Abstract

Laser cooling in solids is based on anti-Stokes luminescence, via the annihilation of lattice phonons needed to compensate the energy of emitted photons, higher than absorbed ones. Usually the anti-Stokes process is obtained using a rare-earth active ion, like Yb. In this work we demonstrate a novel approach for optical cooling based not only to Yb anti-Stokes cycle but also to virtuous energy-transfer processes from the active ion, obtaining an increase of the cooling efficiency of a single crystal LiYF4 (YLF) doped Yb at 5at.% with a controlled co-doping of 0.0016% Thulium ions. A model for efficiency enhancement based on Yb-Tm energy transfer is also suggested.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Energy transfer enhanced laser cooling in Ho3+ and Tm3+-codoped lithium yttrium fluoride

Guang-Zong Dong, Xin-Lu Zhang, and Li Li
J. Opt. Soc. Am. B 30(4) 939-944 (2013)

Laser cooling with rare-earth-doped direct band-gap semiconductors

Galina Nemova and Raman Kashyap
J. Opt. Soc. Am. B 30(5) 1141-1147 (2013)

Optical refrigeration: the role of parasitic absorption at cryogenic temperatures

Azzurra Volpi, Junwei Meng, Aram Gragossian, Alexander R. Albrecht, Saeid Rostami, Alberto Di Lieto, Richard I. Epstein, Mauro Tonelli, Markus P. Hehlen, and Mansoor Sheik-Bahae
Opt. Express 27(21) 29710-29718 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
    [Crossref]
  2. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a solid to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
    [Crossref]
  3. D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010).
    [Crossref] [PubMed]
  4. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
    [Crossref] [PubMed]
  5. M. Ghasemkhani, A. R. Albrecht, S. D. Melgaard, D. V. Seletskiy, J. G. Cederberg, and M. Sheik-Bahae, “Intra-cavity cryogenic optical refrigeration using high power vertical external-cavity surface-emitting lasers (VECSELs),” Opt. Express 22(13), 16232–16240 (2014).
    [Crossref] [PubMed]
  6. S. D. Melgaard, D. V. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express 22(7), 7756–7764 (2014).
    [Crossref] [PubMed]
  7. S.D. Melgaard, A. Albrecht, M. Hehlen, D.V. Seletskiy and M. Sheik-Bahae “Optical refrigeration cools below 100K,” CLEO 2014, OSA, paper FTh4D.4.
  8. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
    [Crossref] [PubMed]
  9. N. J. Condon, S. R. Bowman, S. P. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5.,” Opt. Express 17(7), 5466–5472 (2009).
    [Crossref] [PubMed]
  10. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescent cooling in thulium doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
    [Crossref]
  11. C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. of Am. B 20(5), 1066–1074 (2003).
    [Crossref]
  12. W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16(3), 1704–1710 (2008).
    [Crossref] [PubMed]
  13. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
    [Crossref]
  14. D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Laser cooling of a solid to cryogenic temperatures,” Adv. Opt. Photon. 4, 78–107 (2012).
    [Crossref]
  15. M. P. Hehlen, R. I. Epstein, and H. Inuoe, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
    [Crossref]
  16. A. DiLieto, A. Sottile, A. Volpi, Z. Zhang, and M. Tonelli, “Effect of impurities on cooling efficiency in fluoride crystals,” Proc. SPIE 9000, Laser Refrigeration of Solids VII, 900003 (2014).
  17. A. Di Lieto, A. Sottile, A. Volpi, Z. Zhang, D. V. Seletskiy, and M. Tonelli, “Influence of other rare earth ions on the optical refrigeration efficiency in Yb:YLF crystals,” Opt. Express 22(23), 28572–28583 (2014).
    [Crossref] [PubMed]
  18. G. Z. Dong, X. L. Zhang, and L. Li, “Energy transfer enhanced laser cooling in Ho3+ and Tm 3+-codoped lithium yttrium fluoride,” J. Opt. Soc. Am. B 30(4), 939–944 (2013).
    [Crossref]
  19. M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP - double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41, 259 (2003).
    [Crossref]
  20. A. A. Kaminski, Crystalline Lasers:Physical Processes and Operating Schemes (CRC Press, 1996)
  21. F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–173 (2004).
    [Crossref] [PubMed]
  22. V. V. Ovsyakin and P. P. Feofilov, “Cooperative sensitization of luminescence in crystal activated with rare earth ions,” Sov. Phys. JETP Lett 11, 317–318 (1966).
  23. X. Pei, Y. Hou, S. Zhao, Z. Xu, and F. Teng, “Frequency upconversion of Tm3+ and Yb3+codoped YLiF4 synthesized by hydrothermal method,” Mater. Chem. Phys. 90(2-3), 270–274 (2005).
    [Crossref]
  24. F. Guell, R. Solé, J. Gavaldà, M. Aguiló, M. Galán, F. Díaz, and J. Massons, “Upconversion luminescence of Tm3+ sensitized by Yb3+ ions in monoclinic KGd(WO4)2 single crystals,” Opt. Mater. 30(2), 222–226 (2007).
    [Crossref]
  25. M. Liao, L. Wem, H. Zhao, Y. Fang, H. Sun, and L. Hu, “Mechanisms of Yb3+ sensitization to Tm3+ for blue upconversion luminescence in fluorophosphate glass,” Mater. Lett. 61(2), 470–472 (2007).
    [Crossref]
  26. L. A. Riseberg and M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in OpticsXIV, 3 (North-Holland, 1976).

