Abstract

Abstract:Metal transparent conductive electrode (TCE) with surface plasmons has been extensively studied for light absorption enhancement in solar cells and light extraction in Light-Emitting Diodes etc. But its transparent conductive properties and surface plasmons are controlled by its micromorphologies and microstructures. In this work, photoelectric coupling effects and optical transmittance modulations of period, linewidth and height of Au nanowire in square mesh electrode were investigated detailedly using a comprehensive finite-difference time domain calculation stimulation, and then Au square mesh TCEs with the 500 nm in period, 70 nm in height and linewidth ranging from 60 to 100 nm were fabricated using electron beam lithography. The measured results showed that the optical transmittance of the TCEs is about 70% in the 350-700 nm wavelength range and over 80% in the 700-1000 nm range, which accord with the theoretical simulation results. Optical transmittance is affected by reflection loss, localized surface plasmon resonances and surface plasmon polarizations (SPPs) absorption loss, concerned about geometry parameters. SPPs dip peak position exhibits a blue-shift from 844 to 812 nm and the width of peak increases with increasing the linewidth from 60 to 100 nm, The measured surface resistivity of the TCEs with the 500 nm in period, 50 nm in height and 50 nm in linewidth is about 74.5 Ω/m2, about two times bigger than that of commercial indium tin oxide glass.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes

Kilbock Lee, Seok Ho Song, and Jinho Ahn
Opt. Express 22(6) 6269-6275 (2014)

Embedded Ag mesh electrodes for polymer dispersed liquid crystal devices on flexible substrate

Yanhua Liu, Su Shen, Jin Hu, and Linsen Chen
Opt. Express 24(22) 25774-25784 (2016)

Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells

Ju Won Lim, Young Tack Lee, Rina Pandey, Tae-Hee Yoo, Byoung-In Sang, Byeong-Kwon Ju, Do Kyung Hwang, and Won Kook Choi
Opt. Express 22(22) 26891-26899 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. R. Madaria, A. Kumar, and C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnology 22(24), 245201 (2011).
    [Crossref] [PubMed]
  2. S. Coskun, E. S. Ates, and H. E. Unalan, “Optimization of silver nanowire networks for polymer light emitting diode electrodes,” Opt. Express 22(S5), A1372–A1379 (2009).
  3. T. S. Luk, N. T. Fofang, J. L. Cruz-Campa, I. Frank, and S. Campione, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
    [PubMed]
  4. S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
    [Crossref]
  5. Z. Chena, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A Mechanical Assessment of Flexible Optoelectronic Devices,” Thin Solid Films 394(1–2), 201–205 (2001).
    [Crossref]
  6. H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
    [Crossref] [PubMed]
  7. N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent Ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
    [Crossref] [PubMed]
  8. L. Ke, R. S. Kumar, P. Chen, L. Shen, S. J. Chua, and A. P. Burden, “Au-ITO Anode for Efficient Polymer Light-Emitting Device Operation,” IEEE Photon. Technol. Lett. 17(3), 543–545 (2005).
    [Crossref]
  9. I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K. S. Lee, “Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells,” Opt. Express 21(S4Suppl 4), A669–A676 (2013).
    [Crossref] [PubMed]
  10. J. Kholopova, A. Kovalchuk, E. Polushkin, V. Zemlyakov, S. Shapoval, D. Kozlov, I. Khmyrova, T. Hasegawa, and S. Tomioka, “Patterning of Top Metal Electrode for Light Extraction Improvement in Light-Emitting Diodes,” in 11th international conference on nanoimprint and nanoimprint technology (2013).
  11. C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing,” ACS Nano 7(9), 7583–7591 (2013).
    [Crossref] [PubMed]
  12. Z. Ye, S. Chaudhary, P. Kuang, and K. M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express 20(11), 12213–12221 (2012).
    [Crossref] [PubMed]
  13. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  14. J. van de Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12(6), 3138–3144 (2012).
    [Crossref] [PubMed]
  15. K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23(42), 425303 (2012).
    [Crossref] [PubMed]
  16. S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21(S3Suppl 3), A355–A362 (2013).
    [Crossref] [PubMed]
  17. S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
    [Crossref]
  18. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
    [Crossref]
  19. M. G. Kang and L. J. Guo, “Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes,” Adv. Mater. 19(10), 1391–1396 (2007).
    [Crossref]
  20. M. G. Kang, M. S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
    [Crossref]
  21. P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
    [Crossref] [PubMed]
  22. G. Veronis and S. Fan, “Overview of Simulation Techniques for Plasmonic Devices,” in Surface plasmon nanophotonics, (Springer, 2007).
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  24. P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10, 2944–2949 (2010).

