Abstract

A tapered plasmonic channel waveguide can be used for index sensing by spatial mapping of the scattering field intensity. A numerical simulation shows that this waveguide reflects the plasmonic channel waveguide mode at various points as the refractive index of an analyte changes, and a strong outgoing scattering wave appears at the reflection point. One can measure the index change by detecting variations in the scattering point. In the case of a unit index change, the scattering point moved 2670 nm, which can be observed by an imaging system. Detection limit of the index change is estimated as 0.12. However, the limit can be further reduced by increasing the tapered length or decreasing the tapered angle of the structure.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors

Yin Huang, Changjun Min, Pouya Dastmalchi, and Georgios Veronis
Opt. Express 23(11) 14922-14936 (2015)

Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity

Lei Chen, Yumin Liu, Zhongyuan Yu, Dong Wu, Rui Ma, Yang Zhang, and Han Ye
Opt. Express 24(9) 9975-9983 (2016)

High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide

Xu Sun, Daoxin Dai, Lars Thylén, and Lech Wosinski
Opt. Express 23(20) 25688-25699 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  3. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  4. S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C 115(50), 24469–24477 (2011).
    [Crossref]
  5. W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
    [Crossref] [PubMed]
  6. C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
    [Crossref] [PubMed]
  7. M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
    [Crossref] [PubMed]
  8. B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sensor Actuat. B-Chem. 186, 495–505 (2013).
  9. S.-H. Kwon, “Ultrasmall plasmonic cavity for chemical sensing,” Plasmonics 8(2), 963–967 (2013).
    [Crossref]
  10. S.-H. Kwon, “Deep subwavelength-scale metal-insulator-metal plasmonic disk cavities for refractive index sensors,” IEEE Photonics J. 5(1), 4800107 (2013).
    [Crossref]
  11. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  12. Q. Gan, Y. Gao, and F. J. Bartoli, “Vertical plasmonic Mach-Zehnder interferometer for sensitive optical sensing,” Opt. Express 17(23), 20747–20755 (2009).
    [Crossref] [PubMed]
  13. Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
    [Crossref] [PubMed]
  14. X. Zeng, Y. Gao, H. Hu, D. Ji, Q. Gan, and F. Bartoli, “A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing,” J. Appl. Phys. 113(13), 133102 (2013).
    [Crossref]
  15. A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
    [Crossref]
  16. M.-K. Seo, S.-H. Kwon, H.-S. Ee, and H.-G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett. 9(12), 4078–4082 (2009).
    [Crossref] [PubMed]
  17. J.-H. Kang, H.-G. Park, and S.-H. Kwon, “Room-temperature high-Q channel-waveguide surface plasmon nanocavity,” Opt. Express 19(15), 13892–13898 (2011).
    [Crossref] [PubMed]
  18. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
    [Crossref] [PubMed]
  19. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D Appl. Phys. 40(22), 7152–7158 (2007).
    [Crossref]
  20. D. R. Lide, CRC Handbook of Chemistry & Physics 87th edition (CRC, 2006).
  21. E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
    [Crossref]
  22. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
    [Crossref] [PubMed]
  23. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
    [Crossref] [PubMed]
  24. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
    [Crossref] [PubMed]
  25. S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
    [Crossref] [PubMed]

2013 (5)

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sensor Actuat. B-Chem. 186, 495–505 (2013).

S.-H. Kwon, “Ultrasmall plasmonic cavity for chemical sensing,” Plasmonics 8(2), 963–967 (2013).
[Crossref]

S.-H. Kwon, “Deep subwavelength-scale metal-insulator-metal plasmonic disk cavities for refractive index sensors,” IEEE Photonics J. 5(1), 4800107 (2013).
[Crossref]

X. Zeng, Y. Gao, H. Hu, D. Ji, Q. Gan, and F. Bartoli, “A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing,” J. Appl. Phys. 113(13), 133102 (2013).
[Crossref]

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

2012 (1)

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

2011 (5)

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

J.-H. Kang, H.-G. Park, and S.-H. Kwon, “Room-temperature high-Q channel-waveguide surface plasmon nanocavity,” Opt. Express 19(15), 13892–13898 (2011).
[Crossref] [PubMed]

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C 115(50), 24469–24477 (2011).
[Crossref]

W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
[Crossref] [PubMed]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[Crossref] [PubMed]