2014 (4)

2013 (2)

2012 (2)

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Laser cooling of a solid to cryogenic temperatures,” Adv. Opt. Photon. 4, 78–107 (2012).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

2010 (2)

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a solid to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (3)

F. Guell, R. Solé, J. Gavaldà, M. Aguiló, M. Galán, F. Díaz, and J. Massons, “Upconversion luminescence of Tm3+ sensitized by Yb3+ ions in monoclinic KGd(WO4)2 single crystals,” Opt. Mater. 30(2), 222–226 (2007).
[Crossref]

M. Liao, L. Wem, H. Zhao, Y. Fang, H. Sun, and L. Hu, “Mechanisms of Yb3+ sensitization to Tm3+ for blue upconversion luminescence in fluorophosphate glass,” Mater. Lett. 61(2), 470–472 (2007).
[Crossref]

M. P. Hehlen, R. I. Epstein, and H. Inuoe, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

2006 (1)

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[Crossref] [PubMed]

2005 (1)

X. Pei, Y. Hou, S. Zhao, Z. Xu, and F. Teng, “Frequency upconversion of Tm3+ and Yb3+codoped YLiF4 synthesized by hydrothermal method,” Mater. Chem. Phys. 90(2-3), 270–274 (2005).
[Crossref]

2004 (1)

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–173 (2004).
[Crossref] [PubMed]

2003 (2)

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. of Am. B 20(5), 1066–1074 (2003).
[Crossref]

M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP - double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41, 259 (2003).
[Crossref]

2000 (1)

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescent cooling in thulium doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[Crossref]

1995 (1)

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

1966 (1)

V. V. Ovsyakin and P. P. Feofilov, “Cooperative sensitization of luminescence in crystal activated with rare earth ions,” Sov. Phys. JETP Lett 11, 317–318 (1966).

Aguiló, M.

F. Guell, R. Solé, J. Gavaldà, M. Aguiló, M. Galán, F. Díaz, and J. Massons, “Upconversion luminescence of Tm3+ sensitized by Yb3+ ions in monoclinic KGd(WO4)2 single crystals,” Opt. Mater. 30(2), 222–226 (2007).
[Crossref]

Albrecht, A. R.

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescent cooling in thulium doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[Crossref]

Asmerom, Y.

Auzel, F.

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–173 (2004).
[Crossref] [PubMed]

Balda, R.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[Crossref] [PubMed]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a solid to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[Crossref]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16(3), 1704–1710 (2008).
[Crossref] [PubMed]

Bottazzi, P.

M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP - double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41, 259 (2003).
[Crossref]

Bowman, S. R.

Buchwald, M.

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Cederberg, J. G.

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Condon, N. J.

Di Lieto, A.

Díaz, F.

