Abstract

We realize a scanning-free Brillouin optical time domain analyzer (BOTDA) based on an ultra-fine digital optical frequency comb (DOFC) with 1.95MHz frequency spacing and 2GHz bandwidth. The DOFC can be used to reconstruct the Brillouin gain spectrum (BGS) and locate the Brillouin frequency shift (BFS) without frequency scanning and thus can improve the measurement speed about 100 times compared with the conventional BOTDA. This scanning-free BOTDA scheme has also been demonstrated experimentally with 51.2m spatial resolution over 10km standard single mode fiber (SSMF) and with resolution of 1.5°C for temperature and 43.3με for strain measurement respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-measurement digital optical frequency comb based phase-detection Brillouin optical time domain analyzer

Chao Jin, Liang Wang, Yuli Chen, Nan Guo, Wenghong Chung, Hoyin Au, Zhaohui Li, Hwa-Yaw Tam, and Chao Lu
Opt. Express 25(8) 9213-9224 (2017)

Polarization independent fast BOTDA based on pump frequency modulation and cyclic coding

Hua Zheng, Jingdong Zhang, Tao Zhu, Guolu Yin, Yongzhong Bai, Dingrong Qu, Xianbin Huang, and Feng Qiu
Opt. Express 26(14) 18270-18278 (2018)

Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques

Junhui Hu, Lan Xia, Li Yang, Wenwen Quan, and Xuping Zhang
Opt. Express 24(12) 13610-13620 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in optical fiber sensors based on Brillouin scattering at university of Ottawa,” Photon. Sensors 1(2), 102–117 (2011).
    [Crossref]
  2. L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. A. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” Proc. SPIE 3330, 301–314 (1998).
    [Crossref]
  3. X. Bao, M. DeMerchant, A. Brown, and T. Bremner, “Tensile and compressive strain measurement in the lab and field with the distributed Brillouin scattering sensor,” J. Lightwave Technol. 19(11), 1698–1704 (2001).
    [Crossref]
  4. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [Crossref] [PubMed]
  5. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express 19(21), 19845–19854 (2011).
    [Crossref] [PubMed]
  6. Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Opt. Express 21(9), 10697–10705 (2013).
    [Crossref] [PubMed]
  7. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [Crossref] [PubMed]
  8. X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
    [Crossref]
  9. A. Voskoboinik, W. Jian, B. Shamee, S. R. Nuccio, L. Zhang, M. Chitgarha, A. E. Willner, and M. Tur, “SBS-Based Fiber Optical Sensing Using Frequency-Domain Simultaneous Tone Interrogation,” J. Lightwave Technol. 29(11), 1729–1735 (2011).
    [Crossref]
  10. A. Voskoboinik, O. F. Yilmaz, A. W. Willner, and M. Tur, “Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA),” Opt. Express 19(26), B842–B847 (2011).
    [Crossref] [PubMed]
  11. A. Voskoboinik, D. Rogawski, H. Huang, Y. Peled, A. E. Willner, and M. Tur, “Frequency-domain analysis of dynamically applied strain using sweep-free Brillouin time-domain analyzer and sloped-assisted FBG sensing,” Opt. Express 20(26), B581–B586 (2012).
    [Crossref] [PubMed]
  12. X. Yi, Z. Li, Y. Bao, and K. Qiu, “Characterization of Passive Optical Components by DSP-Based Optical Channel Estimation,” IEEE Photon. Technol. Lett. 24(6), 443–445 (2012).
    [Crossref]
  13. C. Jin, Y. Bao, Z. Li, T. Gui, H. Shang, X. Feng, J. Li, X. Yi, C. Yu, G. Li, and C. Lu, “High-resolution optical spectrum characterization using optical channel estimation and spectrum stitching technique,” Opt. Lett. 38(13), 2314–2316 (2013).
    [Crossref] [PubMed]
  14. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [PubMed]

2013 (3)

2012 (3)

2011 (4)

2009 (1)

2008 (1)

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

2001 (1)

1998 (1)

L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. A. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” Proc. SPIE 3330, 301–314 (1998).
[Crossref]

Bao, X.

