Abstract

We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 105, these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Doppler-free spectroscopy with a terahertz quantum-cascade laser

M. Wienold, T. Alam, L. Schrottke, H. T. Grahn, and H.-W. Hübers
Opt. Express 26(6) 6692-6699 (2018)

Quantum cascade laser-pumped terahertz molecular lasers: frequency noise and phase-locking using a 1560 nm frequency comb

Jean-Francois Lampin, Antoine Pagies, Giorgio Santarelli, Jeffrey Hesler, Wolfgang Hansel, Ronald Holzwarth, and Stefano Barbieri
Opt. Express 28(2) 2091-2106 (2020)

Linewidth and tuning characteristics of terahertz quantum cascade lasers

A. Barkan, F. K. Tittel, D. M. Mittleman, R. Dengler, P. H. Siegel, G. Scalari, L. Ajili, J. Faist, H. E. Beere, E. H. Linfield, A. G. Davies, and D. A. Ritchie
Opt. Lett. 29(6) 575-577 (2004)

References

  • View by:
  • |
  • |
  • |

  1. S. Haroche, “Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary,” Rev. Mod. Phys. 85, 1083–1102 (2013).
    [Crossref]
  2. G. Gagliardi and H.-P. Loock, eds., Cavity-Enhanced Spectroscopy and Sensing, vol. 179 of Springer Series in Optical Sciences (Springer, 2014).
    [Crossref]
  3. S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
    [Crossref]
  4. G. A. Gary, E. A. West, D. Rees, J. A. McKay, M. Zukic, and P. Herman, “Solar CIV vacuum-ultraviolet Fabry–Pérot interferometers,” Astron. Astrophys. 461, 707–722 (2007).
    [Crossref]
  5. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
    [Crossref] [PubMed]
  6. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
    [Crossref] [PubMed]
  7. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [Crossref] [PubMed]
  8. B. J. Drouin, F. W. Maiwald, and J. C. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy,” Rev. Sci. Instrum. 76, 093113 (2005).
    [Crossref]
  9. J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
    [Crossref] [PubMed]
  10. K. M. Evenson, D. A. Jennings, and F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
    [Crossref]
  11. F. Matsushima, K. Kobayashi, and Y. Moriwaki, “Frequency measurement of pure rotational transitions of D2O using tunable terahertz spectrometer,” J. Phys.: Conf. Series 185, 012028 (2009).
  12. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express 17, 22031–22040 (2009).
    [Crossref] [PubMed]
  13. M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a Terahertz laser,” Nat. Photon. 6, 525–528 (2012).
    [Crossref]
  14. M. Ravaro, S. Barbieri, G. Santarelli, V. Jagtap, C. Manquest, C. Sirtori, S. P. Khanna, and E. H. Linfield, “Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb,” Opt. Express 20, 25654–25661 (2012).
    [Crossref] [PubMed]
  15. L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing,” Sensors 13, 3331–3340 (2013).
    [Crossref] [PubMed]
  16. Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Applied Physics Letters 98, 231109 (2011).
    [Crossref]
  17. S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. E. Beere, and D. A. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photon. 4, 636–640 (2010).
    [Crossref]
  18. M. Ravaro, C. Manquest, C. Sirtori, S. Barbieri, G. Santarelli, K. Blary, J.-F. Lampin, S. P. Khanna, and E. H. Linfield, “Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer,” Opt. Lett. 36, 3969–3971 (2011).
    [Crossref] [PubMed]
  19. L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
    [Crossref] [PubMed]
  20. S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).
  21. L. Consolino, A. Campa, M. Ravaro, D. Mazzotti, M. S. Vitiello, S. Bartalini, and P. De Natale, “Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser,” Appl. Phys. Lett. 106, 021108 (2015).
    [Crossref]
  22. S. Bartalini, M. S. Vitiello, and P. De Natale, “Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range,” Meas. Sci. Technol. 25, 012001 (2014).
    [Crossref]
  23. A. O’Keefe and D. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2554 (1988).
    [Crossref]
  24. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
    [Crossref]
  25. B. A. Paldus, C. C. Harb, T. G. Spence, R. N. Zare, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Opt. Lett. 25, 666–668 (2000).
    [Crossref]
  26. G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
    [Crossref] [PubMed]
  27. L. A. Surin, B. S. Dumesh, F. Lewen, D. a. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak, “Millimeter-wave intracavity-jet OROTRON-spectrometer for investigation of van der Waals complexes,” Rev. Sci. Instrum. 72, 2535–2542 (2001).
    [Crossref]
  28. G. Cazzoli, L. Cludi, C. Degli Esposti, and L. Dore, “Lamb-dip absorption spectroscopy in the far infrared region using a laser sideband spectrometer,” J. Mol. Spectrosc. 151, 378–383 (1992).
    [Crossref]
  29. M. Bellini, P. De Natale, and M. Inguscio, “Progress in the far-infrared pecision spetroscopy,” Laser Phys. 4, 408–411 (1994).
  30. R. Braakman and G. A. Blake, “Principles and promise of FabryPerot resonators at terahertz frequencies,” J. Appl. Phys. 109, 063102 (2011).
    [Crossref]
  31. P. Maddaloni, M. Bellini, and P. De Natale, Laser-Based Measurements for Time and Frequency Domain Applications: a Handbook, Series in Optics and Optoelectronics (CRC Press, 2013).
    [Crossref]