F. Guell, R. Solé, J. Gavaldà, M. Aguiló, M. Galán, F. Díaz, and J. Massons, “Upconversion luminescence of Tm3+ sensitized by Yb3+ ions in monoclinic KGd(WO4)2 single crystals,” Opt. Mater. 30(2), 222–226 (2007).
[Crossref]

DiLieto, A.

A. DiLieto, A. Sottile, A. Volpi, Z. Zhang, and M. Tonelli, “Effect of impurities on cooling efficiency in fluoride crystals,” Proc. SPIE 9000, Laser Refrigeration of Solids VII, 900003 (2014).

Distel, J.

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. of Am. B 20(5), 1066–1074 (2003).
[Crossref]

Dong, G. Z.

Edwards, B.

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Edwards, B. C.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescent cooling in thulium doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[Crossref]

Epstein, R.

Epstein, R. I.

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Laser cooling of a solid to cryogenic temperatures,” Adv. Opt. Photon. 4, 78–107 (2012).
[Crossref]

M. P. Hehlen, R. I. Epstein, and H. Inuoe, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. of Am. B 20(5), 1066–1074 (2003).
[Crossref]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescent cooling in thulium doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[Crossref]

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Fang, Y.

M. Liao, L. Wem, H. Zhao, Y. Fang, H. Sun, and L. Hu, “Mechanisms of Yb3+ sensitization to Tm3+ for blue upconversion luminescence in fluorophosphate glass,” Mater. Lett. 61(2), 470–472 (2007).
[Crossref]

Feofilov, P. P.

V. V. Ovsyakin and P. P. Feofilov, “Cooperative sensitization of luminescence in crystal activated with rare earth ions,” Sov. Phys. JETP Lett 11, 317–318 (1966).

Fernandez, J.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[Crossref] [PubMed]

Galán, M.

F. Guell, R. Solé, J. Gavaldà, M. Aguiló, M. Galán, F. Díaz, and J. Massons, “Upconversion luminescence of Tm3+ sensitized by Yb3+ ions in monoclinic KGd(WO4)2 single crystals,” Opt. Mater. 30(2), 222–226 (2007).
[Crossref]

Garcia-Adeva, A. J.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[Crossref] [PubMed]

Gavaldà, J.

F. Guell, R. Solé, J. Gavaldà, M. Aguiló, M. Galán, F. Díaz, and J. Massons, “Upconversion luminescence of Tm3+ sensitized by Yb3+ ions in monoclinic KGd(WO4)2 single crystals,” Opt. Mater. 30(2), 222–226 (2007).
[Crossref]

Ghasemkhani, M.

Gosnell, T.

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Greenfield, S.

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. of Am. B 20(5), 1066–1074 (2003).
[Crossref]

Guell, F.

F. Guell, R. Solé, J. Gavaldà, M. Aguiló, M. Galán, F. Díaz, and J. Massons, “Upconversion luminescence of Tm3+ sensitized by Yb3+ ions in monoclinic KGd(WO4)2 single crystals,” Opt. Mater. 30(2), 222–226 (2007).
[Crossref]

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Hasselbeck, M. P.

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. of Am. B 20(5), 1066–1074 (2003).
[Crossref]

Hehlen, M. P.

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Laser cooling of a solid to cryogenic temperatures,” Adv. Opt. Photon. 4, 78–107 (2012).
[Crossref]

M. P. Hehlen, R. I. Epstein, and H. Inuoe, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

Hou, Y.

X. Pei, Y. Hou, S. Zhao, Z. Xu, and F. Teng, “Frequency upconversion of Tm3+ and Yb3+codoped YLiF4 synthesized by hydrothermal method,” Mater. Chem. Phys. 90(2-3), 270–274 (2005).
[Crossref]

Hoyt, C. W.

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. of Am. B 20(5), 1066–1074 (2003).
[Crossref]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescent cooling in thulium doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[Crossref]

Hu, L.

M. Liao, L. Wem, H. Zhao, Y. Fang, H. Sun, and L. Hu, “Mechanisms of Yb3+ sensitization to Tm3+ for blue upconversion luminescence in fluorophosphate glass,” Mater. Lett. 61(2), 470–472 (2007).
[Crossref]

Inuoe, H.

M. P. Hehlen, R. I. Epstein, and H. Inuoe, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Li, L.

Liao, M.

