Abstract

We have developed a spectroscopic optical coherence tomography (OCT) for imaging lipid distribution within blood vessel in order to detect coronary artery plaque. A 1.7-μm spectral-domain OCT with A-scan rate of 47 kHz is fabricated using a broadband light source based on super-luminescent diodes and spectrometers based on extended InGaAs line sensors. We demonstrate imaging of lipid distribution in an in vitro artery model with lipid. The sensitivity and specificity in the differentiation between artery and lipid are 87% and 90% in the training, respectively. The validation test also shows detection of lipid with an accuracy over 90%.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging

Bo Wang, Jimmy L. Su, James Amirian, Silvio H. Litovsky, Richard Smalling, and Stanislav Emelianov
Opt. Express 18(5) 4889-4897 (2010)

Lipid detection in atherosclerotic human coronaries by spectroscopic intravascular photoacoustic imaging

Krista Jansen, Min Wu, Antonius F. W. van der Steen, and Gijs van Soest
Opt. Express 21(18) 21472-21484 (2013)

Simultaneous imaging of atherosclerotic plaque composition and structure with dual-mode photoacoustic and optical coherence tomography

Shanshan Shang, Zhongjiang Chen, Yue Zhao, Sihua Yang, and Da Xing
Opt. Express 25(2) 530-539 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Virmani, F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz, “Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions,” Arterioscler. Thromb. Vasc. Biol. 20(5), 1262–1275 (2000).
    [Crossref] [PubMed]
  2. T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J. 152(4), 755e1–755e4 (2006).
  3. G. J. Ughi, T. Adriaenssens, P. Sinnaeve, W. Desmet, and J. D’hooge, “Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images,” Biomed. Opt. Express 4(7), 1014–1030 (2013).
    [Crossref] [PubMed]
  4. E. Regar, M. Gnanadesigan, A. F. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” JACC Cardiovasc. Interv. 6(8), 891–892 (2013).
    [Crossref] [PubMed]
  5. C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, “Depth resolved detection of lipid using spectroscopic optical coherence tomography,” Biomed. Opt. Express 4(8), 1269–1284 (2013).
    [Crossref] [PubMed]
  6. K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
    [Crossref] [PubMed]
  7. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).
    [Crossref] [PubMed]
  8. H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth,” Biomed. Opt. Express 16(24), 932–943 (2014).
    [Crossref] [PubMed]
  9. S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express 3(2), 282–294 (2012).
    [Crossref] [PubMed]
  10. E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, S. H. Hwang, W. J. Lee, J. J. Song, M. Y. Jeong, and C. S. Kim, “Spectrally Sampled OCT Imaging Based on 1.7-μm Continuous-Wave Supercontinuum Source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 282–294 (2012).
    [Crossref]
  11. C. Xu, D. L. Marks, M. N. Do, and S. A. Boppart, “Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm,” Opt. Express 12(20), 4790–4803 (2004).
    [Crossref] [PubMed]
  12. M. Hirano, S. Tonosaki, T. Ueno, M. Tanaka, and T. Hasegawa, “Improved method to visualize lipid distribution within arterial vessel walls by 1.7 μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8935, 893517 (2014).
    [Crossref]
  13. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21(7), 543–545 (1996).
    [Crossref] [PubMed]
  14. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  15. M. Tanaka, M. Hirano, T. Hasegawa, and I. Sogawa, “Lipid distribution imaging in in-vitro artery model by 1.7-μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8565, 85654F (2013).
    [Crossref]
  16. T. Kume, H. Okura, R. Yamada, T. Kawamoto, N. Watanabe, Y. Neishi, Y. Sadahira, T. Akasaka, and K. Yoshida, “Frequency and Spatial Distribution of Thin-Cap Fibroatheroma Assessed by 3-Vessel Intravascular Ultrasound and Optical Coherence Tomography: An Ex Vivo Validation and an Initial In Vivo Feasibility Study,” Circ. J. 73(6), 1086–1091 (2009).
    [Crossref] [PubMed]

2014 (3)

H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth,” Biomed. Opt. Express 16(24), 932–943 (2014).
[Crossref] [PubMed]

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

M. Hirano, S. Tonosaki, T. Ueno, M. Tanaka, and T. Hasegawa, “Improved method to visualize lipid distribution within arterial vessel walls by 1.7 μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8935, 893517 (2014).
[Crossref]