2014 (2)

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

2013 (5)

S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21(S3Suppl 3), A355–A362 (2013).
[Crossref] [PubMed]

H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
[Crossref] [PubMed]

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent Ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K. S. Lee, “Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells,” Opt. Express 21(S4Suppl 4), A669–A676 (2013).
[Crossref] [PubMed]

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

2012 (3)

Z. Ye, S. Chaudhary, P. Kuang, and K. M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express 20(11), 12213–12221 (2012).
[Crossref] [PubMed]

J. van de Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23(42), 425303 (2012).
[Crossref] [PubMed]

2011 (2)

A. R. Madaria, A. Kumar, and C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnology 22(24), 245201 (2011).
[Crossref] [PubMed]

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

2010 (2)

P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10, 2944–2949 (2010).

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

T. S. Luk, N. T. Fofang, J. L. Cruz-Campa, I. Frank, and S. Campione, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[PubMed]

M. G. Kang, M. S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[Crossref]

2007 (1)

M. G. Kang and L. J. Guo, “Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes,” Adv. Mater. 19(10), 1391–1396 (2007).
[Crossref]

2005 (1)

L. Ke, R. S. Kumar, P. Chen, L. Shen, S. J. Chua, and A. P. Burden, “Au-ITO Anode for Efficient Polymer Light-Emitting Device Operation,” IEEE Photon. Technol. Lett. 17(3), 543–545 (2005).
[Crossref]

2001 (1)

Z. Chena, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A Mechanical Assessment of Flexible Optoelectronic Devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

1996 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[Crossref]

Ates, E. S.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Burden, A. P.

L. Ke, R. S. Kumar, P. Chen, L. Shen, S. J. Chua, and A. P. Burden, “Au-ITO Anode for Efficient Polymer Light-Emitting Device Operation,” IEEE Photon. Technol. Lett. 17(3), 543–545 (2005).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Campione, S.

T. S. Luk, N. T. Fofang, J. L. Cruz-Campa, I. Frank, and S. Campione, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[PubMed]

Cao, C.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Catrysse, P. B.

P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10, 2944–2949 (2010).

Chakraborty, S.

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

Chaudhary, S.

Z. Ye, S. Chaudhary, P. Kuang, and K. M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express 20(11), 12213–12221 (2012).
[Crossref] [PubMed]

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Chen, P.

L. Ke, R. S. Kumar, P. Chen, L. Shen, S. J. Chua, and A. P. Burden, “Au-ITO Anode for Efficient Polymer Light-Emitting Device Operation,” IEEE Photon. Technol. Lett. 17(3), 543–545 (2005).
[Crossref]

Chena, Z.

Z. Chena, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A Mechanical Assessment of Flexible Optoelectronic Devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

Cheng, K.

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23(42), 425303 (2012).
[Crossref] [PubMed]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[Crossref]

Chua, S. J.

L. Ke, R. S. Kumar, P. Chen, L. Shen, S. J. Chua, and A. P. Burden, “Au-ITO Anode for Efficient Polymer Light-Emitting Device Operation,” IEEE Photon. Technol. Lett. 17(3), 543–545 (2005).
[Crossref]

Z. Chena, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A Mechanical Assessment of Flexible Optoelectronic Devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

Chung, I.