M. Liao, L. Wem, H. Zhao, Y. Fang, H. Sun, and L. Hu, “Mechanisms of Yb3+ sensitization to Tm3+ for blue upconversion luminescence in fluorophosphate glass,” Mater. Lett. 61(2), 470–472 (2007).
[Crossref]

Martin, M. J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Massons, J.

F. Guell, R. Solé, J. Gavaldà, M. Aguiló, M. Galán, F. Díaz, and J. Massons, “Upconversion luminescence of Tm3+ sensitized by Yb3+ ions in monoclinic KGd(WO4)2 single crystals,” Opt. Mater. 30(2), 222–226 (2007).
[Crossref]

Melgaard, S. D.

Mungan, C.

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Mungan, C. E.

O’Connor, S. P.

Ovsyakin, V. V.

V. V. Ovsyakin and P. P. Feofilov, “Cooperative sensitization of luminescence in crystal activated with rare earth ions,” Sov. Phys. JETP Lett 11, 317–318 (1966).

Palenzona, M.

M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP - double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41, 259 (2003).
[Crossref]

Parisi, D.

Patterson, W.

Pei, X.

X. Pei, Y. Hou, S. Zhao, Z. Xu, and F. Teng, “Frequency upconversion of Tm3+ and Yb3+codoped YLiF4 synthesized by hydrothermal method,” Mater. Chem. Phys. 90(2-3), 270–274 (2005).
[Crossref]

Polyak, V.

Quimby, R. S.

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Seletskiy, D. V.

S. D. Melgaard, D. V. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express 22(7), 7756–7764 (2014).
[Crossref] [PubMed]

M. Ghasemkhani, A. R. Albrecht, S. D. Melgaard, D. V. Seletskiy, J. G. Cederberg, and M. Sheik-Bahae, “Intra-cavity cryogenic optical refrigeration using high power vertical external-cavity surface-emitting lasers (VECSELs),” Opt. Express 22(13), 16232–16240 (2014).
[Crossref] [PubMed]

A. Di Lieto, A. Sottile, A. Volpi, Z. Zhang, D. V. Seletskiy, and M. Tonelli, “Influence of other rare earth ions on the optical refrigeration efficiency in Yb:YLF crystals,” Opt. Express 22(23), 28572–28583 (2014).
[Crossref] [PubMed]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
[Crossref] [PubMed]

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Laser cooling of a solid to cryogenic temperatures,” Adv. Opt. Photon. 4, 78–107 (2012).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010).
[Crossref] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a solid to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[Crossref]

Sheik-Bahae, M.

S. D. Melgaard, D. V. Seletskiy, V. Polyak, Y. Asmerom, and M. Sheik-Bahae, “Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K,” Opt. Express 22(7), 7756–7764 (2014).
[Crossref] [PubMed]

M. Ghasemkhani, A. R. Albrecht, S. D. Melgaard, D. V. Seletskiy, J. G. Cederberg, and M. Sheik-Bahae, “Intra-cavity cryogenic optical refrigeration using high power vertical external-cavity surface-emitting lasers (VECSELs),” Opt. Express 22(13), 16232–16240 (2014).
[Crossref] [PubMed]

S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
[Crossref] [PubMed]

D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Laser cooling of a solid to cryogenic temperatures,” Adv. Opt. Photon. 4, 78–107 (2012).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010).
[Crossref] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a solid to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[Crossref]

W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, “Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8,” Opt. Express 16(3), 1704–1710 (2008).
[Crossref] [PubMed]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. of Am. B 20(5), 1066–1074 (2003).
[Crossref]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescent cooling in thulium doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[Crossref]

Solé, R.

F. Guell, R. Solé, J. Gavaldà, M. Aguiló, M. Galán, F. Díaz, and J. Massons, “Upconversion luminescence of Tm3+ sensitized by Yb3+ ions in monoclinic KGd(WO4)2 single crystals,” Opt. Mater. 30(2), 222–226 (2007).
[Crossref]

Sottile, A.

A. DiLieto, A. Sottile, A. Volpi, Z. Zhang, and M. Tonelli, “Effect of impurities on cooling efficiency in fluoride crystals,” Proc. SPIE 9000, Laser Refrigeration of Solids VII, 900003 (2014).

