Abstract

We use ultrafast phase-contrast imaging to directly observethe cone-like terahertz (THz) Cherenkov wave generated by optical rectification of femtosecond laser pulses focused into bulk lithium niobate (LiNbO3) single crystals. The transverse imaging geometry allows the Cherenkov angle, THz wave velocity, and optical pump pulse group velocity to be measured. Furthermore, transition-like THz radiation generated by the femtosecond laser pulse at the air-crystal boundary is observed. The effect of optical pump pulse polarization on the generation of THz Cherenkov waves and transition-like radiation in LiNbO3is also investigated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of narrowband terahertz radiation by an ultrashort laser pulse in a bulk LiNbO3 crystal

E. A. Mashkovich, S. A. Sychugin, and M. I. Bakunov
J. Opt. Soc. Am. B 34(9) 1805-1810 (2017)

Terahertz generation in Czochralski-grown periodically poled Mg:Y:LiNbO3 by optical rectification

G. H. Ma, S. H. Tang, G. Kh. Kitaeva, and I. I. Naumova
J. Opt. Soc. Am. B 23(1) 81-89 (2006)

Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation

Koji Suizu, Kaoru Koketsu, Takayuki Shibuya, Toshihiro Tsutsui, Takuya Akiba, and Kodo Kawase
Opt. Express 17(8) 6676-6681 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2002).
  2. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  4. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  5. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  6. F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
    [Crossref]
  7. T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
    [Crossref]
  8. F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
    [Crossref] [PubMed]
  9. J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
    [Crossref] [PubMed]
  10. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
    [Crossref]
  11. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
    [Crossref]
  12. M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D Appl. Phys. 44(8), 083001 (2011).
    [Crossref]
  13. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
    [Crossref]
  14. F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies,” Opt. Lett. 39(15), 4333–4336 (2014).
    [Crossref] [PubMed]
  15. C. Vicario, B. Monoszlai, C. Lombosi, A. Mareczko, A. Courjaud, J. A. Fülöp, and C. P. Hauri, “Pump pulse width and temperature effects in lithium niobate for efficient THz generation,” Opt. Lett. 38(24), 5373–5376 (2013).
    [Crossref] [PubMed]
  16. S. Fan, H. Takeuchi, T. Ouchi, K. Takeya, and K. Kawase, “Broadband terahertz wave generation from a MgO:LiNbO3 ridge waveguide pumped by a 1.5 μm femtosecond fiber laser,” Opt. Lett. 38(10), 1654–1656 (2013).
    [Crossref] [PubMed]
  17. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
    [Crossref] [PubMed]
  18. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
    [Crossref]
  19. D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
    [Crossref]
  20. J. K. Wahlstrand and R. Merlin, “Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons,” Phys. Rev. B 68(5), 054301 (2003).
    [Crossref]
  21. C. Fattinger and D. Grischkowsky, “Observation of electromagnetic shock waves from propagating surface-dipole distributions,” Phys. Rev. Lett. 62(25), 2961–2964 (1989).
    [Crossref] [PubMed]
  22. R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A 103(49), 10260–10267 (1999).
    [Crossref]
  23. R. M. Koehl, S. Adachi, and K. A. Nelson, “Real-space polariton wave packet imaging,” J. Chem. Phys. 110(3), 1317–1320 (1999).
    [Crossref]
  24. J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt.Photonics 5(1), 83–130 (2013).
    [Crossref]
  25. Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
    [PubMed]
  26. T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
    [Crossref]
  27. P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25, B70–B75 (2008).
  28. C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, “Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3,” J. Opt. Soc. Am. B 27(11), 2350–2359 (2010).
    [Crossref]
  29. C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
    [PubMed]
  30. Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
    [Crossref]
  31. G. A. Askar’yan, “Cerenkov radiation and transition radiation from electromagnetic waves,” Sov. Phys. JETP 15, 943–946 (1962).
  32. N. N. Zinov’ev, A. S. Nikoghosyan, R. A. Dudley, and J. M. Chamberlain, “Conversion of short optical pulses to terahertz radiation in anonlinear medium: experiment and theory,” Phys. Rev. B 76(23), 235114 (2007).
    [Crossref]
  33. N. N. Zinov’ev, A. S. Nikoghosyan, and J. M. Chamberlain, “Terahertz radiation from a nonlinear slab traversed by an optical pulse,” Phys. Rev. Lett. 98(4), 044801 (2007).
    [Crossref] [PubMed]
  34. N. N. Zinov’ev, “Comment on terahertz radiation from a nonlinear slab traversed by an optical pulse, reply,” Phys. Rev. Lett. 104, 019502 (2010).
  35. A. Schneider, “Comment on “terahertz radiation from a nonlinear slab traversed by an optical pulse,” Phys. Rev. Lett. 104(1), 019501 (2010).
    [Crossref] [PubMed]
  36. A. Schneider, “Theory of terahertz pulse generation through optical rectification in a nonlinear optical material with a finite size,” Phys. Rev. A 82(3), 033825 (2010).
    [Crossref]
  37. M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals,” Phys. Rev. Lett. 99(20), 203904 (2007).
    [Crossref] [PubMed]
  38. M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using anultrashort laser pulse focused to a line,” Phys. Rev. B 76(8), 085346 (2007).
    [Crossref]
  39. L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electrooptic materials,” Appl. Phys. Lett. 61(15), 1784–1786 (1992).
    [Crossref]
  40. N. C. J. van der Valk, P. C. M. Planken, A. N. Buijserd, and H. J. Bakker, “Influence of pump wavelength and crystal length on the phase matching of optical rectification,” J. Opt. Soc. Am. B 22(8), 1714–1718 (2005).
    [Crossref]
  41. S.-C. Zhong, L.-G. Zhu, S.-X. Tao, K. Meng, L.-Y. Peng, Q. Liu, Q.-X. Peng, J.-H. Zhao, and Z.-R. Li, “The polarization and efficiency of the terahertz pulses generated by tilted-pulse-front pumping scheme,” J. Infrared Millim. Terahertz Waves 35(3), 318–324 (2014).
    [Crossref]