2015 (1)

L. Consolino, A. Campa, M. Ravaro, D. Mazzotti, M. S. Vitiello, S. Bartalini, and P. De Natale, “Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser,” Appl. Phys. Lett. 106, 021108 (2015).
[Crossref]

2014 (2)

S. Bartalini, M. S. Vitiello, and P. De Natale, “Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range,” Meas. Sci. Technol. 25, 012001 (2014).
[Crossref]

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).

2013 (2)

S. Haroche, “Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary,” Rev. Mod. Phys. 85, 1083–1102 (2013).
[Crossref]

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

2012 (3)

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a Terahertz laser,” Nat. Photon. 6, 525–528 (2012).
[Crossref]

M. Ravaro, S. Barbieri, G. Santarelli, V. Jagtap, C. Manquest, C. Sirtori, S. P. Khanna, and E. H. Linfield, “Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb,” Opt. Express 20, 25654–25661 (2012).
[Crossref] [PubMed]

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
[Crossref] [PubMed]

2011 (4)

R. Braakman and G. A. Blake, “Principles and promise of FabryPerot resonators at terahertz frequencies,” J. Appl. Phys. 109, 063102 (2011).
[Crossref]

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Applied Physics Letters 98, 231109 (2011).
[Crossref]

M. Ravaro, C. Manquest, C. Sirtori, S. Barbieri, G. Santarelli, K. Blary, J.-F. Lampin, S. P. Khanna, and E. H. Linfield, “Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer,” Opt. Lett. 36, 3969–3971 (2011).
[Crossref] [PubMed]

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

2010 (2)

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. E. Beere, and D. A. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photon. 4, 636–640 (2010).
[Crossref]

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

2009 (2)

F. Matsushima, K. Kobayashi, and Y. Moriwaki, “Frequency measurement of pure rotational transitions of D2O using tunable terahertz spectrometer,” J. Phys.: Conf. Series 185, 012028 (2009).

G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express 17, 22031–22040 (2009).
[Crossref] [PubMed]

2007 (3)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Optical resonators with ten million finesse,” Opt. Express 15, 6768–6773 (2007).
[Crossref] [PubMed]

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

G. A. Gary, E. A. West, D. Rees, J. A. McKay, M. Zukic, and P. Herman, “Solar CIV vacuum-ultraviolet Fabry–Pérot interferometers,” Astron. Astrophys. 461, 707–722 (2007).
[Crossref]

2005 (1)

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy,” Rev. Sci. Instrum. 76, 093113 (2005).
[Crossref]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

2001 (1)

L. A. Surin, B. S. Dumesh, F. Lewen, D. a. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak, “Millimeter-wave intracavity-jet OROTRON-spectrometer for investigation of van der Waals complexes,” Rev. Sci. Instrum. 72, 2535–2542 (2001).
[Crossref]

2000 (1)

1997 (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

1994 (1)

M. Bellini, P. De Natale, and M. Inguscio, “Progress in the far-infrared pecision spetroscopy,” Laser Phys. 4, 408–411 (1994).