A. Di Lieto, A. Sottile, A. Volpi, Z. Zhang, D. V. Seletskiy, and M. Tonelli, “Influence of other rare earth ions on the optical refrigeration efficiency in Yb:YLF crystals,” Opt. Express 22(23), 28572–28583 (2014).
[Crossref] [PubMed]

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Sun, H.

M. Liao, L. Wem, H. Zhao, Y. Fang, H. Sun, and L. Hu, “Mechanisms of Yb3+ sensitization to Tm3+ for blue upconversion luminescence in fluorophosphate glass,” Mater. Lett. 61(2), 470–472 (2007).
[Crossref]

Teng, F.

X. Pei, Y. Hou, S. Zhao, Z. Xu, and F. Teng, “Frequency upconversion of Tm3+ and Yb3+codoped YLiF4 synthesized by hydrothermal method,” Mater. Chem. Phys. 90(2-3), 270–274 (2005).
[Crossref]

Thiede, J.

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. of Am. B 20(5), 1066–1074 (2003).
[Crossref]

Tiepolo, M.

M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP - double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41, 259 (2003).
[Crossref]

Tonelli, M.

Valencia, J.

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. of Am. B 20(5), 1066–1074 (2003).
[Crossref]

Vannucci, R.

M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP - double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41, 259 (2003).
[Crossref]

Volpi, A.

A. DiLieto, A. Sottile, A. Volpi, Z. Zhang, and M. Tonelli, “Effect of impurities on cooling efficiency in fluoride crystals,” Proc. SPIE 9000, Laser Refrigeration of Solids VII, 900003 (2014).

A. Di Lieto, A. Sottile, A. Volpi, Z. Zhang, D. V. Seletskiy, and M. Tonelli, “Influence of other rare earth ions on the optical refrigeration efficiency in Yb:YLF crystals,” Opt. Express 22(23), 28572–28583 (2014).
[Crossref] [PubMed]

Wem, L.

M. Liao, L. Wem, H. Zhao, Y. Fang, H. Sun, and L. Hu, “Mechanisms of Yb3+ sensitization to Tm3+ for blue upconversion luminescence in fluorophosphate glass,” Mater. Lett. 61(2), 470–472 (2007).
[Crossref]

Xu, Z.

X. Pei, Y. Hou, S. Zhao, Z. Xu, and F. Teng, “Frequency upconversion of Tm3+ and Yb3+codoped YLiF4 synthesized by hydrothermal method,” Mater. Chem. Phys. 90(2-3), 270–274 (2005).
[Crossref]

Ye, J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Zhang, X. L.

Zhang, Z.

A. Di Lieto, A. Sottile, A. Volpi, Z. Zhang, D. V. Seletskiy, and M. Tonelli, “Influence of other rare earth ions on the optical refrigeration efficiency in Yb:YLF crystals,” Opt. Express 22(23), 28572–28583 (2014).
[Crossref] [PubMed]

A. DiLieto, A. Sottile, A. Volpi, Z. Zhang, and M. Tonelli, “Effect of impurities on cooling efficiency in fluoride crystals,” Proc. SPIE 9000, Laser Refrigeration of Solids VII, 900003 (2014).

Zhao, H.

M. Liao, L. Wem, H. Zhao, Y. Fang, H. Sun, and L. Hu, “Mechanisms of Yb3+ sensitization to Tm3+ for blue upconversion luminescence in fluorophosphate glass,” Mater. Lett. 61(2), 470–472 (2007).
[Crossref]

Zhao, S.