2014 (3)

2013 (5)

S. Fan, H. Takeuchi, T. Ouchi, K. Takeya, and K. Kawase, “Broadband terahertz wave generation from a MgO:LiNbO3 ridge waveguide pumped by a 1.5 μm femtosecond fiber laser,” Opt. Lett. 38(10), 1654–1656 (2013).
[Crossref] [PubMed]

C. Vicario, B. Monoszlai, C. Lombosi, A. Mareczko, A. Courjaud, J. A. Fülöp, and C. P. Hauri, “Pump pulse width and temperature effects in lithium niobate for efficient THz generation,” Opt. Lett. 38(24), 5373–5376 (2013).
[Crossref] [PubMed]

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt.Photonics 5(1), 83–130 (2013).
[Crossref]

Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

2012 (1)

2011 (4)

M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D Appl. Phys. 44(8), 083001 (2011).
[Crossref]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
[Crossref]

2010 (4)

C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, “Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3,” J. Opt. Soc. Am. B 27(11), 2350–2359 (2010).
[Crossref]

N. N. Zinov’ev, “Comment on terahertz radiation from a nonlinear slab traversed by an optical pulse, reply,” Phys. Rev. Lett. 104, 019502 (2010).

A. Schneider, “Comment on “terahertz radiation from a nonlinear slab traversed by an optical pulse,” Phys. Rev. Lett. 104(1), 019501 (2010).
[Crossref] [PubMed]

A. Schneider, “Theory of terahertz pulse generation through optical rectification in a nonlinear optical material with a finite size,” Phys. Rev. A 82(3), 033825 (2010).
[Crossref]

2009 (1)

2008 (2)

2007 (8)

F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
[Crossref] [PubMed]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals,” Phys. Rev. Lett. 99(20), 203904 (2007).
[Crossref] [PubMed]

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using anultrashort laser pulse focused to a line,” Phys. Rev. B 76(8), 085346 (2007).
[Crossref]

N. N. Zinov’ev, A. S. Nikoghosyan, R. A. Dudley, and J. M. Chamberlain, “Conversion of short optical pulses to terahertz radiation in anonlinear medium: experiment and theory,” Phys. Rev. B 76(23), 235114 (2007).
[Crossref]

