Abstract

Modal properties of 2D disordered optical structures have been numerically analyzed, in the Mid-IR region, varying the amount of scattering and the disorder level. The modal properties study has been carried out through the use of Finite Element Method, highlighting the localized regime transition and investigating the quality factor. The results have been interpreted in a statistical fashion, investigating light diffusion in these structures with the help of Monte Carlo Method. An alternative measure of randomness weight has been proposed to support the numerical results.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of mid-infrared lasing in active random media

C. Molardi, X. Yu, H. K. Liang, Y. Zhang, C. -W. Qiu, A. Cucinotta, and S. Selleri
Opt. Express 23(9) 12286-12292 (2015)

Real photonic waveguides: guiding light through imperfections

Daniele Melati, Andrea Melloni, and Francesco Morichetti
Adv. Opt. Photon. 6(2) 156-224 (2014)

Route to strong localization of light: the role of disorder

Diego Molinari and Andrea Fratalocchi
Opt. Express 20(16) 18156-18164 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Wiersma, “The physics and applications of random laser,” Nature Phys. 4, 359–367 (2008).
    [Crossref]
  2. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nature Photon. 7, 746–751 (2013).
    [Crossref]
  3. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3), A460–A468 (2013);
    [Crossref] [PubMed]
  4. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).
  5. M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson lacalization of light,” Nature Photon. 7, 197204 (2013).
    [Crossref]
  6. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
    [Crossref]
  7. K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98, 143901 (2007).
    [Crossref] [PubMed]
  8. C. Vanneste and P. Sebbah, “Complexity of 2D random laser modes at the transition from weak scattering to Anderson localization,” Phys. Rev. A 79, 041802 (2009).
    [Crossref]
  9. A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88, 093904 (2002).
    [Crossref] [PubMed]
  10. V. S. Letokhov, “Light generation by a scattering medium with a negative resonant absorption,” Sov. Phys. JETP 16, 835–840 (1968).
  11. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
    [Crossref]
  12. H. E. Tureci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).
    [Crossref]
  13. H. E. Tureci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
    [Crossref] [PubMed]
  14. H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101 (2003).
    [Crossref]
  15. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
    [Crossref] [PubMed]
  16. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3, 279–282 (2009).
    [Crossref]
  17. H. K. Liang, B. Meng, G. Liang, J. Tao, Y. Chong, Q. J. Wang, and Y. Zhang, “Electrically pumped Mid-Infrared random lasers,” Adv. Mater. 25(47), 6859–6863 (2013).
    [Crossref] [PubMed]
  18. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
    [Crossref] [PubMed]
  19. F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
    [Crossref]
  20. P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66, 144202 (2002).
    [Crossref]
  21. X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59, 6159 (1999).
    [Crossref]
  22. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70 (2000).
    [Crossref] [PubMed]
  23. S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophoton. 4(1), 041550 (2010).
    [Crossref]

2014 (1)

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

2013 (4)

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nature Photon. 7, 746–751 (2013).
[Crossref]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3), A460–A468 (2013);
[Crossref] [PubMed]

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson lacalization of light,” Nature Photon. 7, 197204 (2013).
[Crossref]

H. K. Liang, B. Meng, G. Liang, J. Tao, Y. Chong, Q. J. Wang, and Y. Zhang, “Electrically pumped Mid-Infrared random lasers,” Adv. Mater. 25(47), 6859–6863 (2013).
[Crossref] [PubMed]

2012 (1)

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).