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent Ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

Constant, K.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Coskun, S.

Cotterell, B.

Z. Chena, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A Mechanical Assessment of Flexible Optoelectronic Devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

Cruz-Campa, J. L.

T. S. Luk, N. T. Fofang, J. L. Cruz-Campa, I. Frank, and S. Campione, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[PubMed]

Cui, Z.

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23(42), 425303 (2012).
[Crossref] [PubMed]

Dao, N. T.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

de Riet, J. F.

H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
[Crossref] [PubMed]

Dodson, S. L.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Du, Z.

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23(42), 425303 (2012).
[Crossref] [PubMed]

Fan, S.

P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10, 2944–2949 (2010).

Fofang, N. T.

T. S. Luk, N. T. Fofang, J. L. Cruz-Campa, I. Frank, and S. Campione, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[PubMed]

Frank, I.

T. S. Luk, N. T. Fofang, J. L. Cruz-Campa, I. Frank, and S. Campione, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[PubMed]

Galagan, Y.

H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
[Crossref] [PubMed]

Gilot, J.

H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
[Crossref] [PubMed]

Groen, W. A.

H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
[Crossref] [PubMed]

Gu, M.

Guenther, E.

Z. Chena, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A Mechanical Assessment of Flexible Optoelectronic Devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

Guo, L. J.

M. G. Kang, M. S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[Crossref]

M. G. Kang and L. J. Guo, “Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes,” Adv. Mater. 19(10), 1391–1396 (2007).
[Crossref]

Gupta, R.

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

Ho, K. M.

Z. Ye, S. Chaudhary, P. Kuang, and K. M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express 20(11), 12213–12221 (2012).
[Crossref] [PubMed]

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Hui, D.

H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
[Crossref] [PubMed]

Jeong, D. S.

Jia, B.

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kang, M. G.

M. G. Kang, M. S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[Crossref]

M. G. Kang and L. J. Guo, “Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes,” Adv. Mater. 19(10), 1391–1396 (2007).
[Crossref]

Ke, L.

L. Ke, R. S. Kumar, P. Chen, L. Shen, S. J. Chua, and A. P. Burden, “Au-ITO Anode for Efficient Polymer Light-Emitting Device Operation,” IEEE Photon. Technol. Lett. 17(3), 543–545 (2005).
[Crossref]

Kim, I.

Kim, J.

M. G. Kang, M. S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[Crossref]

Kim, K.

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent Ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

Kim, M. S.

M. G. Kang, M. S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[Crossref]

Kim, T. G.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Kim, W. M.

Kiruthika, S.

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[Crossref]

Kuang, P.

Z. Ye, S. Chaudhary, P. Kuang, and K. M. Ho, “Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes,” Opt. Express 20(11), 12213–12221 (2012).
[Crossref] [PubMed]

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Kulkarni, G. U.

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

Kumar, A.

A. R. Madaria, A. Kumar, and C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnology 22(24), 245201 (2011).
[Crossref] [PubMed]

Kumar, R. S.

L. Ke, R. S. Kumar, P. Chen, L. Shen, S. J. Chua, and A. P. Burden, “Au-ITO Anode for Efficient Polymer Light-Emitting Device Operation,” IEEE Photon. Technol. Lett. 17(3), 543–545 (2005).
[Crossref]

Kwon, N.

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent Ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

Lee, K. S.

Lee, T. S.

Lee, W. S.

Lelieveld, R. H. C. A. T.

H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
[Crossref] [PubMed]

Leung, W.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Li, Q.

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23(42), 425303 (2012).
[Crossref] [PubMed]

Li, S.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Luk, T. S.

T. S. Luk, N. T. Fofang, J. L. Cruz-Campa, I. Frank, and S. Campione, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[PubMed]

Madaria, A. R.

A. R. Madaria, A. Kumar, and C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnology 22(24), 245201 (2011).
[Crossref] [PubMed]

Mahadevapuram, R. C.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Nagelkerke, M. G. M.