N. N. Zinov’ev, A. S. Nikoghosyan, and J. M. Chamberlain, “Terahertz radiation from a nonlinear slab traversed by an optical pulse,” Phys. Rev. Lett. 98(4), 044801 (2007).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

2005 (1)

2003 (1)

J. K. Wahlstrand and R. Merlin, “Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons,” Phys. Rev. B 68(5), 054301 (2003).
[Crossref]

2002 (2)

1999 (2)

R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A 103(49), 10260–10267 (1999).
[Crossref]

R. M. Koehl, S. Adachi, and K. A. Nelson, “Real-space polariton wave packet imaging,” J. Chem. Phys. 110(3), 1317–1320 (1999).
[Crossref]

1992 (1)

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electrooptic materials,” Appl. Phys. Lett. 61(15), 1784–1786 (1992).
[Crossref]

1989 (1)

C. Fattinger and D. Grischkowsky, “Observation of electromagnetic shock waves from propagating surface-dipole distributions,” Phys. Rev. Lett. 62(25), 2961–2964 (1989).
[Crossref] [PubMed]

1988 (1)

D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
[Crossref]

1984 (1)

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

1962 (1)

G. A. Askar’yan, “Cerenkov radiation and transition radiation from electromagnetic waves,” Sov. Phys. JETP 15, 943–946 (1962).

Adachi, S.

R. M. Koehl, S. Adachi, and K. A. Nelson, “Real-space polariton wave packet imaging,” J. Chem. Phys. 110(3), 1317–1320 (1999).
[Crossref]

R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A 103(49), 10260–10267 (1999).
[Crossref]

Almási, G.

Askar’yan, G. A.

G. A. Askar’yan, “Cerenkov radiation and transition radiation from electromagnetic waves,” Sov. Phys. JETP 15, 943–946 (1962).

Auston, D. H.

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electrooptic materials,” Appl. Phys. Lett. 61(15), 1784–1786 (1992).
[Crossref]

D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
[Crossref]

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

Averitt, R. D.

Bakker, H. J.

Bakunov, M. I.

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals,” Phys. Rev. Lett. 99(20), 203904 (2007).
[Crossref] [PubMed]

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using anultrashort laser pulse focused to a line,” Phys. Rev. B 76(8), 085346 (2007).
[Crossref]

Bandulet, H.-C.

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
[Crossref]

F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
[Crossref] [PubMed]

Bartal, B.

Bawendi, M. G.

Blanchard, F.

F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies,” Opt. Lett. 39(15), 4333–4336 (2014).
[Crossref] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
[Crossref]

F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
[Crossref] [PubMed]

Bodrov, S. B.

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using anultrashort laser pulse focused to a line,” Phys. Rev. B 76(8), 085346 (2007).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals,” Phys. Rev. Lett. 99(20), 203904 (2007).
[Crossref] [PubMed]

Bolduc, M.

Buijserd, A. N.

Chamberlain, J. M.

N. N. Zinov’ev, A. S. Nikoghosyan, R. A. Dudley, and J. M. Chamberlain, “Conversion of short optical pulses to terahertz radiation in anonlinear medium: experiment and theory,” Phys. Rev. B 76(23), 235114 (2007).
[Crossref]

N. N. Zinov’ev, A. S. Nikoghosyan, and J. M. Chamberlain, “Terahertz radiation from a nonlinear slab traversed by an optical pulse,” Phys. Rev. Lett. 98(4), 044801 (2007).
[Crossref] [PubMed]

Chen, Q.-Q.

Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

Cheung, K. P.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

Cooke, D. G.

Courjaud, A.

Doi, A.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Dorn, A.

Dudley, R. A.

N. N. Zinov’ev, A. S. Nikoghosyan, R. A. Dudley, and J. M. Chamberlain, “Conversion of short optical pulses to terahertz radiation in anonlinear medium: experiment and theory,” Phys. Rev. B 76(23), 235114 (2007).
[Crossref]

Fan, K.

Fan, S.

