Abstract

A particular photonic crystal fiber (PCF) designed with all circle air holes is proposed. Its characteristics are studied by full-vector finite element method (FEM) with anisotropic perfectly matched layer (PML). The simulation results indicated that the proposed PCF can realize high birefringence (up to 10−2), high nonlinearity (50W−1·km−1 and 68W−1·km−1 in X and Y polarizations respectively) and low confinement loss (less than 10−3dB/km at 1.55um wavelength).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diamond unit cell photonic crystal fiber with high birefringence and low confinement loss based on circular air holes

Yong Soo Lee, Chung Ghiu Lee, Yongmin Jung, and Soeun Kim
Appl. Opt. 54(20) 6140-6145 (2015)

Design for a high birefringence photonic crystal fiber with multimode and low loss

Fengji Gui, Ping Jiang, Huajun Yang, Yan Qin, and Weinan Caiyang
Appl. Opt. 57(1) 6-13 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [Crossref] [PubMed]
  2. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [Crossref] [PubMed]
  3. J. C. Knight and P. S. J. Russell, “Photonic crystal fibers: New way to guide light,” Science 296(10), 276–277 (2002).
    [Crossref] [PubMed]
  4. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultra low loss and long length photonic crystal fiber,” J. Lightwave Technol. 22(1), 7–10 (2004).
    [Crossref]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
    [Crossref] [PubMed]
  6. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
    [Crossref]
  7. M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “High Extinction-Ratio Polarizing Endlessly Single-Mode Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 19(8), 562–564 (2007).
    [Crossref]
  8. T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightwave Technol. 23(12), 4178–4183 (2005).
    [Crossref]
  9. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: The significance of the ring-core region,” Opt. Express 15(4), 1794–1803 (2007).
    [Crossref] [PubMed]
  10. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  11. K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15(10), 1384–1386 (2003).
    [Crossref]
  12. S. L. Jiao, M. Todorović, G. Stoica, and L. V. Wang, “Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation,” Appl. Opt. 44(26), 5463–5467 (2005).
    [Crossref] [PubMed]
  13. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
    [Crossref] [PubMed]
  14. J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004).
    [Crossref] [PubMed]
  15. J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1375–1377 (2003).
    [Crossref]
  16. M. Delgado-Pinar, A. Díez, S. Torres-Peiró, M. V. Andrés, T. Pinheiro-Ortega, and E. Silvestre, “Waveguiding properties of a photonic crystal fiber with a solid core surrounded by four large air holes,” Opt. Express 17(9), 6931–6938 (2009).
    [Crossref] [PubMed]
  17. M. J. Steel and R. M. Osgood., “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26(4), 229–231 (2001).
    [Crossref] [PubMed]
  18. S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C. S. Kee, “Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion,” Opt. Express 20(2), 1385–1391 (2012).
    [Crossref] [PubMed]
  19. D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
    [Crossref]
  20. L. An, Z. Zheng, Z. Li, T. Zhou, and J. T. Cheng, “Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss Using Four Airholes in the Core,” J. Lightwave Technol. 27(15), 3175–3180 (2009).
    [Crossref]
  21. W. B. Liang, N. L. Liu, Z. H. Li, and P. X. Lu, “Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss,” J. Lightwave Technol. 30(21), 3381–3386 (2012).
    [Crossref]
  22. H. M. Jiang, E. L. Wang, J. Zhang, L. Hu, Q. P. Mao, Q. Li, and K. Xie, “Polarization splitter based on dual-core photonic crystal fiber,” Opt. Express 22(25), 30461–30466 (2014).
    [PubMed]
  23. T. L. Cheng, Y. Kanou, D. Deng, X. J. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
    [PubMed]
  24. R. W. Boyd, Nonlinear Optics 3rd Edition (Academic, 2003) pp.212.
  25. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  26. E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
    [Crossref]
  27. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref] [PubMed]
  28. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004).
    [Crossref] [PubMed]
  29. C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-Insensitive Interferometer Using a Highly Birefringent Photonic Crystal Fiber Loop Mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
    [Crossref]
  30. A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, “A High-Speed Demultiplexer Based on a Nonlinear Optical Loop Mirror With a Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15(8), 1147–1149 (2003).
    [Crossref]
  31. M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20(1), 32–38 (2014).
    [Crossref]