2013 (4)

M. Tanaka, M. Hirano, T. Hasegawa, and I. Sogawa, “Lipid distribution imaging in in-vitro artery model by 1.7-μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8565, 85654F (2013).
[Crossref]

G. J. Ughi, T. Adriaenssens, P. Sinnaeve, W. Desmet, and J. D’hooge, “Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images,” Biomed. Opt. Express 4(7), 1014–1030 (2013).
[Crossref] [PubMed]

E. Regar, M. Gnanadesigan, A. F. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” JACC Cardiovasc. Interv. 6(8), 891–892 (2013).
[Crossref] [PubMed]

C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, “Depth resolved detection of lipid using spectroscopic optical coherence tomography,” Biomed. Opt. Express 4(8), 1269–1284 (2013).
[Crossref] [PubMed]

2012 (2)

S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express 3(2), 282–294 (2012).
[Crossref] [PubMed]

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, S. H. Hwang, W. J. Lee, J. J. Song, M. Y. Jeong, and C. S. Kim, “Spectrally Sampled OCT Imaging Based on 1.7-μm Continuous-Wave Supercontinuum Source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 282–294 (2012).
[Crossref]

2009 (1)

T. Kume, H. Okura, R. Yamada, T. Kawamoto, N. Watanabe, Y. Neishi, Y. Sadahira, T. Akasaka, and K. Yoshida, “Frequency and Spatial Distribution of Thin-Cap Fibroatheroma Assessed by 3-Vessel Intravascular Ultrasound and Optical Coherence Tomography: An Ex Vivo Validation and an Initial In Vivo Feasibility Study,” Circ. J. 73(6), 1086–1091 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (1)

T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J. 152(4), 755e1–755e4 (2006).

2004 (1)

2003 (1)

2000 (1)

R. Virmani, F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz, “Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions,” Arterioscler. Thromb. Vasc. Biol. 20(5), 1262–1275 (2000).
[Crossref] [PubMed]

1996 (1)

Adriaenssens, T.

Akasaka, T.

T. Kume, H. Okura, R. Yamada, T. Kawamoto, N. Watanabe, Y. Neishi, Y. Sadahira, T. Akasaka, and K. Yoshida, “Frequency and Spatial Distribution of Thin-Cap Fibroatheroma Assessed by 3-Vessel Intravascular Ultrasound and Optical Coherence Tomography: An Ex Vivo Validation and an Initial In Vivo Feasibility Study,” Circ. J. 73(6), 1086–1091 (2009).
[Crossref] [PubMed]

T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J. 152(4), 755e1–755e4 (2006).

Aramaki, M.

H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth,” Biomed. Opt. Express 16(24), 932–943 (2014).
[Crossref] [PubMed]

Boppart, S. A.

Bouma, B. E.

Brezinski, M. E.

Burke, A. P.

R. Virmani, F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz, “Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions,” Arterioscler. Thromb. Vasc. Biol. 20(5), 1262–1275 (2000).
[Crossref] [PubMed]

Chang, E. W.

D’hooge, J.

Desmet, W.

Do, M. N.

Eckert, J.

Farb, A.

R. Virmani, F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz, “Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions,” Arterioscler. Thromb. Vasc. Biol. 20(5), 1262–1275 (2000).
[Crossref] [PubMed]

Fercher, A. F.

Fleming, C. P.

Fujimoto, J. G.

Gardecki, J. A.

Gnanadesigan, M.

E. Regar, M. Gnanadesigan, A. F. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” JACC Cardiovasc. Interv. 6(8), 891–892 (2013).
[Crossref] [PubMed]

Halpern, E. F.

Hasegawa, T.

M. Hirano, S. Tonosaki, T. Ueno, M. Tanaka, and T. Hasegawa, “Improved method to visualize lipid distribution within arterial vessel walls by 1.7 μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8935, 893517 (2014).
[Crossref]

M. Tanaka, M. Hirano, T. Hasegawa, and I. Sogawa, “Lipid distribution imaging in in-vitro artery model by 1.7-μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8565, 85654F (2013).
[Crossref]

Hirano, M.

M. Hirano, S. Tonosaki, T. Ueno, M. Tanaka, and T. Hasegawa, “Improved method to visualize lipid distribution within arterial vessel walls by 1.7 μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8935, 893517 (2014).
[Crossref]

M. Tanaka, M. Hirano, T. Hasegawa, and I. Sogawa, “Lipid distribution imaging in in-vitro artery model by 1.7-μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8565, 85654F (2013).
[Crossref]

Hitzenberger, C. K.