Fattinger, C.

C. Fattinger and D. Grischkowsky, “Observation of electromagnetic shock waves from propagating surface-dipole distributions,” Phys. Rev. Lett. 62(25), 2961–2964 (1989).
[Crossref] [PubMed]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Feurer, T.

P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25, B70–B75 (2008).

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Fülöp, J. A.

Grischkowsky, D.

C. Fattinger and D. Grischkowsky, “Observation of electromagnetic shock waves from propagating surface-dipole distributions,” Phys. Rev. Lett. 62(25), 2961–2964 (1989).
[Crossref] [PubMed]

Hafez, H.

Hangyo, M.

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using anultrashort laser pulse focused to a line,” Phys. Rev. B 76(8), 085346 (2007).
[Crossref]

Haugen, H.

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
[Crossref]

Haugen, H. K.

Hauri, C. P.

Hebling, J.

Hegmann, F. A.

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
[Crossref]

F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
[Crossref] [PubMed]

Hirori, H.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Hoffmann, M. C.

M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D Appl. Phys. 44(8), 083001 (2011).
[Crossref]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Kampfrath, T.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Karsch, S.

Kawase, K.

Kieffer, J.-C.

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
[Crossref]

F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
[Crossref] [PubMed]

Kleinman, D. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

Klingebiel, S.

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Koehl, R. M.

R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A 103(49), 10260–10267 (1999).
[Crossref]

R. M. Koehl, S. Adachi, and K. A. Nelson, “Real-space polariton wave packet imaging,” J. Chem. Phys. 110(3), 1317–1320 (1999).
[Crossref]

Kozma, I.

Krausz, F.

Kuhl, J.

Li, Z.-R.

S.-C. Zhong, L.-G. Zhu, S.-X. Tao, K. Meng, L.-Y. Peng, Q. Liu, Q.-X. Peng, J.-H. Zhao, and Z.-R. Li, “The polarization and efficiency of the terahertz pulses generated by tilted-pulse-front pumping scheme,” J. Infrared Millim. Terahertz Waves 35(3), 318–324 (2014).
[Crossref]

Lin, K.-H.

Liu, Q.

S.-C. Zhong, L.-G. Zhu, S.-X. Tao, K. Meng, L.-Y. Peng, Q. Liu, Q.-X. Peng, J.-H. Zhao, and Z.-R. Li, “The polarization and efficiency of the terahertz pulses generated by tilted-pulse-front pumping scheme,” J. Infrared Millim. Terahertz Waves 35(3), 318–324 (2014).
[Crossref]

Lombosi, C.

Mareczko, A.

Maslov, A. V.

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using anultrashort laser pulse focused to a line,” Phys. Rev. B 76(8), 085346 (2007).
[Crossref]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals,” Phys. Rev. Lett. 99(20), 203904 (2007).
[Crossref] [PubMed]

Meng, K.

S.-C. Zhong, L.-G. Zhu, S.-X. Tao, K. Meng, L.-Y. Peng, Q. Liu, Q.-X. Peng, J.-H. Zhao, and Z.-R. Li, “The polarization and efficiency of the terahertz pulses generated by tilted-pulse-front pumping scheme,” J. Infrared Millim. Terahertz Waves 35(3), 318–324 (2014).
[Crossref]

Merlin, R.

J. K. Wahlstrand and R. Merlin, “Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons,” Phys. Rev. B 68(5), 054301 (2003).
[Crossref]

Monoszlai, B.

Morandotti, R.

Müller, F.

Nelson, K. A.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20(8), 8551–8567 (2012).
[PubMed]

C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, “Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3,” J. Opt. Soc. Am. B 27(11), 2350–2359 (2010).
[Crossref]

Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009).
[PubMed]

P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25, B70–B75 (2008).

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

R. M. Koehl, S. Adachi, and K. A. Nelson, “Real-space polariton wave packet imaging,” J. Chem. Phys. 110(3), 1317–1320 (1999).
[Crossref]

R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A 103(49), 10260–10267 (1999).
[Crossref]

Nikoghosyan, A. S.