2014 (3)

2012 (2)

2009 (2)

2007 (3)

Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: The significance of the ring-core region,” Opt. Express 15(4), 1794–1803 (2007).
[Crossref] [PubMed]

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “High Extinction-Ratio Polarizing Endlessly Single-Mode Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 19(8), 562–564 (2007).
[Crossref]

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
[Crossref]

2006 (2)

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[Crossref]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref] [PubMed]

2005 (2)

2004 (4)

2003 (3)

A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, “A High-Speed Demultiplexer Based on a Nonlinear Optical Loop Mirror With a Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15(8), 1147–1149 (2003).
[Crossref]

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15(10), 1384–1386 (2003).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1375–1377 (2003).
[Crossref]

2002 (1)

J. C. Knight and P. S. J. Russell, “Photonic crystal fibers: New way to guide light,” Science 296(10), 276–277 (2002).
[Crossref] [PubMed]

2001 (3)

2000 (1)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

1997 (1)

1996 (1)

1965 (1)

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

An, L.

Andersen, P. A.

A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, “A High-Speed Demultiplexer Based on a Nonlinear Optical Loop Mirror With a Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15(8), 1147–1149 (2003).
[Crossref]

Andres, M. V.

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “High Extinction-Ratio Polarizing Endlessly Single-Mode Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 19(8), 562–564 (2007).
[Crossref]

Andrés, M. V.

Arriaga, J.

Atkin, D. M.

Barbosa, L. C.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[Crossref]

Benabid, F.

Berg, K. S.

A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, “A High-Speed Demultiplexer Based on a Nonlinear Optical Loop Mirror With a Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15(8), 1147–1149 (2003).
[Crossref]

Birks, T. A.

Bjarklev, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Brito Cruz, C. H.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[Crossref]

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Chen, D.

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
[Crossref]

Cheng, J. T.

Cheng, T. L.

Chillcce, E. F.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[Crossref]

Clausen, A. T.

A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, “A High-Speed Demultiplexer Based on a Nonlinear Optical Loop Mirror With a Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15(8), 1147–1149 (2003).
[Crossref]

Cordeiro, C. M. B.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[Crossref]

Couny, F.

Cox, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Cruz, J. L.

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “High Extinction-Ratio Polarizing Endlessly Single-Mode Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 19(8), 562–564 (2007).
[Crossref]

Delgado-Pinar, M.

M. Delgado-Pinar, A. Díez, S. Torres-Peiró, M. V. Andrés, T. Pinheiro-Ortega, and E. Silvestre, “Waveguiding properties of a photonic crystal fiber with a solid core surrounded by four large air holes,” Opt. Express 17(9), 6931–6938 (2009).
[Crossref] [PubMed]

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “High Extinction-Ratio Polarizing Endlessly Single-Mode Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 19(8), 562–564 (2007).
[Crossref]

Demokan, M. S.

C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-Insensitive Interferometer Using a Highly Birefringent Photonic Crystal Fiber Loop Mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1375–1377 (2003).
[Crossref]

Deng, D.

Diez, A.

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “High Extinction-Ratio Polarizing Endlessly Single-Mode Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 19(8), 562–564 (2007).
[Crossref]

Díez, A.

Fellew, M.

Folkenberg, J.

Folkenberg, J. R.

A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, “A High-Speed Demultiplexer Based on a Nonlinear Optical Loop Mirror With a Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15(8), 1147–1149 (2003).
[Crossref]

Fujita, M.

Hansen, K. P.