Hwang, S. H.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, S. H. Hwang, W. J. Lee, J. J. Song, M. Y. Jeong, and C. S. Kim, “Spectrally Sampled OCT Imaging Based on 1.7-μm Continuous-Wave Supercontinuum Source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 282–294 (2012).
[Crossref]

Ishida, S.

H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth,” Biomed. Opt. Express 16(24), 932–943 (2014).
[Crossref] [PubMed]

S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express 3(2), 282–294 (2012).
[Crossref] [PubMed]

Jansen, K.

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

Jeong, M. Y.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, S. H. Hwang, W. J. Lee, J. J. Song, M. Y. Jeong, and C. S. Kim, “Spectrally Sampled OCT Imaging Based on 1.7-μm Continuous-Wave Supercontinuum Source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 282–294 (2012).
[Crossref]

Jung, E. J.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, S. H. Hwang, W. J. Lee, J. J. Song, M. Y. Jeong, and C. S. Kim, “Spectrally Sampled OCT Imaging Based on 1.7-μm Continuous-Wave Supercontinuum Source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 282–294 (2012).
[Crossref]

Kataura, H.

H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth,” Biomed. Opt. Express 16(24), 932–943 (2014).
[Crossref] [PubMed]

Kawagoe, H.

H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth,” Biomed. Opt. Express 16(24), 932–943 (2014).
[Crossref] [PubMed]

Kawamoto, T.

T. Kume, H. Okura, R. Yamada, T. Kawamoto, N. Watanabe, Y. Neishi, Y. Sadahira, T. Akasaka, and K. Yoshida, “Frequency and Spatial Distribution of Thin-Cap Fibroatheroma Assessed by 3-Vessel Intravascular Ultrasound and Optical Coherence Tomography: An Ex Vivo Validation and an Initial In Vivo Feasibility Study,” Circ. J. 73(6), 1086–1091 (2009).
[Crossref] [PubMed]

T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J. 152(4), 755e1–755e4 (2006).

Kim, C. S.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, S. H. Hwang, W. J. Lee, J. J. Song, M. Y. Jeong, and C. S. Kim, “Spectrally Sampled OCT Imaging Based on 1.7-μm Continuous-Wave Supercontinuum Source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 282–294 (2012).
[Crossref]

Kim, M. J.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, S. H. Hwang, W. J. Lee, J. J. Song, M. Y. Jeong, and C. S. Kim, “Spectrally Sampled OCT Imaging Based on 1.7-μm Continuous-Wave Supercontinuum Source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 282–294 (2012).
[Crossref]

Kolodgie, F. D.

R. Virmani, F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz, “Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions,” Arterioscler. Thromb. Vasc. Biol. 20(5), 1262–1275 (2000).
[Crossref] [PubMed]

Kume, T.

T. Kume, H. Okura, R. Yamada, T. Kawamoto, N. Watanabe, Y. Neishi, Y. Sadahira, T. Akasaka, and K. Yoshida, “Frequency and Spatial Distribution of Thin-Cap Fibroatheroma Assessed by 3-Vessel Intravascular Ultrasound and Optical Coherence Tomography: An Ex Vivo Validation and an Initial In Vivo Feasibility Study,” Circ. J. 73(6), 1086–1091 (2009).
[Crossref] [PubMed]

T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J. 152(4), 755e1–755e4 (2006).

Lee, J. H.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, S. H. Hwang, W. J. Lee, J. J. Song, M. Y. Jeong, and C. S. Kim, “Spectrally Sampled OCT Imaging Based on 1.7-μm Continuous-Wave Supercontinuum Source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 282–294 (2012).
[Crossref]

Lee, W. J.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, S. H. Hwang, W. J. Lee, J. J. Song, M. Y. Jeong, and C. S. Kim, “Spectrally Sampled OCT Imaging Based on 1.7-μm Continuous-Wave Supercontinuum Source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 282–294 (2012).
[Crossref]

Leitgeb, R.

Marks, D. L.

Neishi, Y.

