. Fuentes, S. Rostami, D. Faccio, and P. di Trapani, “Air filaments and vacuum,” Laser Phys. 20, 1101–1106 (2010).
[Crossref]

Sauerbrey, R.

H. Schillinger and R. Sauerbrey, “Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses,” Appl. Phys. B 68, 753–756 (1999).
[Crossref]

Schillinger, H.

H. Schillinger and R. Sauerbrey, “Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses,” Appl. Phys. B 68, 753–756 (1999).
[Crossref]

Seideman, T.

M. Artamanov and T. Seideman, “Theory of three-dimensional alignment by intense laser pulses,” J. Chem. Phys. 128, 154313 (2008).
[Crossref]

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Smeenk, C.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106, 255002 (2011).
[Crossref] [PubMed]

Tamosauskas, G.

D. Faccio, A. Porras, A. Dubietis, G. Tamosauskas, E. Kucinskas, A. Couairon, and P. D. Trapani, “Angular and chromatic dispersion in kerr-driven conical emission,” Opt. Commun. 265, 672–677 (2006).
[Crossref]

Théberge, F.

Trapani, P. D.

D. Faccio, A. Averchi, A. Lotti, P. D. Trapani, A. Couairon, D. Papazoglou, and S. Tzortzakis, “Ultrashort laser pulse filamentation from spontaneous X-Wave formation in air,” Opt. Express 16, 1565–1570 (2008).
[Crossref] [PubMed]

D. Faccio, A. Porras, A. Dubietis, G. Tamosauskas, E. Kucinskas, A. Couairon, and P. D. Trapani, “Angular and chromatic dispersion in kerr-driven conical emission,” Opt. Commun. 265, 672–677 (2006).
[Crossref]

Tzortzakis, S.

Varma, S.

Y. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys Rev Lett 105, 215005 (2010).
[Crossref]

Volk, R.

Wagner, W.

D. Close, C. Giuliano, R. Hellwarth, F. McClung, and W. Wagner, “Evolution of circularly polarized light in a kerr medium,” IEEE J. Quantum Electron. 2, 553–557 (1966).
[Crossref]

Wang, T.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Wolf, J. P.

Wu, J.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Xu, Z. Z.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Yeak, J.

J.-C. Diels, J. Yeak, D. Mirell, R. Fuentes, S. Rostami, D. Faccio, and P. di Trapani, “Air filaments and vacuum,” Laser Phys. 20, 1101–1106 (2010).
[Crossref]

Yu, J.

Yuan, S.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Zeng, H. P.

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

Zhang, X.-C.

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103, 023001 (2009).
[Crossref] [PubMed]

Zhou, B.

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106, 255002 (2011).
[Crossref] [PubMed]

Appl. Phys. B (1)

H. Schillinger and R. Sauerbrey, “Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses,” Appl. Phys. B 68, 753–756 (1999).
[Crossref]

Appl. Phys. B. (1)

A. Bernstein, T. Luk, T. Nelson, A. McPherson, J.-C. Diels, and S. Cameron, “Asymmetric ultra-short pulse splitting measured in air using FROG,” Appl. Phys. B. B75, 119–122 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Close, C. Giuliano, R. Hellwarth, F. McClung, and W. Wagner, “Evolution of circularly polarized light in a kerr medium,” IEEE J. Quantum Electron. 2, 553–557 (1966).
[Crossref]

J. Chem. Phys. (1)

M. Artamanov and T. Seideman, “Theory of three-dimensional alignment by intense laser pulses,” J. Chem. Phys. 128, 154313 (2008).
[Crossref]

J. Phys. Chem. A (1)

J. H. Odhner, E. McCole, and R. J. Levis, “Filament-driven impulsive Raman spectroscopy,” J. Phys. Chem. A 115, 13407–13412 (2011).
[Crossref] [PubMed]

Journal of Lasers, Optics & Photonics (1)

L. Arissian and J.-C. Diels, “Ultrafast electron plasma index; an ionization perspective,” Journal of Lasers, Optics & Photonics 1, 107–111 (2014).

Laser Phys. (1)

J.-C. Diels, J. Yeak, D. Mirell, R. Fuentes, S. Rostami, D. Faccio, and P. di Trapani, “Air filaments and vacuum,” Laser Phys. 20, 1101–1106 (2010).
[Crossref]

Opt. Commun. (1)

D. Faccio, A. Porras, A. Dubietis, G. Tamosauskas, E. Kucinskas, A. Couairon, and P. D. Trapani, “Angular and chromatic dispersion in kerr-driven conical emission,” Opt. Commun. 265, 672–677 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys Rev Lett (1)

Y. Chen, S. Varma, T. M. Antonsen, and H. M. Milchberg, “Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments,” Phys Rev Lett 105, 215005 (2010).
[Crossref]

Phys. Rev. A (1)

J. P. Palastro, “Time-dependent polarization states of high-power, ultrashort laser pulses during atmospheric propagation,” Phys. Rev. A 89, 013804 (2014).
[Crossref]

Phys. Rev. Lett. (2)

B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, and P. Corkum, “Measurement and control of plasma oscillations in femtosecond filaments,” Phys. Rev. Lett. 106, 255002 (2011).
[Crossref] [PubMed]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103, 023001 (2009).
[Crossref] [PubMed]

Phys.-Usp (1)

V. S. Popov, “Tunnel and multiphoton ionization of atoms and ions in a strong laser field (kelysh theory),” Phys.-Usp 47, 855 (2004).
[Crossref]

Physics Reports (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Physics Reports 441, 49–189 (2007).
[Crossref]

Sov. Phys. JETP (1)

G. A. Askar’yan, “Effects of gradients of a strong electromagnetic beam on electrons and atoms,” Sov. Phys. JETP 15, 1088–1090 (1962).