A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, “A High-Speed Demultiplexer Based on a Nonlinear Optical Loop Mirror With a Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15(8), 1147–1149 (2003).
[Crossref]

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Hasan, M. I.

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20(1), 32–38 (2014).
[Crossref]

Henry, G.

Hu, L.

Issa, N. A.

Jakobsen, C.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Jeppesen, P.

A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, “A High-Speed Demultiplexer Based on a Nonlinear Optical Loop Mirror With a Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15(8), 1147–1149 (2003).
[Crossref]

Jiang, H. M.

Jiao, S. L.

Jin, W.

C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-Insensitive Interferometer Using a Highly Birefringent Photonic Crystal Fiber Loop Mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1375–1377 (2003).
[Crossref]

Ju, J.

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1375–1377 (2003).
[Crossref]

Kanou, Y.

Kawanishi, S.

Kee, C. S.

Kim, B. H.

Kim, S. E.

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Koshiba, M.

Kubota, H.

Large, M. C. J.

Lee, C. G.

Lee, S.

Li, Q.

Li, Z.

Li, Z. H.

Liang, W. B.

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Light, P. S.

Liu, N. L.

Lu, C.

C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-Insensitive Interferometer Using a Highly Birefringent Photonic Crystal Fiber Loop Mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Lu, P. X.

Malitson, I. H.

Mangan, B. J.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Mao, Q. P.

Matsui, T.

Matsumoto, M.

Misumi, T.

Mortensen, N.

Nakajima, K.

Nielsen, M.

Oh, K.

Ohishi, Y.

Ortigosa-Blanch, A.

Osgood, R. M.

Oxenlwe, L. K.

A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, “A High-Speed Demultiplexer Based on a Nonlinear Optical Loop Mirror With a Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15(8), 1147–1149 (2003).
[Crossref]

Peucheret, C.

A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, “A High-Speed Demultiplexer Based on a Nonlinear Optical Loop Mirror With a Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15(8), 1147–1149 (2003).
[Crossref]

Pinheiro-Ortega, T.

Razzak, S. M. A.

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20(1), 32–38 (2014).
[Crossref]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Russell, P. S.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
[Crossref] [PubMed]

Russell, P. S. J.

Saitoh, K.

Samiul Habib, M.

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20(1), 32–38 (2014).
[Crossref]

Sankawa, I.

Sato, K.

Selim Habib, M.

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20(1), 32–38 (2014).
[Crossref]

Shen, L.

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
[Crossref]

Siahlo, A. I.

A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, “A High-Speed Demultiplexer Based on a Nonlinear Optical Loop Mirror With a Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15(8), 1147–1149 (2003).
[Crossref]

Silvestre, E.

Simonsen, H.

J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004).
[Crossref] [PubMed]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Steel, M. J.

Stoica, G.

Suzuki, K.

Suzuki, T.

Tajima, K.

Tanaka, M.

Tersigni, A.

A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, “A High-Speed Demultiplexer Based on a Nonlinear Optical Loop Mirror With a Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15(8), 1147–1149 (2003).
[Crossref]

Todorovic, M.

Torres-Peiró, S.

Tsuchida, Y.

van Eijkelenborg, M. A.

Wadsworth, W. J.

Wang, E. L.

Wang, L. V.

Xie, K.

Xue, X. J.

Yang, X. F.

C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-Insensitive Interferometer Using a Highly Birefringent Photonic Crystal Fiber Loop Mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Zhang, J.

Zhao, C. L.

C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-Insensitive Interferometer Using a Highly Birefringent Photonic Crystal Fiber Loop Mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

Zheng, Z.

Zhou, J.