2010 (1)

S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophoton. 4(1), 041550 (2010).
[Crossref]

2009 (2)

C. Vanneste and P. Sebbah, “Complexity of 2D random laser modes at the transition from weak scattering to Anderson localization,” Phys. Rev. A 79, 041802 (2009).
[Crossref]

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3, 279–282 (2009).
[Crossref]

2008 (2)

H. E. Tureci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[Crossref] [PubMed]

D. S. Wiersma, “The physics and applications of random laser,” Nature Phys. 4, 359–367 (2008).
[Crossref]

2007 (2)

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98, 143901 (2007).
[Crossref] [PubMed]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
[Crossref] [PubMed]

2006 (1)

H. E. Tureci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).
[Crossref]

2004 (1)

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref] [PubMed]

2003 (1)

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101 (2003).
[Crossref]

2002 (2)

A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88, 093904 (2002).
[Crossref] [PubMed]

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66, 144202 (2002).
[Crossref]

2000 (1)

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70 (2000).
[Crossref] [PubMed]

1999 (1)

X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59, 6159 (1999).
[Crossref]

1997 (1)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[Crossref]

1996 (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
[Crossref]

1968 (1)

V. S. Letokhov, “Light generation by a scattering medium with a negative resonant absorption,” Sov. Phys. JETP 16, 835–840 (1968).

Balet, L.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

Bartal, G.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
[Crossref] [PubMed]

Barthelemy, P.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

Bartolini, P.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[Crossref]

Burin, A. L.

A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88, 093904 (2002).
[Crossref] [PubMed]

Burresi, M.

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3), A460–A468 (2013);
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).

Cao, H.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nature Photon. 7, 746–751 (2013).
[Crossref]

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101 (2003).
[Crossref]

A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88, 093904 (2002).
[Crossref] [PubMed]

Caselli, N.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

Chang, S. H.

A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88, 093904 (2002).
[Crossref] [PubMed]

Chong, Y.

H. K. Liang, B. Meng, G. Liang, J. Tao, Y. Chong, Q. J. Wang, and Y. Zhang, “Electrically pumped Mid-Infrared random lasers,” Adv. Mater. 25(47), 6859–6863 (2013).
[Crossref] [PubMed]

Christodoulides, D. N.

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson lacalization of light,” Nature Photon. 7, 197204 (2013).
[Crossref]

Collier, B.

H. E. Tureci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).
[Crossref]

Dietz, R. J. B.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3, 279–282 (2009).
[Crossref]

Fallert, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3, 279–282 (2009).
[Crossref]

Fiore, A.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

Fishman, S.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
[Crossref] [PubMed]

Ge, L.

H. E. Tureci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[Crossref] [PubMed]

Gerardino, A.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

Gurioli, M.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

Intonti, F.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

Jiang, X.

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101 (2003).
[Crossref]

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70 (2000).
[Crossref] [PubMed]

X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59, 6159 (1999).
[Crossref]

Kalt, H.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3, 279–282 (2009).
[Crossref]

Klingshirn, C.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3, 279–282 (2009).
[Crossref]

Lagendijk, A.

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98, 143901 (2007).
[Crossref] [PubMed]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[Crossref]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
[Crossref]

Letokhov, V. S.

V. S. Letokhov, “Light generation by a scattering medium with a negative resonant absorption,” Sov. Phys. JETP 16, 835–840 (1968).

Li, L. H.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

Liang, G.

H. K. Liang, B. Meng, G. Liang, J. Tao, Y. Chong, Q. J. Wang, and Y. Zhang, “Electrically pumped Mid-Infrared random lasers,” Adv. Mater. 25(47), 6859–6863 (2013).
[Crossref] [PubMed]

Liang, H. K.

H. K. Liang, B. Meng, G. Liang, J. Tao, Y. Chong, Q. J. Wang, and Y. Zhang, “Electrically pumped Mid-Infrared random lasers,” Adv. Mater. 25(47), 6859–6863 (2013).
[Crossref] [PubMed]

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nature Photon. 7, 746–751 (2013).
[Crossref]

Ling, Y.

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101 (2003).
[Crossref]

Meng, B.

H. K. Liang, B. Meng, G. Liang, J. Tao, Y. Chong, Q. J. Wang, and Y. Zhang, “Electrically pumped Mid-Infrared random lasers,” Adv. Mater. 25(47), 6859–6863 (2013).
[Crossref] [PubMed]

Mosk, A. P.

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98, 143901 (2007).
[Crossref] [PubMed]

Mujumdar, S.

