Abstract

We report on the simultaneous and localized measurement of the diffusion coefficient and flow velocity based on the normalized autocorrelation function using optical coherence tomography (OCT). Our results on a flowing suspension of polystyrene spheres show that the flow velocity and the diffusion coefficient can be reliably estimated in a regime determined by the sample diffusivity, the local flow velocity, and the Gaussian beam waist. We experimentally demonstrate that a smaller beam waist results in an improvement of the velocity sensitivity at the expense of the precision and accuracy of the estimation of the diffusion coefficient. Further, we show that the decay of the OCT autocorrelation function due to flow depends only on the Gaussian beam waist irrespective of the sample position with respect to the focus position.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct velocity sensing of flow distribution based on low-coherence interferometry

Yoh Imai and Kazuhiro Tanaka
J. Opt. Soc. Am. A 16(8) 2007-2012 (1999)

Detection and estimation of liquid flow through a pipe in a tissue-like object with ultrasound-assisted diffuse correlation spectroscopy

R. Sriram Chandran, G. Devaraj, Rajan Kanhirodan, Debasish Roy, and Ram Mohan Vasu
J. Opt. Soc. Am. A 32(10) 1888-1897 (2015)

Application of photon correlation spectroscopy to flowing Brownian motion systems

D. P. Chowdhury, C. M. Sorensen, T. W. Taylor, J. F. Merklin, and T. W. Lester
Appl. Opt. 23(22) 4149-4154 (1984)

References

  • View by:
  • |
  • |
  • |

  1. H. Orihara and Y. Takikawa, “Brownian motion in shear flow: Direct observation of anomalous diffusion,” Phys. Rev. E 84, 061120 (2011).
    [Crossref]
  2. C. Joo, C. L. Evans, T. Stepinac, T. Hasan, and J. F. de Boer, “Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering,” Opt. Express 18, 2858–2871 (2010).
    [Crossref] [PubMed]
  3. K. Drescher, Y. Shen, B. L. Bassler, and H. A. Stone, “Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems,” Proc. Natl. Acad. Sci. U.S.A. 110, 4345–4350 (2013).
    [Crossref] [PubMed]
  4. J. Lee, H. Radharishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography,” J. Cereb. Blood Flow Metab. 33, 819–825 (2013).
    [Crossref] [PubMed]
  5. R. Weber, R. Rambau, G. Schweiger, and K. Lucas, “Analysis of a flowing aerosol by correlation spectroscopy: concentration, aperture, velocity and particle size effects,” J. Aerosol Sci. 24, 485–499 (1993).
    [Crossref]
  6. D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104, 18892–18897 (2007).
    [Crossref] [PubMed]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  8. K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
    [Crossref]
  9. J. Kalkman, R. Sprik, and T. G. van Leeuwen, “Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography,” Phys. Rev. Lett. 105, 198302 (2010).
    [Crossref]
  10. K. Ishii, T. Iwai, and H. Xia, “Hydrodynamic measurement of Brownian particles at a liquid-solid interface by low-coherence dynamic light scattering,” Opt. Express 18, 7390–7396 (2010).
    [Crossref] [PubMed]
  11. R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E 83, 040903 (2011).
    [Crossref]
  12. V. K. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3, 612–629 (2012).
    [Crossref] [PubMed]
  13. B. K. Huang and M. A. Choma, “Resolving directional ambiguity in dynamic light scattering-based transverse motion velocimetry in optical coherence tomography,” Opt. Lett. 39, 521–524 (2014).
    [Crossref] [PubMed]
  14. N. Uribe-Patarroyo, M. Villiger, and B. E. Bouma, “Quantitative technique for robust and noise-tolerant speed measurements based on speckle decorrelation in optical coherence tomography,” Opt. Express 22, 24411–24429 (2014).
    [Crossref] [PubMed]
  15. J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20, 22262–22277 (2012).
    [Crossref] [PubMed]
  16. N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E 88, 042312 (2013).
    [Crossref]
  17. H. C. Hendargo, R. P. McNabb, A. H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity limitations spectrometer-based versus swept source optical coherence tomography,” Biomed. Opt. Express 2, 2175–2188 (2011).
    [Crossref] [PubMed]
  18. F. A. W. Coumans, E. van der Pol, A. N. Böing, N. Hajji, A. Struk, T. G. van Leeuwen, and R. Nieuwland, “Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing,” J. Extracell. Vesicles 3, 25922 (2014).
    [Crossref] [PubMed]
  19. J. Kalkman, A. V. Bykov, D. J. Faber, and T. G. van Leeuwen, “Multiple and dependent scattering effects in Doppler optical coherence tomography,” Opt. Express 18, 3883–3892 (2010).
    [Crossref] [PubMed]
  20. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Clavière, E. A. Franke, and J. M. Franke, “Technique for fast measurement of Gaussian laser beam parameters,” Appl. Opt. 10, 2775–2776 (1971).
    [Crossref] [PubMed]
  21. T. W. Taylor and C. M. Sorensen, “Gaussian beam effects on the photon correlation spectrum from a flowing Brownian motion system,” Appl. Opt. 25, 2421–2426 (1986).
    [Crossref] [PubMed]
  22. D.A. Ross, “Focused laser beam effects in optical particle sizing by dynamic light scattering,” Appl. Opt. 30, 4882–4888 (1991).
    [Crossref] [PubMed]
  23. A. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
    [Crossref] [PubMed]

