Abstract

A two-way fiber-wireless convergence system based on a two-stage injection-locked 1.55-μm vertical-cavity surface-emitting lasers (VCSELs) transmitter and an optical interleaver (IL) to deliver intensity-modulated and phase-remodulated millimeter-wave (MMW) data signals over a 40-km single-mode fiber (SMF) and a 5-m radio frequency (RF) wireless transport is proposed and experimentally demonstrated. Bit error rate (BER) and eye diagram perform brilliantly through a serious investigation in systems. Such a two-way fiber-wireless convergence system is a promising option, it reveals a prominent one to present its advancement in integration of distribute fiber and in-house network.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid wireless-over-fiber transmission system based on multiple injection-locked FP LDs

Chung-Yi Li, Hai-Han Lu, Chien-An Chu, Cheng-Ling Ying, Ting-Chien Lu, and Peng-Chun Peng
Opt. Express 23(15) 19874-19884 (2015)

Bidirectional fiber-IVLLC and fiber-wireless convergence system with two orthogonally polarized optical sidebands

Hai-Han Lu, Hsiao-Wen Wu, Chung-Yi Li, Chun-Ming Ho, Zih-Yi Yang, Ming-Te Cheng, and Chang-Kai Lu
Opt. Express 25(9) 9743-9754 (2017)

Bidirectional hybrid PM-based RoF and VCSEL-based VLLC system

Chung-Yi Li, Hai-Han Lu, Ching-Hung Chang, Chun-Yu Lin, Po-Yi Wu, Jun-Ren Zheng, and Chia-Rung Lin
Opt. Express 22(13) 16188-16196 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. M. Pessoa, J. S. Tavares, D. Coelho, and H. M. Salgado, “Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation,” Opt. Express 22(14), 17508–17523 (2014).
    [Crossref] [PubMed]
  2. F. Li, Z. Cao, X. Li, Z. Dong, and L. Chen, “Fiber-wireless transmission system of PDM-MIMO-OFDM at 100 GHz frequency,” J. Lightwave Technol. 31(14), 2394–2399 (2013).
    [Crossref]
  3. L. Rao, C. Liu, M. Zhu, J. Wang, and G. K. Chang, “A novel full-duplex 60-GHz radio-over-fiber transmission system for next-generation wireless access networks,” In Proc. Conf. on Lasers and Electro-Opt. (CLEO), CM3G.1 (2013).
    [Crossref]
  4. X. Yin, A. Wen, and Y. Chen, “A cost-effective full-duplex radio-over-fiber system based on frequency octupling and wavelength reuse,” Fiber Integrated Opt. 30(6), 347–355 (2011).
  5. Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
    [Crossref]
  6. C. Y. Lin, H. H. Lu, C. H. Chang, C. Y. Li, T. W. Jhang, S. S. Ruan, and K. H. Wu, “A full-duplex lightwave transmission system with an innovative VCSEL-based PM-to-IM converter,” Opt. Express 22(8), 9993–10001 (2014).
    [Crossref] [PubMed]
  7. C. H. Chang and J. H. Chang, “Radio-over-fiber transport systems with an innovative phase modulation to intensity modulation converter,” Opt. Eng. 52(11), 116107 (2013).
    [Crossref]
  8. R. Kou, H. Nishi, T. Tsuchizawa, H. Fukuda, H. Shinojima, and K. Yamada, “Single silicon wire waveguide based delay line interferometer for DPSK demodulation,” Opt. Express 20(10), 11037–11045 (2012).
    [Crossref] [PubMed]
  9. M. Hammar, T. Zabel, W. Shi, N. Akram, X. Yu, L. Chrostowski, J. Berggren, and Y. Xiang, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
    [Crossref]
  10. K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Adv. Opt. Technol. 2012, 569379 (2012).
    [Crossref]
  11. X. Zhao, D. Parekh, E. K. Lau, H. K. Sung, M. C. Wu, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth,” Opt. Express 15(22), 14810–14816 (2007).
    [Crossref] [PubMed]
  12. C. Y. Chen, P. Y. Wu, H. H. Lu, Y. P. Lin, T. W. Jhang, and C. L. Ying, “Hybrid lightwave subcarrier CATV/16-QAM/16-QAM OFDM transmission system,” Opt. Lett. 38(22), 4538–4541 (2013).
    [Crossref] [PubMed]
  13. J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
    [Crossref]
  14. B. Schrenk, F. Bonada, J. A. Lazaro, and J. Prat, “Remotely pumped long-reach hybrid PON with wavelength reuse in RSOA-based ONUs,” IEEE/OSA J. Lightwave Technol. 29(5), 635–641 (2011).
    [Crossref]
  15. H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
    [Crossref]
  16. C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
    [Crossref]
  17. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
    [Crossref]
  18. W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies (Academic, 1999).
  19. P. Y. Wu, H. H. Lu, C. L. Ying, C. Y. Li, and H. S. Su, “An up-converted phase modulated fiber optical CATV transport system,” J. Lightwave Technol. 29(16), 2422–2427 (2011).
    [Crossref]

