Abstract

Graphene’s relatively poor absorption is an essential obstacle for designing graphene-based photonic devices with satisfying photo-responsivity. To enhance the tunable light absorption of graphene, appropriate excitation of localized surface plasmon resonance is considered as a promising approach. In this work, the strategy of incorporating periodic cuboid gold nanoparticle (NP) cluster arrays and cylindrical gold NP arrays with Bragg reflectors into graphene-based photodetectors are theoretically studied by the boundary-integral spectral element method (BI-SEM). With the BI-SEM, the models can be numerically analyzed with excellent accuracy and efficiency. Numerical simulation shows that the proposed structures can effectively engineer the light absorption in graphene by tuning plasmon resonance. In the spectra of 300 nm to 1000 nm, a maximum light absorption of 67.54% is observed for the graphene layer with optimal parameters of the photodetector model.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Boundary integral spectral element method analyses of extreme ultraviolet multilayer defects

Jun Niu, Ma Luo, Yuan Fang, and Qing Huo Liu
J. Opt. Soc. Am. A 31(10) 2203-2209 (2014)

Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials

Bo Liu, Chaojun Tang, Jing Chen, Qiugu Wang, Mingxu Pei, and Huang Tang
Opt. Express 25(10) 12061-12068 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
    [Crossref] [PubMed]
  2. F. T. Vasko, “Saturation of interband absorption in graphene,” Phys. Rev. B 82 (24), 245422 (2010).
    [Crossref]
  3. H. Li, Y. Anugrah, S. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
    [Crossref]
  4. J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5 (17), 7785–7789 (2013).
    [Crossref] [PubMed]
  5. T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458–462 (2011).
    [Crossref] [PubMed]
  6. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579–585 (2011).
    [Crossref] [PubMed]
  7. S. Thongrattanasiri, F. H. L. Koppens, and F. Javier Garca de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
    [Crossref] [PubMed]
  8. Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
    [Crossref] [PubMed]
  9. J. Anthony Arduengo, H. V. Rasika Dias, R. L. Harlow, and M. Kline, “Enhancing the absorption of graphene in the terahertz range,” Europhys. Lett. 101, 58002–58006 (2013).
    [Crossref]
  10. A. N. Grigorenko, M. d Polini, and K. S. Novoselov, “Graphene plasmonic,” Nat. Photonics 6, 749–758 (2012).
    [Crossref]
  11. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
    [Crossref] [PubMed]
  12. J. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE T. Microw. Theory 54, 437–444 (2006).
    [Crossref]
  13. Y. Yao, M. A. kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
    [Crossref] [PubMed]
  14. C. Chen and J. Hone, “Graphene nanoelectromechanical systems,” Proc. IEEE 1011766–1779, (2013).
    [Crossref]
  15. M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
    [Crossref]
  16. G. Meurant, “A review on the inverse of symmetric tridiagonal and block tridiagonal matrices,” SIAM J. Matrix Anal. A. 13, 707 (1992).
    [Crossref]
  17. M. Luo, Y. Lin, and Q. H. Liu, “Spectral methods and domain decomposition for nanophotonic applications,” Proc. IEEE 101, 473–483 (2013).
    [Crossref]
  18. J. Niu, M. Luo, Y. Fang, and Q. H. Liu, “Boundary integral spectral element method analyses of extreme ultraviolet multilayer defects,” J. Opt. Soc. Am. A 3110, 2203–2209 (2014)
    [Crossref]
  19. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
    [Crossref] [PubMed]
  20. A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
    [Crossref]
  21. J. Chen, L. E. Tobon, M. Chai, J. A. Mix, and Q. H. Liu, “Efficient implicit-explicit time stepping scheme with domain decomposition for multiscale modeling of layered structures,” IEEE Trans. Comp., Packag. Manufact”, Technol. 1, 1438–1446 (2011).
  22. W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
    [Crossref]
  23. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
    [Crossref] [PubMed]
  24. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]

2014 (1)

2013 (6)

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5 (17), 7785–7789 (2013).
[Crossref] [PubMed]

J. Anthony Arduengo, H. V. Rasika Dias, R. L. Harlow, and M. Kline, “Enhancing the absorption of graphene in the terahertz range,” Europhys. Lett. 101, 58002–58006 (2013).
[Crossref]

Y. Yao, M. A. kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

C. Chen and J. Hone, “Graphene nanoelectromechanical systems,” Proc. IEEE 1011766–1779, (2013).
[Crossref]

M. Luo, Y. Lin, and Q. H. Liu, “Spectral methods and domain decomposition for nanophotonic applications,” Proc. IEEE 101, 473–483 (2013).
[Crossref]

2012 (6)

H. Li, Y. Anugrah, S. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. Javier Garca de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref] [PubMed]

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref] [PubMed]

A. N. Grigorenko, M. d Polini, and K. S. Novoselov, “Graphene plasmonic,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref] [PubMed]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

2011 (3)

J. Chen, L. E. Tobon, M. Chai, J. A. Mix, and Q. H. Liu, “Efficient implicit-explicit time stepping scheme with domain decomposition for multiscale modeling of layered structures,” IEEE Trans. Comp., Packag. Manufact”, Technol. 1, 1438–1446 (2011).