2010 (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

2009 (2)

Q. Gan, Y. Gao, and F. J. Bartoli, “Vertical plasmonic Mach-Zehnder interferometer for sensitive optical sensing,” Opt. Express 17(23), 20747–20755 (2009).
[Crossref] [PubMed]

M.-K. Seo, S.-H. Kwon, H.-S. Ee, and H.-G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett. 9(12), 4078–4082 (2009).
[Crossref] [PubMed]

2008 (3)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

2007 (2)

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D Appl. Phys. 40(22), 7152–7158 (2007).
[Crossref]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[Crossref] [PubMed]

2006 (1)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

2005 (1)

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[Crossref] [PubMed]

2004 (1)

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

2003 (1)

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
[Crossref]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Bartoli, F.

X. Zeng, Y. Gao, H. Hu, D. Ji, Q. Gan, and F. Bartoli, “A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing,” J. Appl. Phys. 113(13), 133102 (2013).
[Crossref]

Bartoli, F. J.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

Q. Gan, Y. Gao, and F. J. Bartoli, “Vertical plasmonic Mach-Zehnder interferometer for sensitive optical sensing,” Opt. Express 17(23), 20747–20755 (2009).
[Crossref] [PubMed]

Berini, P.

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

Bozhevolnyi, S. I.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[Crossref] [PubMed]

Cheng, X.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

Cui, K.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sensor Actuat. B-Chem. 186, 495–505 (2013).

Dereux, A.

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
[Crossref]

Devaux, E.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[Crossref] [PubMed]

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
[Crossref]

Ebbesen, T. W.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[Crossref] [PubMed]

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
[Crossref]

Ee, H.-S.

M.-K. Seo, S.-H. Kwon, H.-S. Ee, and H.-G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett. 9(12), 4078–4082 (2009).
[Crossref] [PubMed]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Fan, B.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sensor Actuat. B-Chem. 186, 495–505 (2013).

Fan, X.

Feng, X.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sensor Actuat. B-Chem. 186, 495–505 (2013).

Fujikawa, S.

W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
[Crossref] [PubMed]

Gan, Q.

X. Zeng, Y. Gao, H. Hu, D. Ji, Q. Gan, and F. Bartoli, “A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing,” J. Appl. Phys. 113(13), 133102 (2013).
[Crossref]

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

Q. Gan, Y. Gao, and F. J. Bartoli, “Vertical plasmonic Mach-Zehnder interferometer for sensitive optical sensing,” Opt. Express 17(23), 20747–20755 (2009).
[Crossref] [PubMed]

Gao, Y.

X. Zeng, Y. Gao, H. Hu, D. Ji, Q. Gan, and F. Bartoli, “A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing,” J. Appl. Phys. 113(13), 133102 (2013).
[Crossref]

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

Q. Gan, Y. Gao, and F. J. Bartoli, “Vertical plasmonic Mach-Zehnder interferometer for sensitive optical sensing,” Opt. Express 17(23), 20747–20755 (2009).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hu, H.

X. Zeng, Y. Gao, H. Hu, D. Ji, Q. Gan, and F. Bartoli, “A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing,” J. Appl. Phys. 113(13), 133102 (2013).
[Crossref]

Huang, Y.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sensor Actuat. B-Chem. 186, 495–505 (2013).

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[Crossref] [PubMed]

Ji, D.

X. Zeng, Y. Gao, H. Hu, D. Ji, Q. Gan, and F. Bartoli, “A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing,” J. Appl. Phys. 113(13), 133102 (2013).
[Crossref]

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kang, J.-H.

J.-H. Kang, H.-G. Park, and S.-H. Kwon, “Room-temperature high-Q channel-waveguide surface plasmon nanocavity,” Opt. Express 19(15), 13892–13898 (2011).
[Crossref] [PubMed]

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Khan, A.

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

Kim, S. B.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kim, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kim, S.-K.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Krupin, O.

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

Kubo, W.

W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
[Crossref] [PubMed]

Kwon, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Kwon, S.-H.