2014 (3)

2013 (3)

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E 88, 042312 (2013).
[Crossref]

K. Drescher, Y. Shen, B. L. Bassler, and H. A. Stone, “Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems,” Proc. Natl. Acad. Sci. U.S.A. 110, 4345–4350 (2013).
[Crossref] [PubMed]

J. Lee, H. Radharishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography,” J. Cereb. Blood Flow Metab. 33, 819–825 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E 83, 040903 (2011).
[Crossref]

H. C. Hendargo, R. P. McNabb, A. H. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity limitations spectrometer-based versus swept source optical coherence tomography,” Biomed. Opt. Express 2, 2175–2188 (2011).
[Crossref] [PubMed]

H. Orihara and Y. Takikawa, “Brownian motion in shear flow: Direct observation of anomalous diffusion,” Phys. Rev. E 84, 061120 (2011).
[Crossref]

2010 (4)

2007 (1)

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104, 18892–18897 (2007).
[Crossref] [PubMed]

1998 (1)

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[Crossref]

1993 (1)

R. Weber, R. Rambau, G. Schweiger, and K. Lucas, “Analysis of a flowing aerosol by correlation spectroscopy: concentration, aperture, velocity and particle size effects,” J. Aerosol Sci. 24, 485–499 (1993).
[Crossref]

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

D.A. Ross, “Focused laser beam effects in optical particle sizing by dynamic light scattering,” Appl. Opt. 30, 4882–4888 (1991).
[Crossref] [PubMed]

1988 (1)

A. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[Crossref] [PubMed]

1986 (1)

1971 (1)

Arnaud, A.

Ayata, C.

J. Lee, H. Radharishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography,” J. Cereb. Blood Flow Metab. 33, 819–825 (2013).
[Crossref] [PubMed]

Barry, S.

Bassler, B. L.

K. Drescher, Y. Shen, B. L. Bassler, and H. A. Stone, “Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems,” Proc. Natl. Acad. Sci. U.S.A. 110, 4345–4350 (2013).
[Crossref] [PubMed]

Bizheva, K. K.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[Crossref]

Boas, D. A.

J. Lee, H. Radharishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography,” J. Cereb. Blood Flow Metab. 33, 819–825 (2013).
[Crossref] [PubMed]

J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20, 22262–22277 (2012).
[Crossref] [PubMed]

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[Crossref]

Böing, A. N.

F. A. W. Coumans, E. van der Pol, A. N. Böing, N. Hajji, A. Struk, T. G. van Leeuwen, and R. Nieuwland, “Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing,” J. Extracell. Vesicles 3, 25922 (2014).
[Crossref] [PubMed]

Bouma, B. E.

Bykov, A. V.

Cable, A. E.

Chaikin, P. M.

A. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Chhetri, R. K.

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E 83, 040903 (2011).
[Crossref]

Choma, M. A.

Climov, M.

J. Lee, H. Radharishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography,” J. Cereb. Blood Flow Metab. 33, 819–825 (2013).
[Crossref] [PubMed]

Coumans, F. A. W.

F. A. W. Coumans, E. van der Pol, A. N. Böing, N. Hajji, A. Struk, T. G. van Leeuwen, and R. Nieuwland, “Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing,” J. Extracell. Vesicles 3, 25922 (2014).
[Crossref] [PubMed]

Daneshmand, A.