1992 (2)

G. Cazzoli, L. Cludi, C. Degli Esposti, and L. Dore, “Lamb-dip absorption spectroscopy in the far infrared region using a laser sideband spectrometer,” J. Mol. Spectrosc. 151, 378–383 (1992).
[Crossref]

G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
[Crossref] [PubMed]

1988 (1)

A. O’Keefe and D. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2554 (1988).
[Crossref]

1984 (1)

K. M. Evenson, D. A. Jennings, and F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[Crossref]

Baillargeon, J. N.

Barbieri, S.

Bartalini, S.

L. Consolino, A. Campa, M. Ravaro, D. Mazzotti, M. S. Vitiello, S. Bartalini, and P. De Natale, “Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser,” Appl. Phys. Lett. 106, 021108 (2015).
[Crossref]

S. Bartalini, M. S. Vitiello, and P. De Natale, “Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range,” Meas. Sci. Technol. 25, 012001 (2014).
[Crossref]

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a Terahertz laser,” Nat. Photon. 6, 525–528 (2012).
[Crossref]

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
[Crossref] [PubMed]

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

Bartolini, P.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
[Crossref] [PubMed]

Beere, H.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).

Beere, H. E.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
[Crossref] [PubMed]

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. E. Beere, and D. A. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photon. 4, 636–640 (2010).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Bellini, M.

M. Bellini, P. De Natale, and M. Inguscio, “Progress in the far-infrared pecision spetroscopy,” Laser Phys. 4, 408–411 (1994).

P. Maddaloni, M. Bellini, and P. De Natale, Laser-Based Measurements for Time and Frequency Domain Applications: a Handbook, Series in Optics and Optoelectronics (CRC Press, 2013).
[Crossref]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Bernu, J.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

Blake, G. A.

R. Braakman and G. A. Blake, “Principles and promise of FabryPerot resonators at terahertz frequencies,” J. Appl. Phys. 109, 063102 (2011).
[Crossref]

Blary, K.

Bocquet, R.

Borri, S.

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

Bosland, P.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

Braakman, R.

R. Braakman and G. A. Blake, “Principles and promise of FabryPerot resonators at terahertz frequencies,” J. Appl. Phys. 109, 063102 (2011).
[Crossref]

Brune, M.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

Campa, A.

L. Consolino, A. Campa, M. Ravaro, D. Mazzotti, M. S. Vitiello, S. Bartalini, and P. De Natale, “Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser,” Appl. Phys. Lett. 106, 021108 (2015).
[Crossref]

Cancio, P.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
[Crossref] [PubMed]

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

Capasso, F.

Cazzoli, G.

G. Cazzoli, L. Cludi, C. Degli Esposti, and L. Dore, “Lamb-dip absorption spectroscopy in the far infrared region using a laser sideband spectrometer,” J. Mol. Spectrosc. 151, 378–383 (1992).
[Crossref]

Chattopadhyay, G.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

Cho, A. Y.

Cludi, L.

G. Cazzoli, L. Cludi, C. Degli Esposti, and L. Dore, “Lamb-dip absorption spectroscopy in the far infrared region using a laser sideband spectrometer,” J. Mol. Spectrosc. 151, 378–383 (1992).
[Crossref]

Colombelli, R.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. E. Beere, and D. A. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photon. 4, 636–640 (2010).
[Crossref]

Consolino, L.

L. Consolino, A. Campa, M. Ravaro, D. Mazzotti, M. S. Vitiello, S. Bartalini, and P. De Natale, “Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser,” Appl. Phys. Lett. 106, 021108 (2015).
[Crossref]

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a Terahertz laser,” Nat. Photon. 6, 525–528 (2012).
[Crossref]

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
[Crossref] [PubMed]

Cuisset, A.