S.-H. Kwon, “Ultrasmall plasmonic cavity for chemical sensing,” Plasmonics 8(2), 963–967 (2013).
[Crossref]

S.-H. Kwon, “Deep subwavelength-scale metal-insulator-metal plasmonic disk cavities for refractive index sensors,” IEEE Photonics J. 5(1), 4800107 (2013).
[Crossref]

J.-H. Kang, H.-G. Park, and S.-H. Kwon, “Room-temperature high-Q channel-waveguide surface plasmon nanocavity,” Opt. Express 19(15), 13892–13898 (2011).
[Crossref] [PubMed]

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

M.-K. Seo, S.-H. Kwon, H.-S. Ee, and H.-G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett. 9(12), 4078–4082 (2009).
[Crossref] [PubMed]

Lalanne, P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[Crossref] [PubMed]

Laluet, J.-Y.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[Crossref] [PubMed]

Laroche, T.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D Appl. Phys. 40(22), 7152–7158 (2007).
[Crossref]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Lee, P.-T.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[Crossref] [PubMed]

Lee, Y. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Lee, Y.-H.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Lei, D. Y.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Li, X.-Y.

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C 115(50), 24469–24477 (2011).
[Crossref]

Li, Y.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sensor Actuat. B-Chem. 186, 495–505 (2013).

Lieber, C. M.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Lin, J.-W.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[Crossref] [PubMed]

Lisicka-Skrzek, E.

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

Liu, F.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sensor Actuat. B-Chem. 186, 495–505 (2013).

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, R.-P.

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C 115(50), 24469–24477 (2011).
[Crossref]

Liu, S.-D.

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C 115(50), 24469–24477 (2011).
[Crossref]

Lu, S.-P.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Maier, S. A.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

Nazabal, V.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Park, H.-G.

J.-H. Kang, H.-G. Park, and S.-H. Kwon, “Room-temperature high-Q channel-waveguide surface plasmon nanocavity,” Opt. Express 19(15), 13892–13898 (2011).
[Crossref] [PubMed]

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

M.-K. Seo, S.-H. Kwon, H.-S. Ee, and H.-G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett. 9(12), 4078–4082 (2009).
[Crossref] [PubMed]

Regreny, P.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Rodier, J. C.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[Crossref] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Schmidt, M. A.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Seassal, C.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

Seo, M.-K.

M.-K. Seo, S.-H. Kwon, H.-S. Ee, and H.-G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett. 9(12), 4078–4082 (2009).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Tsai, C.-Y.

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Vial, A.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D Appl. Phys. 40(22), 7152–7158 (2007).
[Crossref]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[Crossref] [PubMed]

Wang, X.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sensor Actuat. B-Chem. 186, 495–505 (2013).

Weeber, J.-C.

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

White, I. M.

Wondraczek, L.

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Xin, Z.

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Yang, Z.

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C 115(50), 24469–24477 (2011).
[Crossref]

Zeng, X.

X. Zeng, Y. Gao, H. Hu, D. Ji, Q. Gan, and F. Bartoli, “A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing,” J. Appl. Phys. 113(13), 133102 (2013).
[Crossref]

Zhang, W.

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sensor Actuat. B-Chem. 186, 495–505 (2013).

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

ACS Nano (1)

Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing,” ACS Nano 5(12), 9836–9844 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

A. Khan, O. Krupin, E. Lisicka-Skrzek, and P. Berini, “Mach-Zehnder refractometric sensor using long-range surface plasmon waveguides,” Appl. Phys. Lett. 103(11), 111108 (2013).
[Crossref]

C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98(15), 153108 (2011).
[Crossref] [PubMed]

E. Devaux, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Launching and decoupling surface plasmons via micro-gratings,” Appl. Phys. Lett. 83(24), 4936 (2003).
[Crossref]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

IEEE Photonics J. (1)

S.-H. Kwon, “Deep subwavelength-scale metal-insulator-metal plasmonic disk cavities for refractive index sensors,” IEEE Photonics J. 5(1), 4800107 (2013).
[Crossref]

J. Appl. Phys. (1)

X. Zeng, Y. Gao, H. Hu, D. Ji, Q. Gan, and F. Bartoli, “A metal-insulator-metal plasmonic Mach-Zehnder interferometer array for multiplexed sensing,” J. Appl. Phys. 113(13), 133102 (2013).
[Crossref]

J. Chem. Phys. (1)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “High sensitivity localized surface plasmon resonance sensing using a double split nanoring cavity,” J. Phys. Chem. C 115(50), 24469–24477 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D Appl. Phys. 40(22), 7152–7158 (2007).
[Crossref]