T. Kume, H. Okura, R. Yamada, T. Kawamoto, N. Watanabe, Y. Neishi, Y. Sadahira, T. Akasaka, and K. Yoshida, “Frequency and Spatial Distribution of Thin-Cap Fibroatheroma Assessed by 3-Vessel Intravascular Ultrasound and Optical Coherence Tomography: An Ex Vivo Validation and an Initial In Vivo Feasibility Study,” Circ. J. 73(6), 1086–1091 (2009).
[Crossref] [PubMed]

T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J. 152(4), 755e1–755e4 (2006).

Nishizawa, N.

H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth,” Biomed. Opt. Express 16(24), 932–943 (2014).
[Crossref] [PubMed]

S. Ishida and N. Nishizawa, “Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region,” Biomed. Opt. Express 3(2), 282–294 (2012).
[Crossref] [PubMed]

Okura, H.

T. Kume, H. Okura, R. Yamada, T. Kawamoto, N. Watanabe, Y. Neishi, Y. Sadahira, T. Akasaka, and K. Yoshida, “Frequency and Spatial Distribution of Thin-Cap Fibroatheroma Assessed by 3-Vessel Intravascular Ultrasound and Optical Coherence Tomography: An Ex Vivo Validation and an Initial In Vivo Feasibility Study,” Circ. J. 73(6), 1086–1091 (2009).
[Crossref] [PubMed]

T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J. 152(4), 755e1–755e4 (2006).

Omoda, E.

H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth,” Biomed. Opt. Express 16(24), 932–943 (2014).
[Crossref] [PubMed]

Regar, E.

E. Regar, M. Gnanadesigan, A. F. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” JACC Cardiovasc. Interv. 6(8), 891–892 (2013).
[Crossref] [PubMed]

Rho, B. S.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, S. H. Hwang, W. J. Lee, J. J. Song, M. Y. Jeong, and C. S. Kim, “Spectrally Sampled OCT Imaging Based on 1.7-μm Continuous-Wave Supercontinuum Source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 282–294 (2012).
[Crossref]

Sadahira, Y.

T. Kume, H. Okura, R. Yamada, T. Kawamoto, N. Watanabe, Y. Neishi, Y. Sadahira, T. Akasaka, and K. Yoshida, “Frequency and Spatial Distribution of Thin-Cap Fibroatheroma Assessed by 3-Vessel Intravascular Ultrasound and Optical Coherence Tomography: An Ex Vivo Validation and an Initial In Vivo Feasibility Study,” Circ. J. 73(6), 1086–1091 (2009).
[Crossref] [PubMed]

T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J. 152(4), 755e1–755e4 (2006).

Sakakibara, Y.

H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth,” Biomed. Opt. Express 16(24), 932–943 (2014).
[Crossref] [PubMed]

Schwartz, S. M.

R. Virmani, F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz, “Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions,” Arterioscler. Thromb. Vasc. Biol. 20(5), 1262–1275 (2000).
[Crossref] [PubMed]

Sharma, U.

Sinnaeve, P.

Sogawa, I.

M. Tanaka, M. Hirano, T. Hasegawa, and I. Sogawa, “Lipid distribution imaging in in-vitro artery model by 1.7-μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8565, 85654F (2013).
[Crossref]

Song, J. J.

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, S. H. Hwang, W. J. Lee, J. J. Song, M. Y. Jeong, and C. S. Kim, “Spectrally Sampled OCT Imaging Based on 1.7-μm Continuous-Wave Supercontinuum Source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 282–294 (2012).
[Crossref]

Southern, J. F.

Sukmawan, R.

T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J. 152(4), 755e1–755e4 (2006).

Tanaka, M.

M. Hirano, S. Tonosaki, T. Ueno, M. Tanaka, and T. Hasegawa, “Improved method to visualize lipid distribution within arterial vessel walls by 1.7 μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8935, 893517 (2014).
[Crossref]

M. Tanaka, M. Hirano, T. Hasegawa, and I. Sogawa, “Lipid distribution imaging in in-vitro artery model by 1.7-μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8565, 85654F (2013).
[Crossref]

Tearney, G. J.

Tonosaki, S.

M. Hirano, S. Tonosaki, T. Ueno, M. Tanaka, and T. Hasegawa, “Improved method to visualize lipid distribution within arterial vessel walls by 1.7 μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8935, 893517 (2014).
[Crossref]

Toyota, E.

T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J. 152(4), 755e1–755e4 (2006).

Ueno, T.