2014 (2)

2013 (4)

C. H. Chang and J. H. Chang, “Radio-over-fiber transport systems with an innovative phase modulation to intensity modulation converter,” Opt. Eng. 52(11), 116107 (2013).
[Crossref]

M. Hammar, T. Zabel, W. Shi, N. Akram, X. Yu, L. Chrostowski, J. Berggren, and Y. Xiang, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

F. Li, Z. Cao, X. Li, Z. Dong, and L. Chen, “Fiber-wireless transmission system of PDM-MIMO-OFDM at 100 GHz frequency,” J. Lightwave Technol. 31(14), 2394–2399 (2013).
[Crossref]

C. Y. Chen, P. Y. Wu, H. H. Lu, Y. P. Lin, T. W. Jhang, and C. L. Ying, “Hybrid lightwave subcarrier CATV/16-QAM/16-QAM OFDM transmission system,” Opt. Lett. 38(22), 4538–4541 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

X. Yin, A. Wen, and Y. Chen, “A cost-effective full-duplex radio-over-fiber system based on frequency octupling and wavelength reuse,” Fiber Integrated Opt. 30(6), 347–355 (2011).

B. Schrenk, F. Bonada, J. A. Lazaro, and J. Prat, “Remotely pumped long-reach hybrid PON with wavelength reuse in RSOA-based ONUs,” IEEE/OSA J. Lightwave Technol. 29(5), 635–641 (2011).
[Crossref]

P. Y. Wu, H. H. Lu, C. L. Ying, C. Y. Li, and H. S. Su, “An up-converted phase modulated fiber optical CATV transport system,” J. Lightwave Technol. 29(16), 2422–2427 (2011).
[Crossref]

2007 (2)

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

X. Zhao, D. Parekh, E. K. Lau, H. K. Sung, M. C. Wu, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth,” Opt. Express 15(22), 14810–14816 (2007).
[Crossref] [PubMed]

2006 (2)

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

2003 (1)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

2002 (1)

C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[Crossref]

Akram, N.

M. Hammar, T. Zabel, W. Shi, N. Akram, X. Yu, L. Chrostowski, J. Berggren, and Y. Xiang, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Amann, M. C.

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Berggren, J.

M. Hammar, T. Zabel, W. Shi, N. Akram, X. Yu, L. Chrostowski, J. Berggren, and Y. Xiang, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Bonada, F.

B. Schrenk, F. Bonada, J. A. Lazaro, and J. Prat, “Remotely pumped long-reach hybrid PON with wavelength reuse in RSOA-based ONUs,” IEEE/OSA J. Lightwave Technol. 29(5), 635–641 (2011).
[Crossref]

Cao, Z.

Chang, C. H.

C. Y. Lin, H. H. Lu, C. H. Chang, C. Y. Li, T. W. Jhang, S. S. Ruan, and K. H. Wu, “A full-duplex lightwave transmission system with an innovative VCSEL-based PM-to-IM converter,” Opt. Express 22(8), 9993–10001 (2014).
[Crossref] [PubMed]

C. H. Chang and J. H. Chang, “Radio-over-fiber transport systems with an innovative phase modulation to intensity modulation converter,” Opt. Eng. 52(11), 116107 (2013).
[Crossref]

C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[Crossref]

Chang, G. K.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

Chang, J. H.

C. H. Chang and J. H. Chang, “Radio-over-fiber transport systems with an innovative phase modulation to intensity modulation converter,” Opt. Eng. 52(11), 116107 (2013).
[Crossref]

Chang-Hasnain, C. J.

X. Zhao, D. Parekh, E. K. Lau, H. K. Sung, M. C. Wu, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth,” Opt. Express 15(22), 14810–14816 (2007).
[Crossref] [PubMed]

C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[Crossref]

Chen, C. Y.

Chen, L.