H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
[Crossref] [PubMed]

Nalwa, K. S.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Ouyang, Z.

Padmavathy, N.

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

Pagudala, A.

H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
[Crossref] [PubMed]

Park, J. M.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

Phan, A. T.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Polman, A.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Rao, K. D. M.

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Shanmugam, S.

H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
[Crossref] [PubMed]

Shen, L.

L. Ke, R. S. Kumar, P. Chen, L. Shen, S. J. Chua, and A. P. Burden, “Au-ITO Anode for Efficient Polymer Light-Emitting Device Operation,” IEEE Photon. Technol. Lett. 17(3), 543–545 (2005).
[Crossref]

Spinelli, P.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

Sung, S.

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent Ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

Unalan, H. E.

van de Groep, J.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

van de Wiel, H. J.

H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
[Crossref] [PubMed]

van Lammeren, T. J.

H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
[Crossref] [PubMed]

Wang, S.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23(42), 425303 (2012).
[Crossref] [PubMed]

Wang, W.

Z. Chena, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A Mechanical Assessment of Flexible Optoelectronic Devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

Wen, X.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wong, L. M.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Xie, S.

Xiong, Q.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Ye, Z.

Yi, I.

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent Ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

Zhang, J.

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Zhou, C.

A. R. Madaria, A. Kumar, and C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnology 22(24), 245201 (2011).
[Crossref] [PubMed]

ACS Nano (1)

C. Cao, J. Zhang, X. Wen, S. L. Dodson, N. T. Dao, L. M. Wong, S. Wang, S. Li, A. T. Phan, and Q. Xiong, “Metamaterials-Based Label-Free Nanosensor for Conformation and Affinity Biosensing,” ACS Nano 7(9), 7583–7591 (2013).
[Crossref] [PubMed]

Adv. Mater. (3)

M. G. Kang and L. J. Guo, “Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes,” Adv. Mater. 19(10), 1391–1396 (2007).
[Crossref]

M. G. Kang, M. S. Kim, J. Kim, and L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 20(23), 4408–4413 (2008).
[Crossref]

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance,” Adv. Mater. 23(21), 2469–2473 (2011).
[Crossref] [PubMed]

IEEE Photon. Technol. Lett. (1)

L. Ke, R. S. Kumar, P. Chen, L. Shen, S. J. Chua, and A. P. Burden, “Au-ITO Anode for Efficient Polymer Light-Emitting Device Operation,” IEEE Photon. Technol. Lett. 17(3), 543–545 (2005).
[Crossref]

J. Mater. Chem. C (2)

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

S. Kiruthika, R. Gupta, K. D. M. Rao, S. Chakraborty, N. Padmavathy, and G. U. Kulkarni, “Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network,” J. Mater. Chem. C 2(11), 2089–2094 (2014).
[Crossref]

Nano Lett. (3)

J. van de Groep, P. Spinelli, and A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 12(6), 3138–3144 (2012).
[Crossref] [PubMed]

P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett. 10, 2944–2949 (2010).

T. S. Luk, N. T. Fofang, J. L. Cruz-Campa, I. Frank, and S. Campione, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008).
[PubMed]

Nanotechnology (4)

K. Cheng, Z. Cui, Q. Li, S. Wang, and Z. Du, “Large-scale fabrication of a continuous gold network for use as a transparent conductive electrode in photo-electronic devices,” Nanotechnology 23(42), 425303 (2012).
[Crossref] [PubMed]

H. J. van de Wiel, Y. Galagan, T. J. van Lammeren, J. F. de Riet, J. Gilot, M. G. M. Nagelkerke, R. H. C. A. T. Lelieveld, S. Shanmugam, A. Pagudala, D. Hui, and W. A. Groen, “Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices,” Nanotechnology 24(48), 484014 (2013).
[Crossref] [PubMed]