M. Hirano, S. Tonosaki, T. Ueno, M. Tanaka, and T. Hasegawa, “Improved method to visualize lipid distribution within arterial vessel walls by 1.7 μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8935, 893517 (2014).
[Crossref]

Ughi, G. J.

Van der Steen, A. F.

E. Regar, M. Gnanadesigan, A. F. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” JACC Cardiovasc. Interv. 6(8), 891–892 (2013).
[Crossref] [PubMed]

van der Steen, A. F. W.

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

van Soest, G.

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

E. Regar, M. Gnanadesigan, A. F. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” JACC Cardiovasc. Interv. 6(8), 891–892 (2013).
[Crossref] [PubMed]

Virmani, R.

R. Virmani, F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz, “Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions,” Arterioscler. Thromb. Vasc. Biol. 20(5), 1262–1275 (2000).
[Crossref] [PubMed]

Watanabe, N.

T. Kume, H. Okura, R. Yamada, T. Kawamoto, N. Watanabe, Y. Neishi, Y. Sadahira, T. Akasaka, and K. Yoshida, “Frequency and Spatial Distribution of Thin-Cap Fibroatheroma Assessed by 3-Vessel Intravascular Ultrasound and Optical Coherence Tomography: An Ex Vivo Validation and an Initial In Vivo Feasibility Study,” Circ. J. 73(6), 1086–1091 (2009).
[Crossref] [PubMed]

T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J. 152(4), 755e1–755e4 (2006).

Weissman, N. J.

Wu, M.

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

Xu, C.

Yamada, R.

T. Kume, H. Okura, R. Yamada, T. Kawamoto, N. Watanabe, Y. Neishi, Y. Sadahira, T. Akasaka, and K. Yoshida, “Frequency and Spatial Distribution of Thin-Cap Fibroatheroma Assessed by 3-Vessel Intravascular Ultrasound and Optical Coherence Tomography: An Ex Vivo Validation and an Initial In Vivo Feasibility Study,” Circ. J. 73(6), 1086–1091 (2009).
[Crossref] [PubMed]

Yoshida, K.

T. Kume, H. Okura, R. Yamada, T. Kawamoto, N. Watanabe, Y. Neishi, Y. Sadahira, T. Akasaka, and K. Yoshida, “Frequency and Spatial Distribution of Thin-Cap Fibroatheroma Assessed by 3-Vessel Intravascular Ultrasound and Optical Coherence Tomography: An Ex Vivo Validation and an Initial In Vivo Feasibility Study,” Circ. J. 73(6), 1086–1091 (2009).
[Crossref] [PubMed]

T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J. 152(4), 755e1–755e4 (2006).

Yun, S. H.

Am. Heart J. (1)

T. Kume, T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Measurement of the thickness of the fibrous cap by optical coherence tomography,” Am. Heart J. 152(4), 755e1–755e4 (2006).

Arterioscler. Thromb. Vasc. Biol. (1)

R. Virmani, F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz, “Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions,” Arterioscler. Thromb. Vasc. Biol. 20(5), 1262–1275 (2000).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Circ. J. (1)

T. Kume, H. Okura, R. Yamada, T. Kawamoto, N. Watanabe, Y. Neishi, Y. Sadahira, T. Akasaka, and K. Yoshida, “Frequency and Spatial Distribution of Thin-Cap Fibroatheroma Assessed by 3-Vessel Intravascular Ultrasound and Optical Coherence Tomography: An Ex Vivo Validation and an Initial In Vivo Feasibility Study,” Circ. J. 73(6), 1086–1091 (2009).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

E. J. Jung, J. H. Lee, B. S. Rho, M. J. Kim, S. H. Hwang, W. J. Lee, J. J. Song, M. Y. Jeong, and C. S. Kim, “Spectrally Sampled OCT Imaging Based on 1.7-μm Continuous-Wave Supercontinuum Source,” IEEE J. Sel. Top. Quantum Electron. 18(3), 282–294 (2012).
[Crossref]

JACC Cardiovasc. Interv. (1)

E. Regar, M. Gnanadesigan, A. F. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” JACC Cardiovasc. Interv. 6(8), 891–892 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Photoacoustics (1)

K. Jansen, M. Wu, A. F. W. van der Steen, and G. van Soest, “Photoacoustic imaging of human coronary atherosclerosis in two spectral bands,” Photoacoustics 2(1), 12–20 (2014).
[Crossref] [PubMed]

Proc. SPIE (2)