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458–462 (2011).
[Crossref] [PubMed]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579–585 (2011).
[Crossref] [PubMed]

2010 (2)

F. T. Vasko, “Saturation of interband absorption in graphene,” Phys. Rev. B 82 (24), 245422 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

2009 (2)

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref] [PubMed]

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

2008 (2)

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

2006 (1)

J. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE T. Microw. Theory 54, 437–444 (2006).
[Crossref]

1992 (1)

G. Meurant, “A review on the inverse of symmetric tridiagonal and block tridiagonal matrices,” SIAM J. Matrix Anal. A. 13, 707 (1992).
[Crossref]

Ajayan, P. M.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref] [PubMed]

Anugrah, Y.

H. Li, Y. Anugrah, S. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

Arduengo, J. Anthony

J. Anthony Arduengo, H. V. Rasika Dias, R. L. Harlow, and M. Kline, “Enhancing the absorption of graphene in the terahertz range,” Europhys. Lett. 101, 58002–58006 (2013).
[Crossref]

Atmatzakis, E.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Avouris, P.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref] [PubMed]

Bai, J.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579–585 (2011).
[Crossref] [PubMed]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref] [PubMed]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Boden, S. A.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Borini, S.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Britnell, L.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458–462 (2011).
[Crossref] [PubMed]

Bruna, M.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

capasso, F.

Y. Yao, M. A. kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Chai, M.

J. Chen, L. E. Tobon, M. Chai, J. A. Mix, and Q. H. Liu, “Efficient implicit-explicit time stepping scheme with domain decomposition for multiscale modeling of layered structures,” IEEE Trans. Comp., Packag. Manufact”, Technol. 1, 1438–1446 (2011).

Chen, C.

C. Chen and J. Hone, “Graphene nanoelectromechanical systems,” Proc. IEEE 1011766–1779, (2013).
[Crossref]

Chen, J.

J. Chen, L. E. Tobon, M. Chai, J. A. Mix, and Q. H. Liu, “Efficient implicit-explicit time stepping scheme with domain decomposition for multiscale modeling of layered structures,” IEEE Trans. Comp., Packag. Manufact”, Technol. 1, 1438–1446 (2011).

Cheng, R.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579–585 (2011).
[Crossref] [PubMed]

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref] [PubMed]

d Polini, M.

A. N. Grigorenko, M. d Polini, and K. S. Novoselov, “Graphene plasmonic,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

De Angelis, F.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Di Fabrizio, E.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Duan, X.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579–585 (2011).
[Crossref] [PubMed]

Echtermeyer, T. J.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458–462 (2011).
[Crossref] [PubMed]

Fang, Y.

Fang, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref] [PubMed]

Ferrari, A. C.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458–462 (2011).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Geim, A. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458–462 (2011).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Genevet, P.

Y. Yao, M. A. kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Girit, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref] [PubMed]

Gorbachev, R. V.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458–462 (2011).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. d Polini, and K. S. Novoselov, “Graphene plasmonic,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458–462 (2011).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Halas, N. J.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref] [PubMed]

Harlow, R. L.

J. Anthony Arduengo, H. V. Rasika Dias, R. L. Harlow, and M. Kline, “Enhancing the absorption of graphene in the terahertz range,” Europhys. Lett. 101, 58002–58006 (2013).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Hone, J.

C. Chen and J. Hone, “Graphene nanoelectromechanical systems,” Proc. IEEE 1011766–1779, (2013).
[Crossref]

Huang, Y.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579–585 (2011).
[Crossref] [PubMed]

Jasnos, P. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458–462 (2011).
[Crossref] [PubMed]

Javier Garca de Abajo, F.

S. Thongrattanasiri, F. H. L. Koppens, and F. Javier Garca de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref] [PubMed]

kats, M. A.

Y. Yao, M. A. kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Kline, M.

J. Anthony Arduengo, H. V. Rasika Dias, R. L. Harlow, and M. Kline, “Enhancing the absorption of graphene in the terahertz range,” Europhys. Lett. 101, 58002–58006 (2013).
[Crossref]

Koester, S.

H. Li, Y. Anugrah, S. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

Kong, J.

Y. Yao, M. A. kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. Javier Garca de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref] [PubMed]

Lee, J.

J. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE T. Microw. Theory 54, 437–444 (2006).
[Crossref]

Li, H.

H. Li, Y. Anugrah, S. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

Li, M.