S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophoton. 4(1), 041550 (2010).
[Crossref]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref] [PubMed]

Pratesi, F.

Ramachandran, H.

S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophoton. 4(1), 041550 (2010).
[Crossref]

Ratner, M. A.

A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88, 093904 (2002).
[Crossref] [PubMed]

Redding, B.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nature Photon. 7, 746–751 (2013).
[Crossref]

Riboli, F.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3), A460–A468 (2013);
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).

Ricci, M.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref] [PubMed]

Righini, R.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[Crossref]

Rotter, S.

H. E. Tureci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[Crossref] [PubMed]

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nature Photon. 7, 746–751 (2013).
[Crossref]

Sartor, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3, 279–282 (2009).
[Crossref]

Schneider, D.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3, 279–282 (2009).
[Crossref]

Schwartz, T.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
[Crossref] [PubMed]

Sebbah, P.

C. Vanneste and P. Sebbah, “Complexity of 2D random laser modes at the transition from weak scattering to Anderson localization,” Phys. Rev. A 79, 041802 (2009).
[Crossref]

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66, 144202 (2002).
[Crossref]

Segev, M.

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson lacalization of light,” Nature Photon. 7, 197204 (2013).
[Crossref]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
[Crossref] [PubMed]

Silberberg, Y.

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson lacalization of light,” Nature Photon. 7, 197204 (2013).
[Crossref]

Soukoulis, C. M.

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101 (2003).
[Crossref]

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70 (2000).
[Crossref] [PubMed]

X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59, 6159 (1999).
[Crossref]

Stone, A. D.

H. E. Tureci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[Crossref] [PubMed]

H. E. Tureci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).
[Crossref]

Tao, J.

H. K. Liang, B. Meng, G. Liang, J. Tao, Y. Chong, Q. J. Wang, and Y. Zhang, “Electrically pumped Mid-Infrared random lasers,” Adv. Mater. 25(47), 6859–6863 (2013).
[Crossref] [PubMed]

Tjerkstra, R. W.

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98, 143901 (2007).
[Crossref] [PubMed]

Torre, R.

S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophoton. 4(1), 041550 (2010).
[Crossref]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref] [PubMed]

Tureci, H. E.

H. E. Tureci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[Crossref] [PubMed]

H. E. Tureci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).
[Crossref]

van der Molen, K. L.

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98, 143901 (2007).
[Crossref] [PubMed]

Vanneste, C.

C. Vanneste and P. Sebbah, “Complexity of 2D random laser modes at the transition from weak scattering to Anderson localization,” Phys. Rev. A 79, 041802 (2009).
[Crossref]

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66, 144202 (2002).
[Crossref]

Vignolini, S.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

Vynck, K.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3), A460–A468 (2013);
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).

Wang, Q. J.

H. K. Liang, B. Meng, G. Liang, J. Tao, Y. Chong, Q. J. Wang, and Y. Zhang, “Electrically pumped Mid-Infrared random lasers,” Adv. Mater. 25(47), 6859–6863 (2013).
[Crossref] [PubMed]

Wiersma, D.

S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophoton. 4(1), 041550 (2010).
[Crossref]

Wiersma, D. S.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

F. Pratesi, M. Burresi, F. Riboli, K. Vynck, and D. S. Wiersma, “Disordered photonic structures for light harvesting in solar cells,” Opt. Express 21(S3), A460–A468 (2013);
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).

D. S. Wiersma, “The physics and applications of random laser,” Nature Phys. 4, 359–367 (2008).
[Crossref]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref] [PubMed]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[Crossref]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
[Crossref]

Xu, J. Y.

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101 (2003).
[Crossref]

Zhang, Y.

