Abstract

Optical waveguides can be used to trap and transport micro-particles. The particles are held close to the waveguide surface by the evanescent field and propelled forward. We propose a new technique to lift and trap particles above the surface of the waveguides. This is made possible by a gap between two opposing, planar waveguides. The field emitted from each of the waveguide ends diverge fast, away from the substrate and into the cover-medium. By combining two fields propagating at an angle upwards and coming from opposite sides of a gap, particles can be stably lifted and trapped at the crossing of the two fields. Thus, particles are transported by waveguides leading to a gap, where they are lifted away from the substrate and trapped. The experiments are supported by numerical simulations of the forces on the micro-particles. Fluorescence imaging is used to track the particles in 3D with a precision of 50 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rib waveguides for trapping and transport of particles

Balpreet Singh Ahluwalia, Øystein Ivar Helle, and Olav Gaute Hellesø
Opt. Express 24(5) 4477-4487 (2016)

Optofluidic trapping and transport on solid core waveguides within a microfluidic device

Bradley S. Schmidt, Allen H. J. Yang, David Erickson, and Michal Lipson
Opt. Express 15(22) 14322-14334 (2007)

Serial Raman spectroscopy of particles trapped on a waveguide

Pål Løvhaugen, Balpreet Singh Ahluwalia, Thomas R. Huser, and Olav Gaute Hellesø
Opt. Express 21(3) 2964-2970 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proceedings of the National Academy of Sciences 96, 471–476 (1999).
    [Crossref]
  2. G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell. Sci. 87(Pt 4), 519–523 (1987).
    [PubMed]
  3. X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
    [Crossref] [PubMed]
  4. S. Kawata and T. Tani, “Optically driven mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21, 1768–1770 (1996).
    [Crossref] [PubMed]
  5. B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
    [Crossref] [PubMed]
  6. K. Grujic, O. Hellesø, J. Wilkinson, and J. Hole, “Optical propulsion of microspheres along a channel waveguide produced by cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
    [Crossref]
  7. G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32, 3041–3043 (2007).
    [Crossref] [PubMed]
  8. K. Grujic and O. G. Hellesø, “Dielectric microsphere manipulation and chain assembly by counter-propagating waves in a channel waveguide,” Opt. Express 15, 6470–6477 (2007).
    [Crossref] [PubMed]
  9. P. Løvhaugen, B. S. Ahluwalia, T. R. Huser, and O. G. Hellesø, “Serial raman spectroscopy of particles trapped on a waveguide,” Opt. Express 21, 2964–2970 (2013).
    [Crossref] [PubMed]
  10. O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12, 3436–3440 (2012).
    [Crossref] [PubMed]
  11. M. Boerkamp, T. van Leest, J. Heldens, A. Leinse, M. Hoekman, R. Heideman, and J. Caro, “On-chip optical trapping and raman spectroscopy using a triplex dual-waveguide trap,” Opt. Express 22, 30528–30537 (2014).
    [Crossref]
  12. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
    [Crossref]
  13. V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
    [Crossref]
  14. G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photon. 5, 48–51 (2011).
    [Crossref]
  15. M. Speidel, A. Jonáš, and E.-L. Florin, “Three-dimensional tracking of fluorescent nanoparticles with sub-nanometer precision by use of off-focus imaging,” Opt. Lett. 28, 69–71 (2003).
    [Crossref] [PubMed]
  16. B. Ahluwalia, A. Subramanian, O. Hellsø, N. Perney, N. Sessions, and J. Wilkinson, “Fabrication of submicrometer high refractive index tantalum pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21, 1408–1410 (2009).
    [Crossref]
  17. R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Meth. 9, 724–726 (2012).
    [Crossref]
  18. E. Billauer, “Peakdet, peak detecting algorithm,” http://www.billauer.co.il/peakdet.html , accessed 14/5/14.
  19. J. Hole, J. Wilkinson, K. Grujic, and O. Hellesø, “Velocity distribution of gold nanoparticles trapped on an optical waveguide,” Opt. Express 13, 3896–3901 (2005).
    [Crossref] [PubMed]
  20. T. Tanaka and S. Yamamoto, “Optically induced meandering mie particles driven by the beat of coupled guided modes produced in a multimode waveguide,” Jpn. J. Appl. Phys. 41, L260 (2002).
    [Crossref]
  21. H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
    [Crossref]
  22. J. N. George, R. I. Weed, and C. F. Reed, “Adhesion of human erythrocytes to glass: The nature of the interaction and the effect of serum and plasma,” J. Cell. Physiol. 77, 51–59 (1971).
    [Crossref] [PubMed]