Nano Lett. (5)

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Wavelength selective nanophotonic components utilizing channel plasmon polaritons,” Nano Lett. 7(4), 880–884 (2007).
[Crossref] [PubMed]

W. Kubo and S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor,” Nano Lett. 11(1), 8–15 (2011).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010).
[Crossref] [PubMed]

M.-K. Seo, S.-H. Kwon, H.-S. Ee, and H.-G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett. 9(12), 4078–4082 (2009).
[Crossref] [PubMed]

Nat. Commun. (1)

M. A. Schmidt, D. Y. Lei, L. Wondraczek, V. Nazabal, and S. A. Maier, “Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability,” Nat. Commun. 3, 1108 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. Lett. (1)

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[Crossref] [PubMed]

Plasmonics (1)

S.-H. Kwon, “Ultrasmall plasmonic cavity for chemical sensing,” Plasmonics 8(2), 963–967 (2013).
[Crossref]

Science (1)

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[Crossref] [PubMed]

Sensor Actuat. B-Chem. (1)

B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, and Y. Huang, “Integrated refractive index sensor based on hybrid coupler with short range surface plasmon polariton and dielectric waveguide,” Sensor Actuat. B-Chem. 186, 495–505 (2013).

Other (1)

D. R. Lide, CRC Handbook of Chemistry & Physics 87th edition (CRC, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of a square groove plasmonic channel waveguide. Width and depth of the groove are represented by w and d, respectively. (b) Electric field (Ez) profile of the waveguide mode with a wavelength of 651 nm, where (w, d) = (200 nm, 500 nm).
Fig. 2
Fig. 2 Dispersion curves of the plasmonic channel waveguide mode as functions of (a) the waveguide width w, and (b) the index of the solution n. Refractive index is fixed at 1.318 for the dispersion curves in (a). Red circles indicate the cutoff frequencies. (c) 2D color contour mapping of cutoff wavelengths vs. waveguide width and refractive index. Black line represents a cutoff wavelength of 650 .
Fig. 3
Fig. 3 (a) Plasmonic tapered channel waveguide structure. Waveguide width decreases linearly in the tapered region from wa to wb over length l. (b) Schematics of refractive index sensing using the proposed tapered waveguide. For different refractive indices, the reflection point, at which a waveguide of that width has a cutoff wavelength that is the same as the input light wavelength, changes from y to y′.
Fig. 4
Fig. 4 Electric field intensity profiles (log scale) in the yz plane for an index of (a) 1.318 and (b) 1.518 in a tapered structure with wa = 300 nm, wb = 100 nm, l = 2000 nm, and d = 500 nm. Left inset indicates top and bottom of the waveguide. A white line placed 500 nm above the top of the waveguide represents the plane where outgoing Poynting vector images are obtained.
Fig. 5
Fig. 5 (a) Time-averaged outgoing Poynting vector (Sz) images in xy plane, which are obtained at 500 nm above the top of the waveguide for refractive indices ranging from 1.318 to 1.518. (b) Scattering positions (red) and reflection points (black) are plotted as functions of the refractive index. The positions indicate the distance from the beginning of the tapered region. Scattering points and reflection points are obtained from 500 nm above the waveguide and bottom of the waveguide, respectively. The position indicated by orange, where the width of the tapered region is the waveguide width for a cutoff wavelength of 650 nm, is calculated from 2D contour mapping of the cutoff wavelength in Fig. 2(c).
Fig. 6
Fig. 6 Sensitivity dependence of the scattering point on (a) tapered length (l) with fixed waveguide width (wa = 300 nm, wb = 100 nm), (b) waveguide width difference ( = wa - wb) with fixed tapered length (l = 2000 nm) and exit width (wb = 100 nm), and (c) tapered length (l) with fixed tapered angle [ = (wa - wb)/2l]. Inset schematics show how structural parameters are changed.

Tables (1)

Tables Icon

Table 1 Drude Parameters of Silver in Drude-Critical Points Dispersive Model for FDTD Simulation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε ω D 2 ω 2 +iγω + p=1 2 A p Ω p ( e i ϕ p Ω p ωi Γ p + e i ϕ p Ω p +ω+i Γ p ).
S= a displacement of the scattering spot a change of the refractive index = Δy Δn .

Metrics