N. N. Zinov’ev, A. S. Nikoghosyan, R. A. Dudley, and J. M. Chamberlain, “Conversion of short optical pulses to terahertz radiation in anonlinear medium: experiment and theory,” Phys. Rev. B 76(23), 235114 (2007).
[Crossref]

N. N. Zinov’ev, A. S. Nikoghosyan, and J. M. Chamberlain, “Terahertz radiation from a nonlinear slab traversed by an optical pulse,” Phys. Rev. Lett. 98(4), 044801 (2007).
[Crossref] [PubMed]

Nuss, M. C.

D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
[Crossref]

Ollmann, Z.

Ouchi, T.

Ozaki, T.

Pálfalvi, L.

Peier, P.

Peng, L.-Y.

S.-C. Zhong, L.-G. Zhu, S.-X. Tao, K. Meng, L.-Y. Peng, Q. Liu, Q.-X. Peng, J.-H. Zhao, and Z.-R. Li, “The polarization and efficiency of the terahertz pulses generated by tilted-pulse-front pumping scheme,” J. Infrared Millim. Terahertz Waves 35(3), 318–324 (2014).
[Crossref]

Peng, Q.-X.

S.-C. Zhong, L.-G. Zhu, S.-X. Tao, K. Meng, L.-Y. Peng, Q. Liu, Q.-X. Peng, J.-H. Zhao, and Z.-R. Li, “The polarization and efficiency of the terahertz pulses generated by tilted-pulse-front pumping scheme,” J. Infrared Millim. Terahertz Waves 35(3), 318–324 (2014).
[Crossref]

Pilz, S.

Planken, P. C. M.

Razavipour, H.

Razzari, L.

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
[Crossref]

F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
[Crossref] [PubMed]

Reid, M.

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
[Crossref]

F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
[Crossref] [PubMed]

Ropagnol, X.

F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies,” Opt. Lett. 39(15), 4333–4336 (2014).
[Crossref] [PubMed]

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
[Crossref]

Schneider, A.

A. Schneider, “Comment on “terahertz radiation from a nonlinear slab traversed by an optical pulse,” Phys. Rev. Lett. 104(1), 019501 (2010).
[Crossref] [PubMed]

A. Schneider, “Theory of terahertz pulse generation through optical rectification in a nonlinear optical material with a finite size,” Phys. Rev. A 82(3), 033825 (2010).
[Crossref]

Sharma, G.

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
[Crossref]

F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
[Crossref] [PubMed]

Skrobol, C.

Statz, E. R.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Stoyanov, N. S.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Strikwerda, A. C.

Tait, C. R.

Takeuchi, H.

Takeya, K.

Tanaka, K.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Tao, S.-X.

S.-C. Zhong, L.-G. Zhu, S.-X. Tao, K. Meng, L.-Y. Peng, Q. Liu, Q.-X. Peng, J.-H. Zhao, and Z.-R. Li, “The polarization and efficiency of the terahertz pulses generated by tilted-pulse-front pumping scheme,” J. Infrared Millim. Terahertz Waves 35(3), 318–324 (2014).
[Crossref]

Teo, S. M.

Tiedje, H.

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
[Crossref]

Tiedje, H. F.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Valdmanis, J. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

van der Valk, N. C. J.

Vaughan, J. C.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Vicario, C.

Vidal, F.

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
[Crossref]

Wahlstrand, J. K.

J. K. Wahlstrand and R. Merlin, “Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons,” Phys. Rev. B 68(5), 054301 (2003).
[Crossref]

Ward, D. W.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Wen, J.

J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt.Photonics 5(1), 83–130 (2013).
[Crossref]

Werley, C. A.

Wu, Q.

Xiao, M.

J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt.Photonics 5(1), 83–130 (2013).
[Crossref]

Xu, J.-J.

Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

Xu, L.

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electrooptic materials,” Appl. Phys. Lett. 61(15), 1784–1786 (1992).
[Crossref]

Yeh, K.-L.

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6–B19 (2008).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Zhang, B.

Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

Zhang, X.

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electrooptic materials,” Appl. Phys. Lett. 61(15), 1784–1786 (1992).
[Crossref]

Zhang, Y.