2014 (2)

M. Boerkamp, T. van Leest, J. Heldens, A. Leinse, M. Hoekman, R. Heideman, and J. Caro, “On-chip optical trapping and raman spectroscopy using a triplex dual-waveguide trap,” Opt. Express 22, 30528–30537 (2014).
[Crossref]

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

2013 (1)

2012 (2)

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12, 3436–3440 (2012).
[Crossref] [PubMed]

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Meth. 9, 724–726 (2012).
[Crossref]

2011 (2)

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photon. 5, 48–51 (2011).
[Crossref]

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

2009 (1)

B. Ahluwalia, A. Subramanian, O. Hellsø, N. Perney, N. Sessions, and J. Wilkinson, “Fabrication of submicrometer high refractive index tantalum pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21, 1408–1410 (2009).
[Crossref]

2007 (3)

2005 (1)

2004 (2)

K. Grujic, O. Hellesø, J. Wilkinson, and J. Hole, “Optical propulsion of microspheres along a channel waveguide produced by cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[Crossref]

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

2003 (1)

2002 (1)

T. Tanaka and S. Yamamoto, “Optically induced meandering mie particles driven by the beat of coupled guided modes produced in a multimode waveguide,” Jpn. J. Appl. Phys. 41, L260 (2002).
[Crossref]

1999 (1)

G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proceedings of the National Academy of Sciences 96, 471–476 (1999).
[Crossref]

1996 (1)

1987 (1)

G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell. Sci. 87(Pt 4), 519–523 (1987).
[PubMed]

1971 (2)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

J. N. George, R. I. Weed, and C. F. Reed, “Adhesion of human erythrocytes to glass: The nature of the interaction and the effect of serum and plasma,” J. Cell. Physiol. 77, 51–59 (1971).
[Crossref] [PubMed]

Ahluwalia, B.

B. Ahluwalia, A. Subramanian, O. Hellsø, N. Perney, N. Sessions, and J. Wilkinson, “Fabrication of submicrometer high refractive index tantalum pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21, 1408–1410 (2009).
[Crossref]

Ahluwalia, B. S.

P. Løvhaugen, B. S. Ahluwalia, T. R. Huser, and O. G. Hellesø, “Serial raman spectroscopy of particles trapped on a waveguide,” Opt. Express 21, 2964–2970 (2013).
[Crossref] [PubMed]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12, 3436–3440 (2012).
[Crossref] [PubMed]

Artusio-Glimpse, A. B.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photon. 5, 48–51 (2011).
[Crossref]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

Boerkamp, M.

Bracke, M.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Braeckmans, K.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Brambilla, G.

Caro, J.

Chen, S.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Costa, K. D.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

De Smedt, S.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Demeester, J.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Deschout, H.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Dholakia, K.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

Erickson, D.

Feder, J.

G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proceedings of the National Academy of Sciences 96, 471–476 (1999).
[Crossref]

Fisher, L. R.

G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell. Sci. 87(Pt 4), 519–523 (1987).
[PubMed]

Florin, E.-L.

Francis, G. W.

G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell. Sci. 87(Pt 4), 519–523 (1987).
[PubMed]

Gamble, R. A.

G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell. Sci. 87(Pt 4), 519–523 (1987).
[PubMed]

Garcés-Chávez, V.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

George, J. N.