J. Lee, H. Radharishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography,” J. Cereb. Blood Flow Metab. 33, 819–825 (2013).
[Crossref] [PubMed]

de Boer, J. F.

de la Clavière, B.

Dhalla, A. H.

Di Carlo, D.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104, 18892–18897 (2007).
[Crossref] [PubMed]

Drescher, K.

K. Drescher, Y. Shen, B. L. Bassler, and H. A. Stone, “Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems,” Proc. Natl. Acad. Sci. U.S.A. 110, 4345–4350 (2013).
[Crossref] [PubMed]

Evans, C. L.

Faber, D. J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Franke, E. A.

Franke, J. M.

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hajji, N.

F. A. W. Coumans, E. van der Pol, A. N. Böing, N. Hajji, A. Struk, T. G. van Leeuwen, and R. Nieuwland, “Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing,” J. Extracell. Vesicles 3, 25922 (2014).
[Crossref] [PubMed]

Hasan, T.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hendargo, H. C.

Herbolzheimer, E.

A. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[Crossref] [PubMed]

Huang, B. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hubbard, W. M.

Irimia, D.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104, 18892–18897 (2007).
[Crossref] [PubMed]

Ishii, K.

Iwai, T.

Izatt, J. A.

Jiang, J. Y.

Johnston-Peck, A. C.

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E 83, 040903 (2011).
[Crossref]

Joo, C.

Kalkman, J.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E 88, 042312 (2013).
[Crossref]

J. Kalkman, R. Sprik, and T. G. van Leeuwen, “Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography,” Phys. Rev. Lett. 105, 198302 (2010).
[Crossref]

J. Kalkman, A. V. Bykov, D. J. Faber, and T. G. van Leeuwen, “Multiple and dependent scattering effects in Doppler optical coherence tomography,” Opt. Express 18, 3883–3892 (2010).
[Crossref] [PubMed]

Kozek, K. A.

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E 83, 040903 (2011).
[Crossref]

Lee, J.

J. Lee, H. Radharishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography,” J. Cereb. Blood Flow Metab. 33, 819–825 (2013).
[Crossref] [PubMed]

J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20, 22262–22277 (2012).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Lo, E. H.

Lucas, K.

R. Weber, R. Rambau, G. Schweiger, and K. Lucas, “Analysis of a flowing aerosol by correlation spectroscopy: concentration, aperture, velocity and particle size effects,” J. Aerosol Sci. 24, 485–499 (1993).
[Crossref]

Mandeville, E. T.

Mandeville, G. D.

McNabb, R. P.

Nieuwland, R.

F. A. W. Coumans, E. van der Pol, A. N. Böing, N. Hajji, A. Struk, T. G. van Leeuwen, and R. Nieuwland, “Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing,” J. Extracell. Vesicles 3, 25922 (2014).
[Crossref] [PubMed]

Oldenburg, A. L.

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E 83, 040903 (2011).
[Crossref]

Orihara, H.

H. Orihara and Y. Takikawa, “Brownian motion in shear flow: Direct observation of anomalous diffusion,” Phys. Rev. E 84, 061120 (2011).
[Crossref]

Pine, A. J.

A. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Radhakrishnan, H.

Radharishnan, H.

J. Lee, H. Radharishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography,” J. Cereb. Blood Flow Metab. 33, 819–825 (2013).
[Crossref] [PubMed]

Rambau, R.

R. Weber, R. Rambau, G. Schweiger, and K. Lucas, “Analysis of a flowing aerosol by correlation spectroscopy: concentration, aperture, velocity and particle size effects,” J. Aerosol Sci. 24, 485–499 (1993).
[Crossref]

Ross, D.A.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Schweiger, G.

R. Weber, R. Rambau, G. Schweiger, and K. Lucas, “Analysis of a flowing aerosol by correlation spectroscopy: concentration, aperture, velocity and particle size effects,” J. Aerosol Sci. 24, 485–499 (1993).
[Crossref]

Shen, Y.

K. Drescher, Y. Shen, B. L. Bassler, and H. A. Stone, “Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems,” Proc. Natl. Acad. Sci. U.S.A. 110, 4345–4350 (2013).
[Crossref] [PubMed]

Shepherd, N.

Siegel, A. M.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[Crossref]

Sorensen, C. M.

Sprik, R.

J. Kalkman, R. Sprik, and T. G. van Leeuwen, “Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography,” Phys. Rev. Lett. 105, 198302 (2010).
[Crossref]

Srinivasan, V. K.