J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt.Photonics 5(1), 83–130 (2013).
[Crossref]

Zhao, J.-H.

S.-C. Zhong, L.-G. Zhu, S.-X. Tao, K. Meng, L.-Y. Peng, Q. Liu, Q.-X. Peng, J.-H. Zhao, and Z.-R. Li, “The polarization and efficiency of the terahertz pulses generated by tilted-pulse-front pumping scheme,” J. Infrared Millim. Terahertz Waves 35(3), 318–324 (2014).
[Crossref]

Zhong, S.-C.

S.-C. Zhong, L.-G. Zhu, S.-X. Tao, K. Meng, L.-Y. Peng, Q. Liu, Q.-X. Peng, J.-H. Zhao, and Z.-R. Li, “The polarization and efficiency of the terahertz pulses generated by tilted-pulse-front pumping scheme,” J. Infrared Millim. Terahertz Waves 35(3), 318–324 (2014).
[Crossref]

Zhu, L.-G.

S.-C. Zhong, L.-G. Zhu, S.-X. Tao, K. Meng, L.-Y. Peng, Q. Liu, Q.-X. Peng, J.-H. Zhao, and Z.-R. Li, “The polarization and efficiency of the terahertz pulses generated by tilted-pulse-front pumping scheme,” J. Infrared Millim. Terahertz Waves 35(3), 318–324 (2014).
[Crossref]

Zinov’ev, N. N.

N. N. Zinov’ev, “Comment on terahertz radiation from a nonlinear slab traversed by an optical pulse, reply,” Phys. Rev. Lett. 104, 019502 (2010).

N. N. Zinov’ev, A. S. Nikoghosyan, R. A. Dudley, and J. M. Chamberlain, “Conversion of short optical pulses to terahertz radiation in anonlinear medium: experiment and theory,” Phys. Rev. B 76(23), 235114 (2007).
[Crossref]

N. N. Zinov’ev, A. S. Nikoghosyan, and J. M. Chamberlain, “Terahertz radiation from a nonlinear slab traversed by an optical pulse,” Phys. Rev. Lett. 98(4), 044801 (2007).
[Crossref] [PubMed]

Adv. Opt.Photonics (1)

J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Adv. Opt.Photonics 5(1), 83–130 (2013).
[Crossref]

Annu. Rev. Mater. Res. (1)

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007).
[Crossref]

Appl. Phys. Lett. (3)

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electrooptic materials,” Appl. Phys. Lett. 61(15), 1784–1786 (1992).
[Crossref]

Front. Phys. (1)

Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, “Terahertz phonon polariton imaging,” Front. Phys. 8(2), 217–227 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. A. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011).
[Crossref]

J. Chem. Phys. (1)

R. M. Koehl, S. Adachi, and K. A. Nelson, “Real-space polariton wave packet imaging,” J. Chem. Phys. 110(3), 1317–1320 (1999).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

S.-C. Zhong, L.-G. Zhu, S.-X. Tao, K. Meng, L.-Y. Peng, Q. Liu, Q.-X. Peng, J.-H. Zhao, and Z.-R. Li, “The polarization and efficiency of the terahertz pulses generated by tilted-pulse-front pumping scheme,” J. Infrared Millim. Terahertz Waves 35(3), 318–324 (2014).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. A (1)

R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A 103(49), 10260–10267 (1999).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D Appl. Phys. 44(8), 083001 (2011).
[Crossref]

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (2)

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. A (1)

A. Schneider, “Theory of terahertz pulse generation through optical rectification in a nonlinear optical material with a finite size,” Phys. Rev. A 82(3), 033825 (2010).
[Crossref]

Phys. Rev. B (3)

M. I. Bakunov, S. B. Bodrov, A. V. Maslov, and M. Hangyo, “Theory of terahertz generation in a slab of electro-optic material using anultrashort laser pulse focused to a line,” Phys. Rev. B 76(8), 085346 (2007).
[Crossref]

N. N. Zinov’ev, A. S. Nikoghosyan, R. A. Dudley, and J. M. Chamberlain, “Conversion of short optical pulses to terahertz radiation in anonlinear medium: experiment and theory,” Phys. Rev. B 76(23), 235114 (2007).
[Crossref]