J. N. George, R. I. Weed, and C. F. Reed, “Adhesion of human erythrocytes to glass: The nature of the interaction and the effect of serum and plasma,” J. Cell. Physiol. 77, 51–59 (1971).
[Crossref] [PubMed]

Giaever, I.

G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proceedings of the National Academy of Sciences 96, 471–476 (1999).
[Crossref]

Gingell, D.

G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell. Sci. 87(Pt 4), 519–523 (1987).
[PubMed]

Grujic, K.

Heideman, R.

Heldens, J.

Hellesø, O.

J. Hole, J. Wilkinson, K. Grujic, and O. Hellesø, “Velocity distribution of gold nanoparticles trapped on an optical waveguide,” Opt. Express 13, 3896–3901 (2005).
[Crossref] [PubMed]

K. Grujic, O. Hellesø, J. Wilkinson, and J. Hole, “Optical propulsion of microspheres along a channel waveguide produced by cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[Crossref]

Hellesø, O. G.

Hellsø, O.

B. Ahluwalia, A. Subramanian, O. Hellsø, N. Perney, N. Sessions, and J. Wilkinson, “Fabrication of submicrometer high refractive index tantalum pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21, 1408–1410 (2009).
[Crossref]

Hendrix, A.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Hoekman, M.

Hole, J.

J. Hole, J. Wilkinson, K. Grujic, and O. Hellesø, “Velocity distribution of gold nanoparticles trapped on an optical waveguide,” Opt. Express 13, 3896–3901 (2005).
[Crossref] [PubMed]

K. Grujic, O. Hellesø, J. Wilkinson, and J. Hole, “Optical propulsion of microspheres along a channel waveguide produced by cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[Crossref]

Huser, T. R.

Jiguet, S.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Jonáš, A.

Kawata, S.

Kong, M.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Leinse, A.

Li, R. A.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Lipson, M.

Løvhaugen, P.

P. Løvhaugen, B. S. Ahluwalia, T. R. Huser, and O. G. Hellesø, “Serial raman spectroscopy of particles trapped on a waveguide,” Opt. Express 21, 2964–2970 (2013).
[Crossref] [PubMed]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12, 3436–3440 (2012).
[Crossref] [PubMed]

Maoddi, P.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

McGloin, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

Melville, H.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

Mernier, G.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Murugan, G. S.

Neyts, K.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Parthasarathy, R.

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Meth. 9, 724–726 (2012).
[Crossref]

Perney, N.

B. Ahluwalia, A. Subramanian, O. Hellsø, N. Perney, N. Sessions, and J. Wilkinson, “Fabrication of submicrometer high refractive index tantalum pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21, 1408–1410 (2009).
[Crossref]

Peterson, T. J.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photon. 5, 48–51 (2011).
[Crossref]

Pettersen, E. O.

G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proceedings of the National Academy of Sciences 96, 471–476 (1999).
[Crossref]

Raemdonck, K.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Raisanen, A. D.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photon. 5, 48–51 (2011).
[Crossref]

Reed, C. F.

J. N. George, R. I. Weed, and C. F. Reed, “Adhesion of human erythrocytes to glass: The nature of the interaction and the effect of serum and plasma,” J. Cell. Physiol. 77, 51–59 (1971).
[Crossref] [PubMed]

Renaud, P.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Richardson, D. J.

Röding, M.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Roskey, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

Rudemo, M.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Sagvolden, G.

G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proceedings of the National Academy of Sciences 96, 471–476 (1999).
[Crossref]

Schmidt, B. S.

Sessions, N.

B. Ahluwalia, A. Subramanian, O. Hellsø, N. Perney, N. Sessions, and J. Wilkinson, “Fabrication of submicrometer high refractive index tantalum pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21, 1408–1410 (2009).
[Crossref]

Speidel, M.

Stremersch, S.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Strubbe, F.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Subramanian, A.