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

De Natale, P.

L. Consolino, A. Campa, M. Ravaro, D. Mazzotti, M. S. Vitiello, S. Bartalini, and P. De Natale, “Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser,” Appl. Phys. Lett. 106, 021108 (2015).
[Crossref]

S. Bartalini, M. S. Vitiello, and P. De Natale, “Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range,” Meas. Sci. Technol. 25, 012001 (2014).
[Crossref]

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a Terahertz laser,” Nat. Photon. 6, 525–528 (2012).
[Crossref]

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
[Crossref] [PubMed]

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

M. Bellini, P. De Natale, and M. Inguscio, “Progress in the far-infrared pecision spetroscopy,” Laser Phys. 4, 408–411 (1994).

P. Maddaloni, M. Bellini, and P. De Natale, Laser-Based Measurements for Time and Frequency Domain Applications: a Handbook, Series in Optics and Optoelectronics (CRC Press, 2013).
[Crossref]

De Pas, M.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).

Deacon, D.

A. O’Keefe and D. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2554 (1988).
[Crossref]

Degli Esposti, C.

G. Cazzoli, L. Cludi, C. Degli Esposti, and L. Dore, “Lamb-dip absorption spectroscopy in the far infrared region using a laser sideband spectrometer,” J. Mol. Spectrosc. 151, 378–383 (1992).
[Crossref]

Deléglise, S.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

Ding, L.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. E. Beere, and D. A. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photon. 4, 636–640 (2010).
[Crossref]

Dore, L.

G. Cazzoli, L. Cludi, C. Degli Esposti, and L. Dore, “Lamb-dip absorption spectroscopy in the far infrared region using a laser sideband spectrometer,” J. Mol. Spectrosc. 151, 378–383 (1992).
[Crossref]

Drouin, B. J.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy,” Rev. Sci. Instrum. 76, 093113 (2005).
[Crossref]

Dumesh, B. S.

L. A. Surin, B. S. Dumesh, F. Lewen, D. a. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak, “Millimeter-wave intracavity-jet OROTRON-spectrometer for investigation of van der Waals complexes,” Rev. Sci. Instrum. 72, 2535–2542 (2001).
[Crossref]

Evenson, K. M.

K. M. Evenson, D. A. Jennings, and F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[Crossref]

Galli, I.

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

Gao, J. R.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Applied Physics Letters 98, 231109 (2011).
[Crossref]

Gary, G. A.

G. A. Gary, E. A. West, D. Rees, J. A. McKay, M. Zukic, and P. Herman, “Solar CIV vacuum-ultraviolet Fabry–Pérot interferometers,” Astron. Astrophys. 461, 707–722 (2007).
[Crossref]

Gellie, P.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. E. Beere, and D. A. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photon. 4, 636–640 (2010).
[Crossref]

Gill, J. J.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

Giusfredi, G.

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

Gleyzes, S.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

Gmachl, C. F.

Goldsmith, P. F.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

Guerlin, C.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

Harb, C. C.

Haroche, S.

S. Haroche, “Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary,” Rev. Mod. Phys. 85, 1083–1102 (2013).
[Crossref]

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

Herman, P.

G. A. Gary, E. A. West, D. Rees, J. A. McKay, M. Zukic, and P. Herman, “Solar CIV vacuum-ultraviolet Fabry–Pérot interferometers,” Astron. Astrophys. 461, 707–722 (2007).
[Crossref]

Higgins, R.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Applied Physics Letters 98, 231109 (2011).
[Crossref]

Hindle, F.

Hoff, U. B.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

Hovenier, J. N.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Applied Physics Letters 98, 231109 (2011).
[Crossref]

Hu, Q.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Applied Physics Letters 98, 231109 (2011).
[Crossref]

Hutchinson, A. L.

Ilchenko, V. S.

Inguscio, M.

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a Terahertz laser,” Nat. Photon. 6, 525–528 (2012).
[Crossref]

M. Bellini, P. De Natale, and M. Inguscio, “Progress in the far-infrared pecision spetroscopy,” Laser Phys. 4, 408–411 (1994).