F. Li, Z. Cao, X. Li, Z. Dong, and L. Chen, “Fiber-wireless transmission system of PDM-MIMO-OFDM at 100 GHz frequency,” J. Lightwave Technol. 31(14), 2394–2399 (2013).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Chen, Y.

X. Yin, A. Wen, and Y. Chen, “A cost-effective full-duplex radio-over-fiber system based on frequency octupling and wavelength reuse,” Fiber Integrated Opt. 30(6), 347–355 (2011).

Chow, W. W.

C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[Crossref]

Chrostowski, L.

M. Hammar, T. Zabel, W. Shi, N. Akram, X. Yu, L. Chrostowski, J. Berggren, and Y. Xiang, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[Crossref]

Coelho, D.

Dong, Z.

Dummer, M.

K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Adv. Opt. Technol. 2012, 569379 (2012).
[Crossref]

Fukuda, H.

Hammar, M.

M. Hammar, T. Zabel, W. Shi, N. Akram, X. Yu, L. Chrostowski, J. Berggren, and Y. Xiang, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Hibbs-Brenner, M.

K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Adv. Opt. Technol. 2012, 569379 (2012).
[Crossref]

Hofmann, W.

Hogan, W.

K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Adv. Opt. Technol. 2012, 569379 (2012).
[Crossref]

Jhang, T. W.

Jia, Z.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

Johnson, K.

K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Adv. Opt. Technol. 2012, 569379 (2012).
[Crossref]

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Kou, R.

Lau, E. K.

X. Zhao, D. Parekh, E. K. Lau, H. K. Sung, M. C. Wu, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth,” Opt. Express 15(22), 14810–14816 (2007).
[Crossref] [PubMed]

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

Lazaro, J. A.

B. Schrenk, F. Bonada, J. A. Lazaro, and J. Prat, “Remotely pumped long-reach hybrid PON with wavelength reuse in RSOA-based ONUs,” IEEE/OSA J. Lightwave Technol. 29(5), 635–641 (2011).
[Crossref]

Li, C. Y.

Li, F.

Li, X.

Lin, C. Y.

Lin, Y. P.

Lu, H. H.

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

Nishi, H.

Parekh, D.

Pessoa, L. M.

Prat, J.

B. Schrenk, F. Bonada, J. A. Lazaro, and J. Prat, “Remotely pumped long-reach hybrid PON with wavelength reuse in RSOA-based ONUs,” IEEE/OSA J. Lightwave Technol. 29(5), 635–641 (2011).
[Crossref]

Ruan, S. S.

Salgado, H. M.

Schrenk, B.

B. Schrenk, F. Bonada, J. A. Lazaro, and J. Prat, “Remotely pumped long-reach hybrid PON with wavelength reuse in RSOA-based ONUs,” IEEE/OSA J. Lightwave Technol. 29(5), 635–641 (2011).
[Crossref]

Shi, W.

M. Hammar, T. Zabel, W. Shi, N. Akram, X. Yu, L. Chrostowski, J. Berggren, and Y. Xiang, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Shinojima, H.

Su, H. S.

Sung, H. K.

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

X. Zhao, D. Parekh, E. K. Lau, H. K. Sung, M. C. Wu, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth,” Opt. Express 15(22), 14810–14816 (2007).
[Crossref] [PubMed]

Tavares, J. S.

Tsuchizawa, T.

Wang, T.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Wen, A.

X. Yin, A. Wen, and Y. Chen, “A cost-effective full-duplex radio-over-fiber system based on frequency octupling and wavelength reuse,” Fiber Integrated Opt. 30(6), 347–355 (2011).

Wu, K. H.

Wu, M. C.

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

X. Zhao, D. Parekh, E. K. Lau, H. K. Sung, M. C. Wu, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth,” Opt. Express 15(22), 14810–14816 (2007).
[Crossref] [PubMed]

Wu, P. Y.

Xiang, Y.

M. Hammar, T. Zabel, W. Shi, N. Akram, X. Yu, L. Chrostowski, J. Berggren, and Y. Xiang, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Xu, L.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Yamada, K.

Yin, X.

X. Yin, A. Wen, and Y. Chen, “A cost-effective full-duplex radio-over-fiber system based on frequency octupling and wavelength reuse,” Fiber Integrated Opt. 30(6), 347–355 (2011).

Ying, C. L.

Yu, J.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

Yu, X.

M. Hammar, T. Zabel, W. Shi, N. Akram, X. Yu, L. Chrostowski, J. Berggren, and Y. Xiang, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Zabel, T.