B. Ahluwalia, A. Subramanian, O. Hellsø, N. Perney, N. Sessions, and J. Wilkinson, “Fabrication of submicrometer high refractive index tantalum pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21, 1408–1410 (2009).
[Crossref]

Subramanian, A. Z.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12, 3436–3440 (2012).
[Crossref] [PubMed]

Summers, M. D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

Sun, D.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Swartzlander, G. A.

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photon. 5, 48–51 (2011).
[Crossref]

Tanaka, T.

T. Tanaka and S. Yamamoto, “Optically induced meandering mie particles driven by the beat of coupled guided modes produced in a multimode waveguide,” Jpn. J. Appl. Phys. 41, L260 (2002).
[Crossref]

Tani, T.

Van den Broecke, R.

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

van Leest, T.

Wang, X.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Wang, Z.

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

Weed, R. I.

J. N. George, R. I. Weed, and C. F. Reed, “Adhesion of human erythrocytes to glass: The nature of the interaction and the effect of serum and plasma,” J. Cell. Physiol. 77, 51–59 (1971).
[Crossref] [PubMed]

Wilkinson, J.

B. Ahluwalia, A. Subramanian, O. Hellsø, N. Perney, N. Sessions, and J. Wilkinson, “Fabrication of submicrometer high refractive index tantalum pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21, 1408–1410 (2009).
[Crossref]

J. Hole, J. Wilkinson, K. Grujic, and O. Hellesø, “Velocity distribution of gold nanoparticles trapped on an optical waveguide,” Opt. Express 13, 3896–3901 (2005).
[Crossref] [PubMed]

K. Grujic, O. Hellesø, J. Wilkinson, and J. Hole, “Optical propulsion of microspheres along a channel waveguide produced by cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[Crossref]

Wilkinson, J. S.

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12, 3436–3440 (2012).
[Crossref] [PubMed]

G. Brambilla, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, “Optical manipulation of microspheres along a subwavelength optical wire,” Opt. Lett. 32, 3041–3043 (2007).
[Crossref] [PubMed]

Wright, E. M.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

Yamamoto, S.

T. Tanaka and S. Yamamoto, “Optically induced meandering mie particles driven by the beat of coupled guided modes produced in a multimode waveguide,” Jpn. J. Appl. Phys. 41, L260 (2002).
[Crossref]

Yang, A. H.

Appl. Phys. Lett. (2)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

B. Ahluwalia, A. Subramanian, O. Hellsø, N. Perney, N. Sessions, and J. Wilkinson, “Fabrication of submicrometer high refractive index tantalum pentoxide waveguides for optical propulsion of microparticles,” IEEE Photon. Technol. Lett. 21, 1408–1410 (2009).
[Crossref]

J. Cell. Physiol. (1)

J. N. George, R. I. Weed, and C. F. Reed, “Adhesion of human erythrocytes to glass: The nature of the interaction and the effect of serum and plasma,” J. Cell. Physiol. 77, 51–59 (1971).
[Crossref] [PubMed]

J. Cell. Sci. (1)

G. W. Francis, L. R. Fisher, R. A. Gamble, and D. Gingell, “Direct measurement of cell detachment force on single cells using a new electromechanical method,” J. Cell. Sci. 87(Pt 4), 519–523 (1987).
[PubMed]

Jpn. J. Appl. Phys. (1)

T. Tanaka and S. Yamamoto, “Optically induced meandering mie particles driven by the beat of coupled guided modes produced in a multimode waveguide,” Jpn. J. Appl. Phys. 41, L260 (2002).
[Crossref]

Lab Chip (2)

X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li, and D. Sun, “Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies,” Lab Chip 11, 3656–3662 (2011).
[Crossref] [PubMed]

O. G. Hellesø, P. Løvhaugen, A. Z. Subramanian, J. S. Wilkinson, and B. S. Ahluwalia, “Surface transport and stable trapping of particles and cells by an optical waveguide loop,” Lab Chip 12, 3436–3440 (2012).
[Crossref] [PubMed]

Nanoscale (1)