N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly conductive and transparent Ag honeycomb mesh fabricated using a monolayer of polystyrene spheres,” Nanotechnology 24(23), 235205 (2013).
[Crossref] [PubMed]

A. R. Madaria, A. Kumar, and C. Zhou, “Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens,” Nanotechnology 22(24), 245201 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Science (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996).
[Crossref]

Thin Solid Films (1)

Z. Chena, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A Mechanical Assessment of Flexible Optoelectronic Devices,” Thin Solid Films 394(1–2), 201–205 (2001).
[Crossref]

Other (3)

J. Kholopova, A. Kovalchuk, E. Polushkin, V. Zemlyakov, S. Shapoval, D. Kozlov, I. Khmyrova, T. Hasegawa, and S. Tomioka, “Patterning of Top Metal Electrode for Light Extraction Improvement in Light-Emitting Diodes,” in 11th international conference on nanoimprint and nanoimprint technology (2013).

G. Veronis and S. Fan, “Overview of Simulation Techniques for Plasmonic Devices,” in Surface plasmon nanophotonics, (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Fabrication procedures of the Au square mesh electrode. (a) Si wafer is coated with PMGI SF5 and baked at 180 °C for 5 min. (b) SF5/Si is coated with PMMA and baked at 180 °C for 30 min. (c) Electron beam exposure is done. (d) Develop imaging PMMA in the mixed solvent of MIBK and IPA (1:3). (e) Develop imaging SF5 in 1% deionized water solvent of TMAH. (f) Deposition of the Au film. (g) Lift-off bi-layer resist stack, leaving only Au square mesh electrodes. (h) Shows the schematic layout of the resulting sample.
Fig. 2
Fig. 2 (A) Simulated optical transmittance (the upper curves) and absorption (the lower curves) as a function of wavelength for a range of periods with 100 nm in linewidth and 50 nm in height; (B) Transmittance (the upper curves) and absorption (the lower curves) as a function of wavelength for the 2D Au nanowire square meshes (a), one nanowire vertical to the polarization direction of electric field (b) and one nanowire parallel to the polarization direction of electric field (c), Period = 550 nm, linewidth = 100 nm, height = 50 nm. (C) Transmittance as a function of wavelength for the Au nanowire square meshes with the 550 nm period in the y direction and the periods in the 400-550 nm range in the x direction. (D) shows the schematic configurations of electric field monitors; k denotes light incident direction along the negative Z axis; E denotes polarization direction of electric field; the (e), (f) and (g) monitors record electric field profiles in the x-y plane at half height of Au nanograting, in the x-z and y-z planes at 150 nm location apart from the crosspoint, respectively. (E), (F) and (G) present the corresponding electric field profiles in (e), (f) and (g) monitors.
Fig. 3
Fig. 3 (A) Simulated optical transmittance as a function of wavelength for a range of heights with 500 nm in period and 80 nm in linewidth; (B) and (C) is the respective simulated transmittance (the upper curves), reflection (the lower curves) and absorption as a function of wavelength for a range of linewidths with 500 nm in period and 50 nm in height.
Fig. 4
Fig. 4 (A) The SEM image of the Au square mesh electrode with the 500 nm in period, 50 nm in linewidth and 50 nm in height. (B) The SEM image shows the contact zone of the electrode network and the measurement pad..
Fig. 5
Fig. 5 The measured optical transmittance of the Au square mesh TCEs with the 500 nm in period, 50 nm in height and the linewidths of 60 nm, 65 nm and 100 nm for Curve (a), (b) and (c), respectively. The inset shows SEM image of Au square mesh electrode with the average 60 nm in linewidth.
Fig. 6
Fig. 6 The surface resistance as a function of nanowire linewidths for Au square mesh electrodes with the 500 nm period and the 50 nm height; The inset shows the I-V curve of the electrode with the 500 nm in period, the 50 nm in linewidth and the 50 nm in height and the corresponding surface resistivity is 74.5 Ω/m2.

Metrics