X. Bao and L. Chen, “Recent progress in optical fiber sensors based on Brillouin scattering at university of Ottawa,” Photon. Sensors 1(2), 102–117 (2011).
[Crossref]

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

X. Bao, M. DeMerchant, A. Brown, and T. Bremner, “Tensile and compressive strain measurement in the lab and field with the distributed Brillouin scattering sensor,” J. Lightwave Technol. 19(11), 1698–1704 (2001).
[Crossref]

Bao, Y.

Benmokrane, B.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Bernini, R.

Bremner, T.

Brown, A.

Chen, L.

X. Bao and L. Chen, “Recent progress in optical fiber sensors based on Brillouin scattering at university of Ottawa,” Photon. Sensors 1(2), 102–117 (2011).
[Crossref]

Chitgarha, M.

DeMerchant, M.

Eisa, M.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

El-Gamal, S.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Facchini, M.

L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. A. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” Proc. SPIE 3330, 301–314 (1998).
[Crossref]

Fellay, A.

L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. A. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” Proc. SPIE 3330, 301–314 (1998).
[Crossref]

Feng, X.

Gui, T.

Huang, H.

Jian, W.

Jin, C.

Kressel, I.

Li, G.

Li, J.

Li, W.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Li, Z.

Lu, C.

Minardo, A.

Motil, A.

Nikles, M.

L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. A. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” Proc. SPIE 3330, 301–314 (1998).
[Crossref]

Nuccio, S. R.

Peled, Y.

Qiu, K.

X. Yi, Z. Li, Y. Bao, and K. Qiu, “Characterization of Passive Optical Components by DSP-Based Optical Channel Estimation,” IEEE Photon. Technol. Lett. 24(6), 443–445 (2012).
[Crossref]

Robert, P. A.

L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. A. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” Proc. SPIE 3330, 301–314 (1998).
[Crossref]

Rogawski, D.

Shamee, B.

Shang, H.

Soto, M. A.

Thevenaz, L.

L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. A. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” Proc. SPIE 3330, 301–314 (1998).
[Crossref]

Thévenaz, L.

Tur, M.

Voskoboinik, A.

Willner, A. E.

Willner, A. W.

Yaron, L.

Yi, X.

Yilmaz, O. F.

Yu, C.

Zeni, L.

Zhang, C.

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Zhang, L.

IEEE Photon. Technol. Lett. (1)

X. Yi, Z. Li, Y. Bao, and K. Qiu, “Characterization of Passive Optical Components by DSP-Based Optical Channel Estimation,” IEEE Photon. Technol. Lett. 24(6), 443–445 (2012).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (6)

Opt. Lett. (2)

Photon. Sensors (1)

X. Bao and L. Chen, “Recent progress in optical fiber sensors based on Brillouin scattering at university of Ottawa,” Photon. Sensors 1(2), 102–117 (2011).
[Crossref]

Proc. SPIE (1)

L. Thevenaz, M. Nikles, A. Fellay, M. Facchini, and P. A. Robert, “Truly distributed strain and temperature sensing using embedded optical fibers,” Proc. SPIE 3330, 301–314 (1998).
[Crossref]

Smart Mater. Struct. (1)

X. Bao, C. Zhang, W. Li, M. Eisa, S. El-Gamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic representation of the principle of DOFC based BOTDA.
Fig. 2
Fig. 2 Generation and demodulation of digital electrical frequency comb. IFFT: Inverse fast Fourier Transform; FFT: Fast Fourier Transform; GI: Guard Interval.
Fig. 3
Fig. 3 Power spectrum of digital electrical frequency comb.
Fig. 4
Fig. 4 Scanning-free BOTDA experiment Setup. AWG: arbitrary waveform generator; MZM: Mach-Zehnder modulator; EDFA: erbium-doped fiber amplifier; OSA: optical spectrum analyzer; ISO: isolator; PG: pulse generator; IM: intensity modulator; PC: polarization controller; PS: polarization scrambler; FBG: fiber Bragg grating; PD: photo detector.
Fig. 5
Fig. 5 Original measured BGS and Lorentz fitting curve.
Fig. 6
Fig. 6 Linear fitting of temperature measurement results using conventional BOTDA and DOFC-BOTDA.
Fig. 7
Fig. 7 Temperature measurement at different position: (a) first 51m fiber, (b) middle51m fiber (c) last 51m fiber of 10km fiber under test.
Fig. 8
Fig. 8 Linear fitting of strain measurement results using conventional BOTDA and DOFC-BOTDA.

Metrics