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Jacques, E.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

Jagtap, V.

Jennings, D. A.

K. M. Evenson, D. A. Jennings, and F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[Crossref]

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

Kao, T.-Y.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Applied Physics Letters 98, 231109 (2011).
[Crossref]

Khanna, S. P.

Kimble, H. J.

Klapwijk, T. M.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Applied Physics Letters 98, 231109 (2011).
[Crossref]

Klein, B.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Applied Physics Letters 98, 231109 (2011).
[Crossref]

Kobayashi, K.

F. Matsushima, K. Kobayashi, and Y. Moriwaki, “Frequency measurement of pure rotational transitions of D2O using tunable terahertz spectrometer,” J. Phys.: Conf. Series 185, 012028 (2009).

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Kostromin, V. P.

L. A. Surin, B. S. Dumesh, F. Lewen, D. a. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak, “Millimeter-wave intracavity-jet OROTRON-spectrometer for investigation of van der Waals complexes,” Rev. Sci. Instrum. 72, 2535–2542 (2001).
[Crossref]

Kuhr, S.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

Lalezari, R.

Lampin, J.-F.

Lee, C.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

Lewen, F.

L. A. Surin, B. S. Dumesh, F. Lewen, D. a. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak, “Millimeter-wave intracavity-jet OROTRON-spectrometer for investigation of van der Waals complexes,” Rev. Sci. Instrum. 72, 2535–2542 (2001).
[Crossref]

Lin, R. H.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

Linfield, E. H.

Lours, M.

Maddaloni, P.

P. Maddaloni, M. Bellini, and P. De Natale, Laser-Based Measurements for Time and Frequency Domain Applications: a Handbook, Series in Optics and Optoelectronics (CRC Press, 2013).
[Crossref]

Maestrini, A.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

Maineult, W.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. E. Beere, and D. A. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photon. 4, 636–640 (2010).
[Crossref]

Maiwald, F. W.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy,” Rev. Sci. Instrum. 76, 093113 (2005).
[Crossref]

Maleki, L.

Manquest, C.

Matsko, A. B.

Matsushima, F.

F. Matsushima, K. Kobayashi, and Y. Moriwaki, “Frequency measurement of pure rotational transitions of D2O using tunable terahertz spectrometer,” J. Phys.: Conf. Series 185, 012028 (2009).

Mazzotti, D.

L. Consolino, A. Campa, M. Ravaro, D. Mazzotti, M. S. Vitiello, S. Bartalini, and P. De Natale, “Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser,” Appl. Phys. Lett. 106, 021108 (2015).
[Crossref]

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

McKay, J. A.

G. A. Gary, E. A. West, D. Rees, J. A. McKay, M. Zukic, and P. Herman, “Solar CIV vacuum-ultraviolet Fabry–Pérot interferometers,” Astron. Astrophys. 461, 707–722 (2007).
[Crossref]

Mehdi, I.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

Moriwaki, Y.

F. Matsushima, K. Kobayashi, and Y. Moriwaki, “Frequency measurement of pure rotational transitions of D2O using tunable terahertz spectrometer,” J. Phys.: Conf. Series 185, 012028 (2009).

Mouret, G.

O’Keefe, A.

A. O’Keefe and D. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2554 (1988).
[Crossref]

Osnaghi, S.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

Pak, I.

L. A. Surin, B. S. Dumesh, F. Lewen, D. a. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak, “Millimeter-wave intracavity-jet OROTRON-spectrometer for investigation of van der Waals complexes,” Rev. Sci. Instrum. 72, 2535–2542 (2001).
[Crossref]

Paldus, B. A.

Pearson, J. C.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy,” Rev. Sci. Instrum. 76, 093113 (2005).
[Crossref]

Petersen, F. R.

K. M. Evenson, D. A. Jennings, and F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[Crossref]

Raimond, J.-M.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

Ravaro, M.

Rees, D.

