Abstract

We propose and evaluate an all-optical 2-bit header recognition and packet switching method using two 1.55-µm polarization bistable vertical-cavity surface-emitting lasers (VCSELs) and three optical switches. Polarization bistable VCSELs acted as flip-flop devices by using AND-gate operations of the header and set pulses, together with the reset pulses. Optical packets including 40-Gb/s non-return-to-zero pseudo-random bit-sequence payloads were successfully sent to one of four ports according to the state of two bits in the headers with a 4-bit 500-Mb/s return-to-zero format. The input pulse powers were 17.2 to 31.8 dB lower than the VCSEL output power. We also examined an extension of this method to multi-bit header recognition and packet switching.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical memory operation of 980-nm polarization bistable VCSEL for 20-Gb/s PRBS RZ and 40-Gb/s NRZ data signals

Jun Sakaguchi, Takeo Katayama, and Hitoshi Kawaguchi
Opt. Express 18(12) 12362-12370 (2010)

All-optical switching of 40 Gb/s packets by MMI-BLD optical label memory

M. Takenaka, K. Takeda, Y. Kanema, Y. Nakano, M. Raburn, and T. Miyahara
Opt. Express 14(22) 10785-10789 (2006)

All-optical switching for 10-Gb/s packet data by using an ultralow-power optical bistability of photonic-crystal nanocavities

Kengo Nozaki, Amedee Lacraz, Akihiko Shinya, Shinji Matsuo, Tomonari Sato, Koji Takeda, Eiichi Kuramochi, and Masaya Notomi
Opt. Express 23(23) 30379-30392 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Kurumida and S. J. B. Yoo, “Nonlinear optical signal processing in optical packet switching systems,” IEEE J. Sel. Top. Quantum Electron. 18(2), 978–987 (2012).
    [Crossref]
  2. N. Calabretta, H.-D. Jung, E. Tangdiongga, and H. Dorren, “All-optical packet switching and label rewriting for data packets beyond 160 Gb/s,” IEEE Photon. J. 2(2), 113–129 (2010).
    [Crossref]
  3. N. Calabretta, H.-D. Jung, J. H. Llorente, E. Tangdiongga, T. A. M. J. Koonen, and H. J. S. Dorren, “All-optical label swapping of scalable in-band address labels and 160-Gb/s data packets,” J. Lightwave Technol. 27(3), 214–223 (2009).
    [Crossref]
  4. K. Sawada and H. Uenohara, “High-speed optical label recognition technique using an optical digital-to-analog conversion and its application to optical label switch,” J. Lightwave Technol. 28(13), 1889–1896 (2010).
    [Crossref]
  5. M. Takenaka, K. Takeda, and Y. Nakano, “All-optical packet switching and label buffering by MMI-BLD optical flip-flop,” IEICE Electron. Express 3(15), 368–372 (2006).
    [Crossref]
  6. M. Takenaka, K. Takeda, Y. Kanema, Y. Nakano, M. Raburn, and T. Miyahara, “All-optical switching of 40 Gb/s packets by MMI-BLD optical label memory,” Opt. Express 14(22), 10785–10789 (2006).
    [Crossref] [PubMed]
  7. T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
    [Crossref]
  8. J. Sakaguchi, T. Katayama, and H. Kawaguchi, “All-optical memory operation of 980-nm polarization bistable VCSEL for 20-Gb/s PRBS RZ and 40-Gb/s NRZ data signals,” Opt. Express 18(12), 12362–12370 (2010).
    [Crossref] [PubMed]
  9. T. Katayama, T. Okamoto, and H. Kawaguchi, “All-optical header recognition and packet switching using polarization bistable VCSEL,” IEEE Photon. Technol. Lett. 25(9), 802–805 (2013).
    [Crossref]
  10. T. Katayama, T. Okamoto, and H. Kawaguchi, “Optical packet switching by all-optical header recognition using 1.55-µm polarization bistable VCSEL,” in the European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (CLEO/EUROPE-IQEC) (Munich, Germany, 2013), paper CI-5.1.
  11. D. Hayashi, H. Takahashi, T. Katayama, and H. Kawaguchi, “Bit error rate measurements of all-optical flip-flop operations using a 1.55-μm polarization bistable VCSEL,” in the OptoElectronics and Communications Conference and Australian Conference on Optical Fibre Technology (OECC/ACOFT) (Melbourne, Australia, 2014), paper MO1D2.
  12. D. Hayashi, K. Nakao, T. Katayama, and H. Kawaguchi, are preparing a manuscript to be called “Bit error rate measurements of all-optical memory operations using a 1.55-μm polarization bistable VCSEL.”
  13. X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16(6), 1582–1584 (2004).
    [Crossref]
  14. E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, “SOA gate array recirculating buffer with fiber delay loop,” Opt. Express 16(12), 8451–8456 (2008).
    [PubMed]
  15. N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1×16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conference(San Diego, CA,2010), paper OTuN.
    [Crossref]
  16. G. Nakagawa, Y. Kai, K. Sone, S. Yoshida, S. Tanaka, K. Morito, and S. Kinoshita, “Ultra-high extinction ratio and low cross talk characteristics of 4-array integrated SOA module with compact-packaging technologies,” in European Conference and Exposition on Optical Communications (Geneva, Switzerland, 2011), paper Mo. 2. LeSaleve.
    [Crossref]