X. Pei, Y. Hou, S. Zhao, Z. Xu, and F. Teng, “Frequency upconversion of Tm3+ and Yb3+codoped YLiF4 synthesized by hydrothermal method,” Mater. Chem. Phys. 90(2-3), 270–274 (2005).
[Crossref]

Adv. Opt. Photon. (1)

Can. Mineral. (1)

M. Tiepolo, P. Bottazzi, M. Palenzona, and R. Vannucci, “A laser probe coupled with ICP - double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U-Pb daring of zircon,” Can. Mineral. 41, 259 (2003).
[Crossref]

Chem. Rev. (1)

F. Auzel, “Upconversion and Anti-Stokes Processes with f and d Ions in Solids,” Chem. Rev. 104(1), 139–173 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. of Am. B (1)

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. of Am. B 20(5), 1066–1074 (2003).
[Crossref]

Mater. Chem. Phys. (1)

X. Pei, Y. Hou, S. Zhao, Z. Xu, and F. Teng, “Frequency upconversion of Tm3+ and Yb3+codoped YLiF4 synthesized by hydrothermal method,” Mater. Chem. Phys. 90(2-3), 270–274 (2005).
[Crossref]

Mater. Lett. (1)

M. Liao, L. Wem, H. Zhao, Y. Fang, H. Sun, and L. Hu, “Mechanisms of Yb3+ sensitization to Tm3+ for blue upconversion luminescence in fluorophosphate glass,” Mater. Lett. 61(2), 470–472 (2007).
[Crossref]

Nat. Photonics (2)

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a solid to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[Crossref]

Nature (1)

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. (1)

F. Guell, R. Solé, J. Gavaldà, M. Aguiló, M. Galán, F. Díaz, and J. Massons, “Upconversion luminescence of Tm3+ sensitized by Yb3+ ions in monoclinic KGd(WO4)2 single crystals,” Opt. Mater. 30(2), 222–226 (2007).
[Crossref]

Phys. Rev. B (1)

M. P. Hehlen, R. I. Epstein, and H. Inuoe, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[Crossref]

Phys. Rev. Lett. (2)

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescent cooling in thulium doped glass,” Phys. Rev. Lett. 85(17), 3600–3603 (2000).
[Crossref]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97(3), 033001 (2006).
[Crossref] [PubMed]

Proc. SPIE 9000, Laser Refrigeration of Solids (1)

A. DiLieto, A. Sottile, A. Volpi, Z. Zhang, and M. Tonelli, “Effect of impurities on cooling efficiency in fluoride crystals,” Proc. SPIE 9000, Laser Refrigeration of Solids VII, 900003 (2014).

Sov. Phys. JETP Lett (1)

V. V. Ovsyakin and P. P. Feofilov, “Cooperative sensitization of luminescence in crystal activated with rare earth ions,” Sov. Phys. JETP Lett 11, 317–318 (1966).

Other (3)

L. A. Riseberg and M. J. Weber, “Relaxation phenomena in rare-earth luminescence,” in Progress in OpticsXIV, 3 (North-Holland, 1976).

A. A. Kaminski, Crystalline Lasers:Physical Processes and Operating Schemes (CRC Press, 1996)

S.D. Melgaard, A. Albrecht, M. Hehlen, D.V. Seletskiy and M. Sheik-Bahae “Optical refrigeration cools below 100K,” CLEO 2014, OSA, paper FTh4D.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Cooling efficiency data points and fit model curve for YLF:5%Yb with 16ppm of Tm doping (circles and red line), YLF:5%Yb (circles and magenta line) and YLF: 10% Yb (circles and blue line).
Fig. 2
Fig. 2 Visible and NIR emissions for YLF:5% Yb with 16 ppm Tm doping (red curve) and YLF:10% Yb (blue curve) obtained by pumping the Yb transition at 940 nm. In the inset is shown the emission in 2 μm region.
Fig. 3
Fig. 3 Energy levels of Tm and Yb ions in YLF host with the main transition involved in the energy-transfer process.
Fig. 4
Fig. 4 Blue fluorescence vs 940nm pump power. Black squares are experimental data, the continuous line is the best fit of a power law, with the fitted exponent value 2.3 ± 0.2 .

Tables (2)

Tables Icon

Table 1 Estimated values of EQE and background absorption parameters for YLF crystals doped Yb at 5%, 7.5% and 10%.

Tables Icon

Table 2 Concentration of Ho, Er and Tm impurities in the YLF:10%Yb andYLF:5%-0.0016% cooling samples, measured by means of LA-IPC-MS.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η c (λ,T)= P cool P abs = η ext η abs (λ,T) λ λ f (T) 1
η abs (λ,T)= 1 1+ α b / α(λ,T)

Metrics