Zhou, T.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (7)

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

M. Delgado-Pinar, A. Diez, J. L. Cruz, and M. V. Andres, “High Extinction-Ratio Polarizing Endlessly Single-Mode Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 19(8), 562–564 (2007).
[Crossref]

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15(10), 1384–1386 (2003).
[Crossref]

J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 15(10), 1375–1377 (2003).
[Crossref]

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19(4), 185–187 (2007).
[Crossref]

C. L. Zhao, X. F. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-Insensitive Interferometer Using a Highly Birefringent Photonic Crystal Fiber Loop Mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[Crossref]

A. I. Siahlo, L. K. Oxenlwe, K. S. Berg, A. T. Clausen, P. A. Andersen, C. Peucheret, A. Tersigni, P. Jeppesen, K. P. Hansen, and J. R. Folkenberg, “A High-Speed Demultiplexer Based on a Nonlinear Optical Loop Mirror With a Photonic Crystal Fiber,” IEEE Photon. Technol. Lett. 15(8), 1147–1149 (2003).
[Crossref]

J. Lightwave Technol. (4)

J. Non-Cryst. Solids (1)

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Tellurite photonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids 352(32-35), 3423–3428 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (7)

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9(13), 676–680 (2001).
[Crossref] [PubMed]

J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004).
[Crossref] [PubMed]

T. L. Cheng, Y. Kanou, D. Deng, X. J. Xue, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference,” Opt. Express 22(11), 13322–13329 (2014).
[PubMed]

H. M. Jiang, E. L. Wang, J. Zhang, L. Hu, Q. P. Mao, Q. Li, and K. Xie, “Polarization splitter based on dual-core photonic crystal fiber,” Opt. Express 22(25), 30461–30466 (2014).
[PubMed]

S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C. S. Kee, “Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion,” Opt. Express 20(2), 1385–1391 (2012).
[Crossref] [PubMed]

Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: The significance of the ring-core region,” Opt. Express 15(4), 1794–1803 (2007).
[Crossref] [PubMed]

M. Delgado-Pinar, A. Díez, S. Torres-Peiró, M. V. Andrés, T. Pinheiro-Ortega, and E. Silvestre, “Waveguiding properties of a photonic crystal fiber with a solid core surrounded by four large air holes,” Opt. Express 17(9), 6931–6938 (2009).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20(1), 32–38 (2014).
[Crossref]

Opt. Lett. (6)

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

J. C. Knight and P. S. J. Russell, “Photonic crystal fibers: New way to guide light,” Science 296(10), 276–277 (2002).
[Crossref] [PubMed]

Other (1)

R. W. Boyd, Nonlinear Optics 3rd Edition (Academic, 2003) pp.212.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Cross-sectional view of the proposed PCF.
Fig. 2
Fig. 2 (a)Effective refractive index, modal birefringence, and (b) nonlinear coefficient versus d.
Fig. 3
Fig. 3 (a) Modal birefringence and nonlinear coefficient of the proposed PCF versus d1, and electric field distributions of respectively the X (b) and the Y (c) polarized modes at d1 = 0.95Λ.
Fig. 4
Fig. 4 (a) Modal birefringence and (b) nonlinear coefficient as functions of d3 for different d2.
Fig. 5
Fig. 5 Modal birefringence and nonlinear coefficient versus L.
Fig. 6
Fig. 6 Dispersion curves of the modes of the proposed fiber. For the 1st-order and the FSM modes, and for the 2nd-order modes L is marked on the figure as a parameter. The other parameters used for the calculations are Λ = 2μm, d = 0.86Λ, d1 = 0.95Λ, d2 = 0.36Λ, d3 = 0.465Λ, H = 0.43Λ.
Fig. 7
Fig. 7 Confinement losses of the proposed PCF at 1.55μm versus N.
Fig. 8
Fig. 8 (a) Modal Birefringence and (b) nonlinear coefficient in Y polarization as functions of wavelength for different center-to-center spacing Λ.
Fig. 9
Fig. 9 Group velocity dispersion of the proposed PCF.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ= 2π n 2 λ A eff ,
A eff = ( Ω E 2 dxdy ) 2 Ω E 4 dxdy .
L c (dB/km)=8.66× 2π λ Im[ n eff ]× 10 9 .

Metrics