2013 (1)

T. Katayama, T. Okamoto, and H. Kawaguchi, “All-optical header recognition and packet switching using polarization bistable VCSEL,” IEEE Photon. Technol. Lett. 25(9), 802–805 (2013).
[Crossref]

2012 (1)

J. Kurumida and S. J. B. Yoo, “Nonlinear optical signal processing in optical packet switching systems,” IEEE J. Sel. Top. Quantum Electron. 18(2), 978–987 (2012).
[Crossref]

2010 (3)

2009 (2)

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[Crossref]

N. Calabretta, H.-D. Jung, J. H. Llorente, E. Tangdiongga, T. A. M. J. Koonen, and H. J. S. Dorren, “All-optical label swapping of scalable in-band address labels and 160-Gb/s data packets,” J. Lightwave Technol. 27(3), 214–223 (2009).
[Crossref]

2008 (1)

2006 (2)

M. Takenaka, K. Takeda, and Y. Nakano, “All-optical packet switching and label buffering by MMI-BLD optical flip-flop,” IEICE Electron. Express 3(15), 368–372 (2006).
[Crossref]

M. Takenaka, K. Takeda, Y. Kanema, Y. Nakano, M. Raburn, and T. Miyahara, “All-optical switching of 40 Gb/s packets by MMI-BLD optical label memory,” Opt. Express 14(22), 10785–10789 (2006).
[Crossref] [PubMed]

2004 (1)

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16(6), 1582–1584 (2004).
[Crossref]

Blumenthal, D. J.

Bowers, J. E.

Burmeister, E. F.

Calabretta, N.

N. Calabretta, H.-D. Jung, E. Tangdiongga, and H. Dorren, “All-optical packet switching and label rewriting for data packets beyond 160 Gb/s,” IEEE Photon. J. 2(2), 113–129 (2010).
[Crossref]

N. Calabretta, H.-D. Jung, J. H. Llorente, E. Tangdiongga, T. A. M. J. Koonen, and H. J. S. Dorren, “All-optical label swapping of scalable in-band address labels and 160-Gb/s data packets,” J. Lightwave Technol. 27(3), 214–223 (2009).
[Crossref]

Chandrasekhar, S.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16(6), 1582–1584 (2004).
[Crossref]

Coldren, L. A.

Dorren, H.

N. Calabretta, H.-D. Jung, E. Tangdiongga, and H. Dorren, “All-optical packet switching and label rewriting for data packets beyond 160 Gb/s,” IEEE Photon. J. 2(2), 113–129 (2010).
[Crossref]

Dorren, H. J. S.

Jung, H.-D.

N. Calabretta, H.-D. Jung, E. Tangdiongga, and H. Dorren, “All-optical packet switching and label rewriting for data packets beyond 160 Gb/s,” IEEE Photon. J. 2(2), 113–129 (2010).
[Crossref]

N. Calabretta, H.-D. Jung, J. H. Llorente, E. Tangdiongga, T. A. M. J. Koonen, and H. J. S. Dorren, “All-optical label swapping of scalable in-band address labels and 160-Gb/s data packets,” J. Lightwave Technol. 27(3), 214–223 (2009).
[Crossref]

Kanema, Y.