G. A. Gary, E. A. West, D. Rees, J. A. McKay, M. Zukic, and P. Herman, “Solar CIV vacuum-ultraviolet Fabry–Pérot interferometers,” Astron. Astrophys. 461, 707–722 (2007).
[Crossref]

Rempe, G.

Ren, Y.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Applied Physics Letters 98, 231109 (2011).
[Crossref]

Reno, J. L.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Applied Physics Letters 98, 231109 (2011).
[Crossref]

Ritchie, D.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).

Ritchie, D. A.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
[Crossref] [PubMed]

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. E. Beere, and D. A. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photon. 4, 636–640 (2010).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Roth, D. a.

L. A. Surin, B. S. Dumesh, F. Lewen, D. a. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak, “Millimeter-wave intracavity-jet OROTRON-spectrometer for investigation of van der Waals complexes,” Rev. Sci. Instrum. 72, 2535–2542 (2001).
[Crossref]

Rovera, D.

Rusin, F. S.

L. A. Surin, B. S. Dumesh, F. Lewen, D. a. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak, “Millimeter-wave intracavity-jet OROTRON-spectrometer for investigation of van der Waals complexes,” Rev. Sci. Instrum. 72, 2535–2542 (2001).
[Crossref]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

Santarelli, G.

Savchenkov, A. A.

Schlecht, E.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

Shi, S. C.

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Applied Physics Letters 98, 231109 (2011).
[Crossref]

Siegel, P.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

Sirtori, C.

Sivco, D. L.

Spence, T. G.

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

Surin, L. A.

L. A. Surin, B. S. Dumesh, F. Lewen, D. a. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak, “Millimeter-wave intracavity-jet OROTRON-spectrometer for investigation of van der Waals complexes,” Rev. Sci. Instrum. 72, 2535–2542 (2001).
[Crossref]

Taschin, a.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
[Crossref] [PubMed]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a Terahertz laser,” Nat. Photon. 6, 525–528 (2012).
[Crossref]

Thomas, B.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

Thompson, R. J.

Torre, R.

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
[Crossref] [PubMed]

Tredicucci, A.

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
[Crossref] [PubMed]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a Terahertz laser,” Nat. Photon. 6, 525–528 (2012).
[Crossref]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Visentin, B.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

Vitiello, M. S.

L. Consolino, A. Campa, M. Ravaro, D. Mazzotti, M. S. Vitiello, S. Bartalini, and P. De Natale, “Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser,” Appl. Phys. Lett. 106, 021108 (2015).
[Crossref]

S. Bartalini, M. S. Vitiello, and P. De Natale, “Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range,” Meas. Sci. Technol. 25, 012001 (2014).
[Crossref]

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
[Crossref] [PubMed]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a Terahertz laser,” Nat. Photon. 6, 525–528 (2012).
[Crossref]

Ward, J.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

West, E. A.

G. A. Gary, E. A. West, D. Rees, J. A. McKay, M. Zukic, and P. Herman, “Solar CIV vacuum-ultraviolet Fabry–Pérot interferometers,” Astron. Astrophys. 461, 707–722 (2007).
[Crossref]

Winnewisser, G.

L. A. Surin, B. S. Dumesh, F. Lewen, D. a. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak, “Millimeter-wave intracavity-jet OROTRON-spectrometer for investigation of van der Waals complexes,” Rev. Sci. Instrum. 72, 2535–2542 (2001).
[Crossref]

Yang, C.

Yu, S.

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

Zare, R. N.

Zukic, M.