H. Li, Y. Anugrah, S. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

Liao, L.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579–585 (2011).
[Crossref] [PubMed]

Lin, T.

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5 (17), 7785–7789 (2013).
[Crossref] [PubMed]

Lin, Y.

M. Luo, Y. Lin, and Q. H. Liu, “Spectral methods and domain decomposition for nanophotonic applications,” Proc. IEEE 101, 473–483 (2013).
[Crossref]

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref] [PubMed]

Liu, G.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579–585 (2011).
[Crossref] [PubMed]

Liu, L.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579–585 (2011).
[Crossref] [PubMed]

Liu, Q. H.

J. Niu, M. Luo, Y. Fang, and Q. H. Liu, “Boundary integral spectral element method analyses of extreme ultraviolet multilayer defects,” J. Opt. Soc. Am. A 3110, 2203–2209 (2014)
[Crossref]

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5 (17), 7785–7789 (2013).
[Crossref] [PubMed]

M. Luo, Y. Lin, and Q. H. Liu, “Spectral methods and domain decomposition for nanophotonic applications,” Proc. IEEE 101, 473–483 (2013).
[Crossref]

J. Chen, L. E. Tobon, M. Chai, J. A. Mix, and Q. H. Liu, “Efficient implicit-explicit time stepping scheme with domain decomposition for multiscale modeling of layered structures,” IEEE Trans. Comp., Packag. Manufact”, Technol. 1, 1438–1446 (2011).

J. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE T. Microw. Theory 54, 437–444 (2006).
[Crossref]

Liu, Y.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579–585 (2011).
[Crossref] [PubMed]

Liu, Z.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref] [PubMed]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref] [PubMed]

Lombardo, A.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458–462 (2011).
[Crossref] [PubMed]

Luo, M.

J. Niu, M. Luo, Y. Fang, and Q. H. Liu, “Boundary integral spectral element method analyses of extreme ultraviolet multilayer defects,” J. Opt. Soc. Am. A 3110, 2203–2209 (2014)
[Crossref]

M. Luo, Y. Lin, and Q. H. Liu, “Spectral methods and domain decomposition for nanophotonic applications,” Proc. IEEE 101, 473–483 (2013).
[Crossref]

Luo, Z.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Meurant, G.

G. Meurant, “A review on the inverse of symmetric tridiagonal and block tridiagonal matrices,” SIAM J. Matrix Anal. A. 13, 707 (1992).
[Crossref]

Mix, J. A.

J. Chen, L. E. Tobon, M. Chai, J. A. Mix, and Q. H. Liu, “Efficient implicit-explicit time stepping scheme with domain decomposition for multiscale modeling of layered structures,” IEEE Trans. Comp., Packag. Manufact”, Technol. 1, 1438–1446 (2011).

Mueller, T.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Nikolaenko, A. E.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Niu, J.

Nordlander, P.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref] [PubMed]

Novoselov, K. S.

A. N. Grigorenko, M. d Polini, and K. S. Novoselov, “Graphene plasmonic,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458–462 (2011).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Papasimakis, N.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Premaratne, M.

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

Rasika Dias, H. V.

J. Anthony Arduengo, H. V. Rasika Dias, R. L. Harlow, and M. Kline, “Enhancing the absorption of graphene in the terahertz range,” Europhys. Lett. 101, 58002–58006 (2013).
[Crossref]

Rukhlenko, I. D.

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

Shen, Y. R.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref] [PubMed]

Shen, Z. X.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Song, Y.

Y. Yao, M. A. kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. Javier Garca de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref] [PubMed]

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref] [PubMed]

Tobon, L. E.

J. Chen, L. E. Tobon, M. Chai, J. A. Mix, and Q. H. Liu, “Efficient implicit-explicit time stepping scheme with domain decomposition for multiscale modeling of layered structures,” IEEE Trans. Comp., Packag. Manufact”, Technol. 1, 1438–1446 (2011).

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref] [PubMed]

Vasko, F. T.

F. T. Vasko, “Saturation of interband absorption in graphene,” Phys. Rev. B 82 (24), 245422 (2010).
[Crossref]

Wang, F.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref] [PubMed]

Wang, Y.

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref] [PubMed]

Xia, F.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref] [PubMed]

Xiao, T.

J. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE T. Microw. Theory 54, 437–444 (2006).
[Crossref]

Yao, Y.

Y. Yao, M. A. kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Yu, N.

Y. Yao, M. A. kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Zettl, A.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref] [PubMed]

Zhang, Y.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

Zhou, H.

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579–585 (2011).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5 (17), 7785–7789 (2013).
[Crossref] [PubMed]

Zhu, W.