Other (3)

S. L. Chin, T. Wang, C. Marceau, J. Wu, J. S. Liu, O. Kosareva, N. Panov, Y. P. Chen, J. Daigle, S. Yuan, A. Azarma, W. W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, “Advances in intense femtosecond laser filamentation in air,” Laser Physics pp. 1–53 (2011).

J. H. Odhner, D. Romanov, and R. J. Levis, “Observation of impulsively stimulated vibrational Raman from filamentation in air,” in Proceedings of the SPIE Photonics West Conference 2010, (San Jose, CA, 2010), (SPIE Vol 7582), pp. 75820M.

W. Boyd, Nonlinear Optics (Academic Press, New York, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The laser beam is sent through a quarter wave plate to prepare the polarization, and focused by a telescope into a 3 m long vacuum cell sealed by an aerodynamic window. Measurements are presented either with the cell evacuated or at atmospheric pressure. The polarization measurement includes a 1 mm thick grazing incidence plate for linear attenuation of the beam, and a rotating cube polarizer to record the polarization ellipse. Because of the size of the grazing incidence plate, measurements labeled “at focus” are in fact 4 cm beyond the estimated focal point.
Fig. 2
Fig. 2 a) A general description of two dimensional polarization as an ellipse, defined in space with its ellipticity, the angle of major axis with respect to the horizontal axis and the direction of rotation of the electric field in the plane. b) Angle of the ellipse with respect to the horizontal axis for an initially linearly polarized beam going through the rotating quarter wave plate (QWP). The angle zero of the QWP corresponds to the horizontal polarization, and 45 degree corresponds to circularly polarized light. The QWP available did not match the perfect theoretical performance. Even the measurement at 0.1 mJ of the kHz system shows a deviation from the ideal QWP and indicates a phase retardation of 87° instead of 90° for the QWP. c) Measurement of light ellipticity at focus with increase of input pulse energy. Note that even at 0.112 mJ where most nonlinear effects can be neglected the ellipticity does not reach one, at 45 degree of QWP angle. This is another evidence of having a QWP with retardation angle of 87°. The change of ellipticity is more pronounced around 45° and polarization becomes more linear as the energy is increased. At higher energies (above 5 mJ) the contribution of peripheral beam has to be considered. The shape of the ellipse does not undergo a visible change when the light is focused at 1 torr. d) Rotation of the polarization ellipse as a function of QWP angle at different pulse energies, for a 60 fs beam propagating in air, measured 4 cm after the geometrical focus. The ellipse angle rotates with change of the input pulse energy.
Fig. 3
Fig. 3 a) Angle of the ellipse (major axis with respect to horizontal line) at focus, as a function of QWP angle for different pulse energies of light focused in air and b) in a 3 meter long tube held at 1 torr (vacuum). The angle of polarization ellipse is rotated with the increase of energy. c) Rotation of polarization after 61 cm of filament propagation, for a pulse energy of 9 mJ, prepared in air and vacuum, and energy of 30 mJ, prepared in vacuum. d) The angle of ellipse for 5mJ light pulses focused in air; the polarization does not change its orientation after the beam diverges.
Fig. 4
Fig. 4 a) The effect of the pulse energy on ellipticity for light prepared in air. Measurements are done at 61 cm after the focus. b) Measurement of light ellipticity for different distances: the ellipticity changes even after the filament. The initially circularly polarized light becomes more linear after the light filament. c) Two portions of the beam at 127 cm after the focusing in air are selected. The ellipticity of the light at the center and side of the beam are compared with the total integrated signal. The total ellipticity is mostly defined by the beam at the periphery as that portion has stronger weight in the total signal. d) A simple model explains the modification of ellipticity as a function of pulse energy due to the molecular alignment.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E = [ E x E y e i δ ]
tan ( 2 α ) = 2 E x E y cos δ E x 2 E y 2 .
P = ε 0 6 χ 1122 ( E · E ) E + 3 ε 0 χ 1221 ( E · E ) E = ε 0 A ( E · E ) E + 1 2 ε 0 B ( E · E ) E .
< α i j > = α ¯ δ i j + γ i j ,
< γ i j > k l ( 3 δ i k δ j l δ i j δ k l ) E k l o c ( t ) E l l o c ( t ) ¯ .
< P i > j ( γ i j E j ) j k l ( 3 δ i k δ j l δ i j δ k l ) ( E k E l * + E k * E l ) E j .
< P i > [ 3 ( E . E ) E + 3 ( E . E ) E ( E . E ) E ( E . E ) E ] [ ( E . E ) E + 3 ( E . E ) E ] .
P ± = ε 0 A | E ± | 2 E ± + ε 0 ( A + B ) | E | 2 E ± * ,
n ± n 0 + 1 n 0 [ A | E ± | 2 + ( A + B ) | E | 2 ] .

Metrics