G. A. Gary, E. A. West, D. Rees, J. A. McKay, M. Zukic, and P. Herman, “Solar CIV vacuum-ultraviolet Fabry–Pérot interferometers,” Astron. Astrophys. 461, 707–722 (2007).
[Crossref]

Appl. Phys. Lett. (3)

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90, 164101 (2007).
[Crossref]

K. M. Evenson, D. A. Jennings, and F. R. Petersen, “Tunable far-infrared spectroscopy,” Appl. Phys. Lett. 44, 576–578 (1984).
[Crossref]

L. Consolino, A. Campa, M. Ravaro, D. Mazzotti, M. S. Vitiello, S. Bartalini, and P. De Natale, “Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser,” Appl. Phys. Lett. 106, 021108 (2015).
[Crossref]

Applied Physics Letters (1)

Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, B. Klein, T.-Y. Kao, Q. Hu, and J. L. Reno, “High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz,” Applied Physics Letters 98, 231109 (2011).
[Crossref]

Astron. Astrophys. (1)

G. A. Gary, E. A. West, D. Rees, J. A. McKay, M. Zukic, and P. Herman, “Solar CIV vacuum-ultraviolet Fabry–Pérot interferometers,” Astron. Astrophys. 461, 707–722 (2007).
[Crossref]

Chem. Phys. Lett. (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[Crossref]

J. Appl. Phys. (1)

R. Braakman and G. A. Blake, “Principles and promise of FabryPerot resonators at terahertz frequencies,” J. Appl. Phys. 109, 063102 (2011).
[Crossref]

J. Mol. Spectrosc. (1)

G. Cazzoli, L. Cludi, C. Degli Esposti, and L. Dore, “Lamb-dip absorption spectroscopy in the far infrared region using a laser sideband spectrometer,” J. Mol. Spectrosc. 151, 378–383 (1992).
[Crossref]

J. Phys.: Conf. Series (1)

F. Matsushima, K. Kobayashi, and Y. Moriwaki, “Frequency measurement of pure rotational transitions of D2O using tunable terahertz spectrometer,” J. Phys.: Conf. Series 185, 012028 (2009).

Laser Phys. (1)

M. Bellini, P. De Natale, and M. Inguscio, “Progress in the far-infrared pecision spetroscopy,” Laser Phys. 4, 408–411 (1994).

Meas. Sci. Technol. (1)

S. Bartalini, M. S. Vitiello, and P. De Natale, “Quantum cascade lasers: a versatile source for precise measurements in the mid/far-infrared range,” Meas. Sci. Technol. 25, 012001 (2014).
[Crossref]

Nat. Commun. (1)

L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, “Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers,” Nat. Commun. 3, 1040–1044 (2012).
[Crossref] [PubMed]

Nat. Photon. (2)

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. E. Beere, and D. A. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photon. 4, 636–640 (2010).
[Crossref]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a Terahertz laser,” Nat. Photon. 6, 525–528 (2012).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, a. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, “Frequency-comb-assisted Terahertz quantum cascade laser spectroscopy,” Phys. Rev. X 4, 021006 (2014).

Rev. Mod. Phys. (1)

S. Haroche, “Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary,” Rev. Mod. Phys. 85, 1083–1102 (2013).
[Crossref]

Rev. Sci. Instrum. (4)

B. J. Drouin, F. W. Maiwald, and J. C. Pearson, “Application of cascaded frequency multiplication to molecular spectroscopy,” Rev. Sci. Instrum. 76, 093113 (2005).
[Crossref]

J. C. Pearson, B. J. Drouin, A. Maestrini, I. Mehdi, J. Ward, R. H. Lin, S. Yu, J. J. Gill, B. Thomas, C. Lee, G. Chattopadhyay, E. Schlecht, F. W. Maiwald, P. F. Goldsmith, and P. Siegel, “Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source,” Rev. Sci. Instrum. 82, 093105 (2011).
[Crossref] [PubMed]

L. A. Surin, B. S. Dumesh, F. Lewen, D. a. Roth, V. P. Kostromin, F. S. Rusin, G. Winnewisser, and I. Pak, “Millimeter-wave intracavity-jet OROTRON-spectrometer for investigation of van der Waals complexes,” Rev. Sci. Instrum. 72, 2535–2542 (2001).
[Crossref]

A. O’Keefe and D. Deacon, “Cavity ringdown optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2554 (1988).
[Crossref]

Sensors (1)

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

Other (2)

G. Gagliardi and H.-P. Loock, eds., Cavity-Enhanced Spectroscopy and Sensing, vol. 179 of Springer Series in Optical Sciences (Springer, 2014).
[Crossref]