Stepinac, T.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Stone, H. A.

K. Drescher, Y. Shen, B. L. Bassler, and H. A. Stone, “Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems,” Proc. Natl. Acad. Sci. U.S.A. 110, 4345–4350 (2013).
[Crossref] [PubMed]

Struk, A.

F. A. W. Coumans, E. van der Pol, A. N. Böing, N. Hajji, A. Struk, T. G. van Leeuwen, and R. Nieuwland, “Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing,” J. Extracell. Vesicles 3, 25922 (2014).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Takikawa, Y.

H. Orihara and Y. Takikawa, “Brownian motion in shear flow: Direct observation of anomalous diffusion,” Phys. Rev. E 84, 061120 (2011).
[Crossref]

Taylor, T. W.

Tompkins, R. G.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104, 18892–18897 (2007).
[Crossref] [PubMed]

Toner, M.

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104, 18892–18897 (2007).
[Crossref] [PubMed]

Tracy, J. B.

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E 83, 040903 (2011).
[Crossref]

Uribe-Patarroyo, N.

van der Pol, E.

F. A. W. Coumans, E. van der Pol, A. N. Böing, N. Hajji, A. Struk, T. G. van Leeuwen, and R. Nieuwland, “Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing,” J. Extracell. Vesicles 3, 25922 (2014).
[Crossref] [PubMed]

van Leeuwen, T. G.

F. A. W. Coumans, E. van der Pol, A. N. Böing, N. Hajji, A. Struk, T. G. van Leeuwen, and R. Nieuwland, “Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing,” J. Extracell. Vesicles 3, 25922 (2014).
[Crossref] [PubMed]

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E 88, 042312 (2013).
[Crossref]

J. Kalkman, R. Sprik, and T. G. van Leeuwen, “Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography,” Phys. Rev. Lett. 105, 198302 (2010).
[Crossref]

J. Kalkman, A. V. Bykov, D. J. Faber, and T. G. van Leeuwen, “Multiple and dependent scattering effects in Doppler optical coherence tomography,” Opt. Express 18, 3883–3892 (2010).
[Crossref] [PubMed]

Villiger, M.

Weber, R.

R. Weber, R. Rambau, G. Schweiger, and K. Lucas, “Analysis of a flowing aerosol by correlation spectroscopy: concentration, aperture, velocity and particle size effects,” J. Aerosol Sci. 24, 485–499 (1993).
[Crossref]

Weiss, N.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E 88, 042312 (2013).
[Crossref]

Weitz, D. A.

A. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[Crossref] [PubMed]

Wu, W.

J. Lee, H. Radharishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography,” J. Cereb. Blood Flow Metab. 33, 819–825 (2013).
[Crossref] [PubMed]

J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20, 22262–22277 (2012).
[Crossref] [PubMed]

Xia, H.

Zhu, B.

Appl. Opt. (3)

Biomed. Opt. Express (2)

J. Aerosol Sci. (1)

R. Weber, R. Rambau, G. Schweiger, and K. Lucas, “Analysis of a flowing aerosol by correlation spectroscopy: concentration, aperture, velocity and particle size effects,” J. Aerosol Sci. 24, 485–499 (1993).
[Crossref]

J. Cereb. Blood Flow Metab. (1)

J. Lee, H. Radharishnan, W. Wu, A. Daneshmand, M. Climov, C. Ayata, and D. A. Boas, “Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering–optical coherence tomography,” J. Cereb. Blood Flow Metab. 33, 819–825 (2013).
[Crossref] [PubMed]

J. Extracell. Vesicles (1)

F. A. W. Coumans, E. van der Pol, A. N. Böing, N. Hajji, A. Struk, T. G. van Leeuwen, and R. Nieuwland, “Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing,” J. Extracell. Vesicles 3, 25922 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. E (4)

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly random media: The transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664–7667 (1998).
[Crossref]

R. K. Chhetri, K. A. Kozek, A. C. Johnston-Peck, J. B. Tracy, and A. L. Oldenburg, “Imaging three-dimensional rotational diffusion of plasmon resonant gold nanorods using polarization-sensitive optical coherence tomography,” Phys. Rev. E 83, 040903 (2011).
[Crossref]

H. Orihara and Y. Takikawa, “Brownian motion in shear flow: Direct observation of anomalous diffusion,” Phys. Rev. E 84, 061120 (2011).
[Crossref]

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E 88, 042312 (2013).
[Crossref]