M. Hirano, S. Tonosaki, T. Ueno, M. Tanaka, and T. Hasegawa, “Improved method to visualize lipid distribution within arterial vessel walls by 1.7 μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8935, 893517 (2014).
[Crossref]

M. Tanaka, M. Hirano, T. Hasegawa, and I. Sogawa, “Lipid distribution imaging in in-vitro artery model by 1.7-μm spectroscopic spectral-domain optical coherence tomography,” Proc. SPIE 8565, 85654F (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Infrared spectra of lipids (lard and cholesterol), normal artery, and water.
Fig. 2
Fig. 2 The schematic diagram of intravascular image processing by 1.7-μm spectroscopic SD-OCT. Interference spectra of 1.7-µm OCT is processed for constructing both conventional OCT image and lipid distribution image. The former is constructed by usual Fourier transform (FT), and the latter is constructed by sub-band Fourier-transform and calculation to extract lipid content.
Fig. 3
Fig. 3 An overview (a) and the schematic diagram (b) of the 1.7-μm SD-OCT system. SLD: super-luminescent diode, CP: coupler, VOA: variable optical attenuator, CIR: circulator, MR: mirror on a moving stage, OFRJ: optical fiber rotary joint, PBS: polarization beam splitter, LS: line sensor, GT: grating, L: optical lens
Fig. 4
Fig. 4 (a) Output spectra of the 1.7-μm SLD-based light source. The three thin solid lines and the thick solid line designate the spectra of the three respective SLDs and the combined output. The driving currents of the SLDs are optimized to maximize the bandwidth. A broken line means the absorption spectrum of lipid as a reference. (b) Transmission losses of reference and measurement arms in the interferometer (except insertion loss of catheter). (c) Characteristics of center wavelength and wavelength resolution of two spectrometers (filled circles: #1 for P polarization, open circles: #2 for S polarization) as functions of pixel number of the line camera. The wavelength characteristics on two spectrometers are almost identical.
Fig. 5
Fig. 5 (a) Measured OCT profiles with different lengths with 0.5-mm step in the reference arm and 55-dB attenuation in the fiber reflector. Filled circles mean axial resolution measured from the OCT profiles. (b) System sensitivities in different reference input power. The filled and open circles mean measured system sensitivities in SLD-based and SC-based light source, respectively. The dotted, fine broken, coarse broken and solid lines mean theoretical values with readout noise, shot noise, excess noise and sum of these noises, respectively. The measured sensitivity in SLD-based light source is 104 dB in maximum and it is consistent to the theoretical values with all noises.
Fig. 6
Fig. 6 A photograph of the in-vitro artery model with a piece of porcine carotid artery and lipid (left) and a schematic cross-sectional drawing of the model in the measurement setup (right).
Fig. 7
Fig. 7 Conventional cross-sectional OCT images of the artery model by 1.7-μm SD-OCT system. The solid and dotted arrows and open circles mean the image artifacts.
Fig. 8
Fig. 8 Selection of artery and lipid areas (Sartery, Slipid) for training and distribution of estimated lipid contents (c) in both areas.
Fig. 9
Fig. 9 The ROC curve in pixel-by-pixel differentiation between artery and lipid areas at the parameters optimized by the training data and the sensitivity (SE) and specificity (SP) at the optimal threshold from the ROC curve.
Fig. 10
Fig. 10 Three frames (#168, #172 and #178) of lipid distribution images of the validation data used in Fig. 7. These are superimposed to conventional cross-sectional images. The red area means the one with high lipid contents.
Fig. 11
Fig. 11 Validation areas of artery (green) and lipid (red) and ROC curves at the same frames (#168, #172 and #178) as that in Fig. 9. (The ROC curve in Fig. 9 is also plotted as a dotted line.) The SE and SP at the optimal threshold obtained by training are more than 90% in all of three frames.
Fig. 12
Fig. 12 Example lipid distribution images to show false positve in the far edge of the lipid region adjacent to low signal saline region. The white arrows show lipid region and the gray allows false negative region. (a) test data as used in Fig. 8, (b,c) example frames having low signal region adjacent to the far edge of the lipid region, and (d) the validation data same as that shown in Fig. 10.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S TP ={p S lipid |c(p) c th } S TN ={p S artery |c(p)< c th } SE=card( S TP )/card( S lipid ) SP=card( S TN )/card( S artery ).

Metrics