J. K. Wahlstrand and R. Merlin, “Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons,” Phys. Rev. B 68(5), 054301 (2003).
[Crossref]

Phys. Rev. Lett. (6)

C. Fattinger and D. Grischkowsky, “Observation of electromagnetic shock waves from propagating surface-dipole distributions,” Phys. Rev. Lett. 62(25), 2961–2964 (1989).
[Crossref] [PubMed]

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984).
[Crossref]

N. N. Zinov’ev, A. S. Nikoghosyan, and J. M. Chamberlain, “Terahertz radiation from a nonlinear slab traversed by an optical pulse,” Phys. Rev. Lett. 98(4), 044801 (2007).
[Crossref] [PubMed]

N. N. Zinov’ev, “Comment on terahertz radiation from a nonlinear slab traversed by an optical pulse, reply,” Phys. Rev. Lett. 104, 019502 (2010).

A. Schneider, “Comment on “terahertz radiation from a nonlinear slab traversed by an optical pulse,” Phys. Rev. Lett. 104(1), 019501 (2010).
[Crossref] [PubMed]

M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals,” Phys. Rev. Lett. 99(20), 203904 (2007).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

G. A. Askar’yan, “Cerenkov radiation and transition radiation from electromagnetic waves,” Sov. Phys. JETP 15, 943–946 (1962).

Other (2)

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2002).

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).

Supplementary Material (4)

» Media 1: MP4 (3994 KB)     
» Media 2: MP4 (2854 KB)     
» Media 3: MP4 (2854 KB)     
» Media 4: MP4 (2854 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Illustration of a THz Cherenkov wave induced by optical rectification of an optical pump pulse in a nonlinear crystal, where θc is the Cherenkov angle. (b) Collinear imaging scheme where the optical pump pulse and optical probe pulse propagate collinearly. (c) Transverse imaging scheme where the optical probe pulse propagates perpendicularly to the optical pump pulse.
Fig. 2
Fig. 2 (a) Schematic of the experimental setup for THz Cherenkov wave imaging. A laser beam (800 nm) is split into an optical pump beam and an optical probe beam. The optical pump beam is focused by a lens (L3) onto a LiNbO3(LN) crystal. A polarizer (P) and a half wave plate (λ/2) are used to control the optical pump pulse polarization and energy. The optical probe beam is frequency doubled by a BBO crystal (the residual 800 nm beam is blocked with a band-pass filter (F1)) and further cleaned and expanded by a spatial filter (SF) and a pair of lenses (L1 and L2). The optical probe pulse propagates along the c-axis of the crystal. A second band-pass filter (F2) between the LiNbO3 crystal and the ICCD camera blocks the scattering light of the optical pump pulse. The object plane of the ICCD camera system is 14 mm away from the crystal. (b) Detailed illustration of the transverse imaging scheme. The optical pump beam and the optical probe beam are perpendicular to each other. L, H, and W define the size of the LiNbO3 crystal prism, and θ is the cutting angle. (c) Index ellipsoid diagram of a LiNbO3 crystal in the presence of a THz electric field. The refractive index no is isotropic in the xy plane and the refractive index modulation, no’-no, is proportional to the THz electric field strength.(d) Sample image of the THz Cherenkov wave as seen by the ICCD camera after waveform subtraction (Media 1).The crystal boundary is highlighted by a thin black line.
Fig. 3
Fig. 3 Images of the THz Cherenkov wave profile in crystal LN1 captured at delay times of (a) 10 ps, (b) 20 ps, (c) 30 ps, and (d) 40 ps. (The delay time is zero when the pump pulse enters the crystal.) (e) Overlay of the images in (a), (b), (c), and (d). (f) Illustration of the Cherenkov angles, where α is the measured apex angle from the image and θ’c = 90°- α/2 is the corresponding measured THz Cherenkov angle. The semi-annular wave is the transition-like THz radiation that originates from the point at which the optical pump pulse enters the crystal.
Fig. 4
Fig. 4 (a)-(c) Illustration showing how the optical probe pulse front gets phase modulated by the THz Cherenkov wave when the optical probe pulse and optical pump pulse propagate perpendicularly to each other. (d) THz Cherenkov wave with Cherenkov angle (64°). (e) Simulated image of the THz Cherenkov cone profile with an observed THz Cherenkov angle of 60.2°. (f) Experimental image of a THz Cherenkov wave with a cone angle that matches the result from the simulation in (e). For comparison, the red dashed line in (d) is the same angle as the cone profile edge observed in (f).
Fig. 5
Fig. 5 (a) Waveform profiles extracted directly from the Talbot phase contrast images of the THz Cherenkov waves along the line AB in Fig. 3 at various pump-probe delay times. The background level in the images has been subtracted from the extracted waveform profiles to give a zero amplitude baseline. (b) Corresponding amplitude spectra of the waveform profiles in (a).
Fig. 6
Fig. 6 The transition-like THz radiation captured at different delay times. The c-axis of the crystal is pointing out of the page. The inset shows waveforms for the transition-like radiation (free wave) and the Cherenkov wave (forced wave).
Fig. 7
Fig. 7 THz Cherenkov wave images in crystal LN1 captured at delay times of (a) 10 ps, (b) 20 ps, (c) 30 ps, and (d) 40 ps. (d) Overlap of images (a)-(c). The crystalLN1has been rotated 43° around the c-axis with the incident pump pulse propagating horizontally along path AO, and is illustrated in the inset of (a).(e) The optical pump pulse experiences total internal reflection at the crystal-air boundary, following the yellow dashed in crystal LN3. The pump-probe delay is 58 ps and the white arrow indicates transition-like THz radiation that is generated upon total internal reflection of the optical pump pulse at the crystal-air interface. (f) Transition-like THz radiation generated in LN3from the first and second surfaces at a delay time of 60 ps. The dashed yellow line is the propagation path of the optical pump pulse that has already exited the crystal.
Fig. 8
Fig. 8 Images of the THz Cherenkov wave in LN 1captured at delay times of (a) 10 ps, (b) 20 ps, (c) 30 ps, and (d) 40 ps. The optical pump beam (ordinary ray) polarization is in the plane of the page, perpendicular to the c-axis of the crystal.
Fig. 9
Fig. 9 Images of the THz Cherenkov wave captured at delay times of (a) 10 ps and (b) 40 ps when the optical pump pulse incident angle is 0°. Images of the THz Cherenkov wave captured at delay times of (c) 10 ps and (d) 40 ps when the optical pump pulse incident angle is 43°.