M. Hammar, T. Zabel, W. Shi, N. Akram, X. Yu, L. Chrostowski, J. Berggren, and Y. Xiang, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Zhao, X.

Adv. Opt. Technol. (1)

K. Johnson, M. Hibbs-Brenner, W. Hogan, and M. Dummer, “Advances in red VCSEL technology,” Adv. Opt. Technol. 2012, 569379 (2012).
[Crossref]

Electron. Lett. (1)

M. Hammar, T. Zabel, W. Shi, N. Akram, X. Yu, L. Chrostowski, J. Berggren, and Y. Xiang, “Room-temperature operation of transistor vertical-cavity surface-emitting laser,” Electron. Lett. 49(3), 208–210 (2013).
[Crossref]

Fiber Integrated Opt. (1)

X. Yin, A. Wen, and Y. Chen, “A cost-effective full-duplex radio-over-fiber system based on frequency octupling and wavelength reuse,” Fiber Integrated Opt. 30(6), 347–355 (2011).

IEEE J. Quantum Electron. (1)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (4)

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18(16), 1726–1728 (2006).
[Crossref]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18(13), 1418–1420 (2006).
[Crossref]

H. K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[Crossref]

C. H. Chang, L. Chrostowski, C. J. Chang-Hasnain, and W. W. Chow, “Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission,” IEEE Photon. Technol. Lett. 14(11), 1635–1637 (2002).
[Crossref]

IEEE/OSA J. Lightwave Technol. (1)

B. Schrenk, F. Bonada, J. A. Lazaro, and J. Prat, “Remotely pumped long-reach hybrid PON with wavelength reuse in RSOA-based ONUs,” IEEE/OSA J. Lightwave Technol. 29(5), 635–641 (2011).
[Crossref]

J. Lightwave Technol. (2)

Opt. Eng. (1)

C. H. Chang and J. H. Chang, “Radio-over-fiber transport systems with an innovative phase modulation to intensity modulation converter,” Opt. Eng. 52(11), 116107 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Other (2)

W. I. Way, Broadband Hybrid Fiber/Coax Access System Technologies (Academic, 1999).

L. Rao, C. Liu, M. Zhu, J. Wang, and G. K. Chang, “A novel full-duplex 60-GHz radio-over-fiber transmission system for next-generation wireless access networks,” In Proc. Conf. on Lasers and Electro-Opt. (CLEO), CM3G.1 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The architecture of the proposed two-way fiber-wireless convergence systems based on a two-stage injection-locked 1.55-μm VCSELs transmitter and an optical IL.
Fig. 2
Fig. 2 The configuration of the two-stage injection-locked 1.55-μm VCSELs transmitter.
Fig. 3
Fig. 3 The frequency responses of one-stage injection-locked 1.55-μm VCSEL and two-stage injection-locked 1.55-μm VCSELs.
Figures 4
Figures 4 (a) - 4(e) The optical spectra of different optical signals at several interesting points in the optical path [insert (a) - (e) of Fig. 1].
Fig. 5
Fig. 5 (a) The measured BER curves of 10Gbps/60GHz MMW data signal for BTB and over a 40-km SMF as well as a 5-m RF wireless transport scenarios (down-link transmission). (b) The measured BER curves of 10Gbps/30GHz MMW data signal for BTB and over a 40-km SMF as well as a 5-m RF wireless transport scenarios (up-link transmission).
Fig. 6
Fig. 6 The eye diagrams under the conditions of 40-km SMF and 5-m RF wireless transport scenario for (a) down-link transmission, (b) up-link transmission.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

dA(t) dt = 1 2 g[N(t) N th ]A(t)k A inj cosϕ(t)
dϕ(t) dt = α 2 g[N(t) N th ]k A inj A(t) sinϕ(t)2πΔf
dN(t) dt =Jkγ N N (t){γ + P g[N(t) N th ]} A 2 (t)
f r 2 f 0 2 + k 2 ( A inj A 0 ) 2 sin 2 ϕ 0
H D 2 /C m 2 | FR( 2 f 1 ) | 2 ( f 1 f r ) 4
IM D 3 /C m 4 [ { ( f 1 f r ) 4 f 1 2 2 f r 2 } 2 + ( f 1 f 0 ) 2 { 1 4π f r τ n ( f 1 f r ) 2 (2π f 0 τ p + 3 4π f r τ n + 3ε S 0 2π f r τ p ) } 2 ]

Metrics