H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Röding, M. Rudemo, J. Demeester, S. De Smedt, F. Strubbe, K. Neyts, and K. Braeckmans, “On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids,” Nanoscale 6, 1741–1747 (2014).
[Crossref]

Nat. Meth. (1)

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Meth. 9, 724–726 (2012).
[Crossref]

Nat. Photon. (1)

G. A. Swartzlander, T. J. Peterson, A. B. Artusio-Glimpse, and A. D. Raisanen, “Stable optical lift,” Nat. Photon. 5, 48–51 (2011).
[Crossref]

Opt. Commun. (1)

K. Grujic, O. Hellesø, J. Wilkinson, and J. Hole, “Optical propulsion of microspheres along a channel waveguide produced by cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Proceedings of the National Academy of Sciences (1)

G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proceedings of the National Academy of Sciences 96, 471–476 (1999).
[Crossref]

Other (1)

E. Billauer, “Peakdet, peak detecting algorithm,” http://www.billauer.co.il/peakdet.html , accessed 14/5/14.

Supplementary Material (2)

» Media 1: MP4 (592 KB)     
» Media 2: MP4 (1323 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Optical bright field image of a waveguide loop with gap. Laser light is coupled into the straight part and divides into the two arms. (b) SEM image of the gap, seen from the top. (c) Schematic diagram, side-view, of particle in the gap between two waveguide ends (not to scale). The particle is lifted as it enters the gap. (d) Schematic diagram of the gap, top-view.
Fig. 2
Fig. 2 Simulation of the field distribution in a 10 μm wide gap. The norm of the electrical field is shown. (a) Light emitted from a (single) waveguide end has a large angular distribution (range of colors is compressed to visualize the emittance angle). (b) Light emitted from two waveguide ends interfere, creating stable trapping for particles at a distance above the waveguide chip.
Fig. 3
Fig. 3 Calculated forces acting on a 2 μm diameter sphere in a 10 μm wide gap. (a) Fx(z) becomes positive some distance into the gap. Particles are thus expected to levitate as they approach the center of the gap. (b) Fz(z) push particles towards the center of the gap. In the middle of the gap, Fz(z) oscillates around zero, creating several stable trapping locations. (c) In the center of the gap (z = 5 μm), Fx(x) is seen to offer two stable locations where a restoring force is present.
Fig. 4
Fig. 4 (a) 2D image of out-of-focus particle. (b) 1D intensity distribution of particle in (a) and the final estimate of the radius. (c) Calibration curve showing the linear relationship between radius of the outermost diffraction ring and the distance from focus. The calibration curve is made by finding the radius of the outermost diffraction ring for a series of images, with the distance from focus decreased by 1 μm between each image.
Fig. 5
Fig. 5 A particle propelling along a straight waveguide (see Media 1) is tracked in the x-direction. (a) Some frames from the movie showing the diffraction rings and the radius found by the tracking algorithm. (b) Result of the x-direction tracking, with a standard deviation of 45 nm. The particle moved 53 μm along the waveguide during the 20 second interval.(c) Result of tracking the center of the same particle in the y-direction. Optical meandering is observed.
Fig. 6
Fig. 6 Fluorescent particle trapped in a gap (see Media 2). (a) The particle is on the waveguide arm, with diffraction ring with radius R1. (b) The particle is trapped in the gap, with radius R2 for the diffraction ring. As R2 < R1, the particle is lifted.
Fig. 7
Fig. 7 Tracking of a 2 μm diameter particle in a 10 μm wide gap, both in x- and z-direction. The particle is lifted 2.2 μm relative to the waveguide and 2.4 μm relative to the surface of the waveguide chip. In z-direction, the particle is trapped on an average 6.0 μm from the waveguide end (i.e. 4.0 μm from the other waveguide). Axis for z-position has been reversed for clarity.
Fig. 8
Fig. 8 Histogram of the position of the trapped particle (see Media 2) trapped in the gap with fitted gaussian, in (a) x-, (b) y- and (c) z-direction. The position is given as the deviation from the mean when trapped in the gap.

Metrics