Tables (2)

Tables Icon

Table 1 LiNbO3 crystal size (L, W, H), cutting angle (θ), MgO doping level and growth type.

Tables Icon

Table 2 Observed group velocity of the optical pump pulse (v'opt) and THz wave phase velocity (v'THz), corresponding refractive indices (n'opt, n'THz), and THz Cherenkov angles (θ'c) calculated two different ways from analysis of the phase contrast images (not corrected for image distortion) in crystals LN1, LN2, and LN3.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

θ c = cos 1 ( v THz v opt )= cos 1 ( n opt n THz ),
E z ( x,t )= 4π P z ( 2 ) n THz 2 n opt 2 [ 1+ n opt 1+ n THz F( t x n THz c )F( t x n opt c ) ] (x>0)
( P x ( 2 ) P y ( 2 ) P z ( 2 ) )=2 ε 0 ( 0 0 0 0 d 15 d 22 d 22 d 22 0 d 15 0 0 d 15 d 15 d 33 0 0 0 )( E x 2 E y 2 E z 2 2 E y E z 2 E z E x 2 E x E y )
E =E( 0,sinβ,cosβ )
( P x ( 2 ) P y ( 2 ) P z ( 2 ) )=2 ε 0 E 2 ( 0 d 22 sin 2 β+2 d 15 sinβcosβ d 15 sin 2 β+ d 33 cos 2 β ) =2 ε 0 E 2 ( 0 0 d 33 )(case1:β=0°) =2 ε 0 E 2 ( 0 d 22 d 15 )(case2:β=90°)

Metrics