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

ACS Nano (1)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

H. Li, Y. Anugrah, S. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101, 111110 (2012).
[Crossref]

A. E. Nikolaenko, N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, “Nonlinear graphene metamaterial,” Appl. Phys. Lett. 100, 181109 (2012).
[Crossref]

W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Graphene metamaterial for optical reflection modulation,” Appl. Phys. Lett. 102, 241914 (2013).
[Crossref]

Europhys. Lett. (1)

J. Anthony Arduengo, H. V. Rasika Dias, R. L. Harlow, and M. Kline, “Enhancing the absorption of graphene in the terahertz range,” Europhys. Lett. 101, 58002–58006 (2013).
[Crossref]

IEEE T. Microw. Theory (1)

J. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE T. Microw. Theory 54, 437–444 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (2)

Z. Fang, Z. Liu, Y. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-antenna sandwich photodetector,” Nano Lett. 12, 3808–3813 (2012).
[Crossref] [PubMed]

Y. Yao, M. A. kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13, 1257–1264 (2013).
[Crossref] [PubMed]

Nanoscale (1)

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5 (17), 7785–7789 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458–462 (2011).
[Crossref] [PubMed]

Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun. 2, 579–585 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

A. N. Grigorenko, M. d Polini, and K. S. Novoselov, “Graphene plasmonic,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Phys. Rev. B (1)

F. T. Vasko, “Saturation of interband absorption in graphene,” Phys. Rev. B 82 (24), 245422 (2010).
[Crossref]

Phys. Rev. Lett. (1)

S. Thongrattanasiri, F. H. L. Koppens, and F. Javier Garca de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref] [PubMed]

Proc. IEEE (2)

C. Chen and J. Hone, “Graphene nanoelectromechanical systems,” Proc. IEEE 1011766–1779, (2013).
[Crossref]

M. Luo, Y. Lin, and Q. H. Liu, “Spectral methods and domain decomposition for nanophotonic applications,” Proc. IEEE 101, 473–483 (2013).
[Crossref]

Science (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008).
[Crossref] [PubMed]

SIAM J. Matrix Anal. A. (1)

G. Meurant, “A review on the inverse of symmetric tridiagonal and block tridiagonal matrices,” SIAM J. Matrix Anal. A. 13, 707 (1992).
[Crossref]

Technol. (1)

J. Chen, L. E. Tobon, M. Chai, J. A. Mix, and Q. H. Liu, “Efficient implicit-explicit time stepping scheme with domain decomposition for multiscale modeling of layered structures,” IEEE Trans. Comp., Packag. Manufact”, Technol. 1, 1438–1446 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Light Transmission for Floating Single Layer Graphene
Fig. 2
Fig. 2 Sketch of (a) the schematic graphene-based photodetector; (b) cuboid cluster NP with Bragg reflector; (c) cylindrical NP with Bragg reflector; (d) ring NP with Bragg reflector.
Fig. 3
Fig. 3 Simulation results from BI-SEM and FEM.
Fig. 4
Fig. 4 Cuboid NPs with Bragg reflector, incident polar angle varies.
Fig. 5
Fig. 5 Structure with Bragg reflector (a) cluster interval=70 nm, inner gap varies; (b) inner gap=3 nm, cluster interval varies.
Fig. 6
Fig. 6 Under 870nm TMy normal incidence, electric field distribution for (a) inner gap=3 nm; (b) inner gap=0 nm.
Fig. 7
Fig. 7 Cylindrical NP with classic SiO2 reflector (a) adjacent distance=40 nm, radius varies; (b) radius = 30 / π nm, adjacent distance varies.
Fig. 8
Fig. 8 Ring NP with classic SiO2 reflector (a) adjacent distance=40 nm, radius varies; (b) radius = 30 / π nm, adjacent distance varies.
Fig. 9
Fig. 9 Cylindrical NP with Bragg reflector (a) adjacent distance=40 nm, radius varies; (b) radius = 30 / π nm, distance between adjacent NPs varies.
Fig. 10
Fig. 10 Ring NP with Bragg reflector (a) distance=40 nm, radius varies; (b) radius = 30 / π nm, distance between adjacent NPs varies.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ñ ( ω ) = n ( ω ) + j k ( ω )
n ( ω ) = 3.0 , k ( ω ) = c 2 ω d n ln ( 1 π α )
A ( ω ) = P d P i n c = V ω n k ε 0 | E | 2 d V S S i n c · d S
V [ ( μ r 1 × Φ i ) T · ( × E ) k 0 2 · ( ε r Φ i ) T · E ] d V 2 j k 0 S Φ i T · [ K ( J ˜ s ) ε r · L ( M s ) ] d S = 2 j k 0 S Φ i T · ( n ^ × H ¯ i n c ) d S
j k 0 S Φ i T · [ μ r L ( J ˜ s ) + 1 2 n ^ × E + K ( M s ) ] d S = j k 0 S Φ i T · ( n ^ × E i n c ) d S

Metrics