P. Maddaloni, M. Bellini, and P. De Natale, Laser-Based Measurements for Time and Frequency Domain Applications: a Handbook, Series in Optics and Optoelectronics (CRC Press, 2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The two cavity configurations adopted in the present work. (a) The V-shaped cavity consists of two Au-coated spherical mirrors (SM) and one wire-grid polarizer (WGP) acting as planar input/output coupler. (b) For the ring-shaped cavity we use two parabolic mirrors (PM), one plane mirror (M), and one WPG, placed at the vertices of a square. The two-sided arrows indicate the translating mirrors. The chosen lengths ensure, in both cases, an operation close to the confocal condition, while avoiding the degeneracy of transverse modes with longitudinal ones.
Fig. 2
Fig. 2 The experimental setup includes both the developed cavities. The half-wave plate (HWP) and the polarizing beam-splitter (PBS) allow to choose the fraction of the QCL light to be send to each cavity. In this way it is possible to use one cavity at a time or both simultaneously. The mirrors placed after the PBS allows for an independent alignment of each cavity. By placing the chopper wheels inside the cavities it is possible to detect the amount of coupled radiation as a dip in the power of the beam reflected by the input coupler, occurring at resonance.
Fig. 3
Fig. 3 (a) Measurement of the beam waist dimensions and position is carried out by taking several images of the beam section (b,example) at different propagation distances, and by fitting them with Eq. 2. The laser collimation is adjusted in order to optimize the mode-matching with the cavities modes.
Fig. 4
Fig. 4 Effect of the absorption from air on the V-shaped cavity spectrum, as evidenced by comparing two spectra acquired with the cavity either in ambient air (black) or under N2 purging (red). In this latter case, the lower losses determine narrower and higher resonance peaks, due to the expected increase of the cavity finesse.
Fig. 5
Fig. 5 The effect of OF from the V-shaped cavity to the QCL is quantitatively studied by analysing the width of the cavity peak as a function of the incoming power (a), and thus of the feedback level (normalized to its maximum value). The beam level is controlled by rotating the HWP (see Fig. 2). From the peak width it is possible to retrieve the dependence of the apparent cavity finesse on the feedback level (b). The plot clearly shows that the presence of OF results in a lower measured finesse value, suggesting that the QCL frequency is perturbed by OF and follows the cavity mode frequency.
Fig. 6
Fig. 6 (a) Optimized spectrum of the V-shaped cavity in N2-purged atmosphere. The suppression of OF is obtained by attenuating the incoming beam and, consequently, the back-reflected beam. (b) Optimized spectrum of the ring cavity in N2-purged atmosphere.
Fig. 7
Fig. 7 The effect of V-shaped cavity OF on the QCL can be studied by using the ring cavity as a monitor of the laser frequency fluctuations. The ring cavity is tuned at resonance half-height, so that the peak slope converts any frequency drift in a detectable amplitude variation. The V-shaped cavity is then scanned, and the signals from both cavities are simultaneously acquired. The measurement is performed in presence (a) and in absence (b) of OF to the QCL. Slow changes in the red signal are due to QCL laser temperature drifts, amplified by the signal slope.

Tables (1)

Tables Icon

Table 1 Main parameters calculated for the V-shaped and ring cavities. All parameters are calculated in vacuum (without absorption from air). The column air reports the finesse values calculated by taking into account an absorption coefficient of ∼ 0.0038 cm−1.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

w 0 i 2 = λ z R i / π = ( λ M i 2 / π θ i ) 2 ( i = x , y )
I ( x , y , z ) = 2 P π w x ( z ) w y ( z ) e 2 [ x 2 w x ( z ) 2 + y 2 w y ( z ) 2 ]
w i ( z ) = w 0 i 1 + [ M i 2 ( z z 0 i ) z R i ] 2 ( i = x , y )
A w g = T w g = 4 2 ρ g π μ 0 c λ d
V π 1 R p R m V 83
R π 1 R p R m R 3 65

Metrics