Phys. Rev. Lett. (2)

J. Kalkman, R. Sprik, and T. G. van Leeuwen, “Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography,” Phys. Rev. Lett. 105, 198302 (2010).
[Crossref]

A. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-Wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

K. Drescher, Y. Shen, B. L. Bassler, and H. A. Stone, “Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems,” Proc. Natl. Acad. Sci. U.S.A. 110, 4345–4350 (2013).
[Crossref] [PubMed]

D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. U.S.A. 104, 18892–18897 (2007).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the experimental swept-source OCT set-up. PD: photodetector, FBG: fiber Bragg grating, PC: polarization controllers, C: collimating lens, F: focusing lens, and FC: flow channel. Gravity is in the z-direction. Adapted from [16].
Fig. 2
Fig. 2 Diagram of the data processing steps.
Fig. 3
Fig. 3 Measurement of the local diffusion coefficient of the polystyrene suspension in the absence of flow: (a) Plot of the normalized OCT magnitude in the flow channel. (b) Path length resolved diffusion coefficient for the polystyrene suspension. (c) and (d) Log-log plot of the power spectral density for the optical path lengths shown by the arrows in (a). The circles represent the measured data and the red line represents the model including only the diffusion term.
Fig. 4
Fig. 4 Independence of the autocorrelation decay from the local beam radius: (a) Power spectral densities measured at the center of a 50 μm channel at different distances from the focus but for the same flow velocity. The markers show the measurements and the dashed lines show the expected models using the beam waist (black) and using the beam radius at 1000 μm from the focus (red). (b) Beam radius for a focused Gaussian beam (line) and fitted w0 (markers).
Fig. 5
Fig. 5 (a) Measured path length resolved flow velocity (circles) through the cylindrical flow channel and reference velocity (gray line). The arrows correspond to the path lengths shown in (c) and (d). (b) Coefficient of variation for the measured flow velocities shown in (a). (c) Measured power spectral density for a path length close to the wall of the channel (red circles) and fitted model (blue line). For comparison, the black line shows the no-flow diffusion case (cf. Fig. 3(b)). (d) Similar to (c), but for a path length corresponding to the center of the flow channel.
Fig. 6
Fig. 6 (a) Beam radius in the longitudinal direction of the imaging beam for three focusing lenses. The markers represent the data and the dashed lines show the corresponding Gaussian beam models. (b) Coefficient of variation versus the measured flow velocity.
Fig. 7
Fig. 7 Power spectral densities for an optical path length close to the edge of the channel (a) and for an optical path length at the center of the channel (b). The circles show the data, the blue line shows the full model accounting for flow and diffusion, the red line shows the model accounting only for flow, and the green line shows the model accounting only for diffusion.
Fig. 8
Fig. 8 Simultaneous fitting of flow and diffusion for a set of different reference velocities: (a) Path length resolved flow velocity. The solid line shows the reference velocity. (b) Coefficient of variation of the fitted flow velocity. (c) Path length resolved diffusion coefficient for the velocities shown in (a). (d) Coefficient of variation of the fitted diffusion coefficient. For the sake of visualization, in Figs. (a–d) only every other data point has been plotted.
Fig. 9
Fig. 9 Simultaneous measurement of flow and diffusion at high flow rates. (a) Path length resolved flow velocity measured using a waist of 10.8 μm (blue circles) and measured using a waist of 26.3 μm (red triangles). The solid line shows the reference velocity. (b) Path length resolved diffusion coefficient corresponding to the velocity values shown in (a). The solid line shows the diffusion coefficient measured in the absence of flow. (c) Coefficient of variation for the flow velocities. (d) Coefficient of variation for the diffusion coefficient. For the sake of visualization, in Figs. (a) and (b) only every other data point has been plotted. Note that the data for the waist of 10.8 μm is the same as in Fig. 8.
Fig. 10
Fig. 10 (a) Decay time constants of the flow (markers) and diffusion (line) terms of the OCT autocorrelation function. (b) Coefficient of variation for the flow velocity (red markers, left ordinate) and for the diffusion coefficient (blue markers, right ordinate) measured with a waist of 26.3 μm. The dashed lines show the transition point for the regimes where diffusion of flow dominate the decay. (c) Similar to (b), but measured with a waist of 10.8 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g ( z , τ ) = e 2 D ( z ) q 2 | τ | e 2 [ v ( z ) τ w 0 ] 2 ,

Metrics