H. K. Liang, B. Meng, G. Liang, J. Tao, Y. Chong, Q. J. Wang, and Y. Zhang, “Electrically pumped Mid-Infrared random lasers,” Adv. Mater. 25(47), 6859–6863 (2013).
[Crossref] [PubMed]

Adv. Mater. (1)

H. K. Liang, B. Meng, G. Liang, J. Tao, Y. Chong, Q. J. Wang, and Y. Zhang, “Electrically pumped Mid-Infrared random lasers,” Adv. Mater. 25(47), 6859–6863 (2013).
[Crossref] [PubMed]

J. Nanophoton. (1)

S. Mujumdar, R. Torre, H. Ramachandran, and D. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophoton. 4(1), 041550 (2010).
[Crossref]

Nature (2)

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007).
[Crossref] [PubMed]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[Crossref]

Nature Mater. (2)

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nature Mater. 11, 1017–1022 (2012).

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nature Mater. 13, 720–725 (2014).
[Crossref]

Nature Photon. (3)

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nature Photon. 3, 279–282 (2009).
[Crossref]

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson lacalization of light,” Nature Photon. 7, 197204 (2013).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nature Photon. 7, 746–751 (2013).
[Crossref]

Nature Phys. (1)

D. S. Wiersma, “The physics and applications of random laser,” Nature Phys. 4, 359–367 (2008).
[Crossref]

Opt. Express (1)

Phys. Rev. A (2)

C. Vanneste and P. Sebbah, “Complexity of 2D random laser modes at the transition from weak scattering to Anderson localization,” Phys. Rev. A 79, 041802 (2009).
[Crossref]

H. E. Tureci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).
[Crossref]

Phys. Rev. B (3)

H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101 (2003).
[Crossref]

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66, 144202 (2002).
[Crossref]

X. Jiang and C. M. Soukoulis, “Transmission and reflection studies of periodic and random systems with gain,” Phys. Rev. B 59, 6159 (1999).
[Crossref]

Phys. Rev. E (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256 (1996).
[Crossref]

Phys. Rev. Lett. (4)

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref] [PubMed]

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70 (2000).
[Crossref] [PubMed]

A. L. Burin, M. A. Ratner, H. Cao, and S. H. Chang, “Random laser in one dimension,” Phys. Rev. Lett. 88, 093904 (2002).
[Crossref] [PubMed]

K. L. van der Molen, R. W. Tjerkstra, A. P. Mosk, and A. Lagendijk, “Spatial extent of random laser modes,” Phys. Rev. Lett. 98, 143901 (2007).
[Crossref] [PubMed]

Science (1)

H. E. Tureci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

V. S. Letokhov, “Light generation by a scattering medium with a negative resonant absorption,” Sov. Phys. JETP 16, 835–840 (1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of a full disordered structure with filling factor FF = 0.3. Detail of a structure with filling factor: (b) FF = 0.5, (c) FF = 0.1. Detail of a structure with shift coefficient: (d) Ks = 0 equivalent to a triangular lattice and (e) Ks = 0.6.
Fig. 2
Fig. 2 (a) Spectral energy distribution between 29 THz and 31 THz varying the scatterers filling factor. (b) Mode field at 29.60 THz in the structure with FF = 0.1. (c) Mode field at 29.91 THz in the structure with FF = 0.3. (d) Mode field at 29.98 THz in the structure with FF = 0.5.
Fig. 3
Fig. 3 (a) Spectral energy distribution between 29 THz and 31 THz varying the shift coefficient Ks, the filling factor is 0.3. (b) Average quality factor calculated at different values of filling factor and different values of Ks. (c) Peak quality factor calculated at different values of filling factor and different values of Ks.
Fig. 4
Fig. 4 (a) Product between the wavenumber k and the scattering mean free path l s ¯, considering a full random holes pattern, varying the filling factor. (b) Coefficient Kl, i.e. weighted variance of ls, vs filling factor for various shift values form periodic lattice. (c) Coefficient Kd, i.e. weighted variance of travel distance, vs filling factor for various shift values form periodic lattice.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

0 S K S Λ d min 2 ,
Q f = ω 2 | δ | ,
λ = 1 m F ( l s n ) ,
K l = σ l s 2 ( E [ l s ] ) 2 ,
K d = σ l s 2 ( E [ l s ] ) 2 ,

Metrics