Katayama, T.

T. Katayama, T. Okamoto, and H. Kawaguchi, “All-optical header recognition and packet switching using polarization bistable VCSEL,” IEEE Photon. Technol. Lett. 25(9), 802–805 (2013).
[Crossref]

J. Sakaguchi, T. Katayama, and H. Kawaguchi, “All-optical memory operation of 980-nm polarization bistable VCSEL for 20-Gb/s PRBS RZ and 40-Gb/s NRZ data signals,” Opt. Express 18(12), 12362–12370 (2010).
[Crossref] [PubMed]

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[Crossref]

Kawaguchi, H.

T. Katayama, T. Okamoto, and H. Kawaguchi, “All-optical header recognition and packet switching using polarization bistable VCSEL,” IEEE Photon. Technol. Lett. 25(9), 802–805 (2013).
[Crossref]

J. Sakaguchi, T. Katayama, and H. Kawaguchi, “All-optical memory operation of 980-nm polarization bistable VCSEL for 20-Gb/s PRBS RZ and 40-Gb/s NRZ data signals,” Opt. Express 18(12), 12362–12370 (2010).
[Crossref] [PubMed]

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[Crossref]

Klamkin, J.

Koonen, T. A. M. J.

Kurumida, J.

J. Kurumida and S. J. B. Yoo, “Nonlinear optical signal processing in optical packet switching systems,” IEEE J. Sel. Top. Quantum Electron. 18(2), 978–987 (2012).
[Crossref]

Leuthold, J.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16(6), 1582–1584 (2004).
[Crossref]

Liu, X.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16(6), 1582–1584 (2004).
[Crossref]

Llorente, J. H.

Mack, J. P.

Miyahara, T.

Nakano, Y.

M. Takenaka, K. Takeda, Y. Kanema, Y. Nakano, M. Raburn, and T. Miyahara, “All-optical switching of 40 Gb/s packets by MMI-BLD optical label memory,” Opt. Express 14(22), 10785–10789 (2006).
[Crossref] [PubMed]

M. Takenaka, K. Takeda, and Y. Nakano, “All-optical packet switching and label buffering by MMI-BLD optical flip-flop,” IEICE Electron. Express 3(15), 368–372 (2006).
[Crossref]

Okamoto, T.

T. Katayama, T. Okamoto, and H. Kawaguchi, “All-optical header recognition and packet switching using polarization bistable VCSEL,” IEEE Photon. Technol. Lett. 25(9), 802–805 (2013).
[Crossref]

Ooi, T.

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[Crossref]

Poulsen, H. N.

Raburn, M.

Sakaguchi, J.

Sawada, K.

Su, Y.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16(6), 1582–1584 (2004).
[Crossref]

Takeda, K.

M. Takenaka, K. Takeda, Y. Kanema, Y. Nakano, M. Raburn, and T. Miyahara, “All-optical switching of 40 Gb/s packets by MMI-BLD optical label memory,” Opt. Express 14(22), 10785–10789 (2006).
[Crossref] [PubMed]

M. Takenaka, K. Takeda, and Y. Nakano, “All-optical packet switching and label buffering by MMI-BLD optical flip-flop,” IEICE Electron. Express 3(15), 368–372 (2006).
[Crossref]

Takenaka, M.

M. Takenaka, K. Takeda, and Y. Nakano, “All-optical packet switching and label buffering by MMI-BLD optical flip-flop,” IEICE Electron. Express 3(15), 368–372 (2006).
[Crossref]

M. Takenaka, K. Takeda, Y. Kanema, Y. Nakano, M. Raburn, and T. Miyahara, “All-optical switching of 40 Gb/s packets by MMI-BLD optical label memory,” Opt. Express 14(22), 10785–10789 (2006).
[Crossref] [PubMed]

Tangdiongga, E.

N. Calabretta, H.-D. Jung, E. Tangdiongga, and H. Dorren, “All-optical packet switching and label rewriting for data packets beyond 160 Gb/s,” IEEE Photon. J. 2(2), 113–129 (2010).
[Crossref]

N. Calabretta, H.-D. Jung, J. H. Llorente, E. Tangdiongga, T. A. M. J. Koonen, and H. J. S. Dorren, “All-optical label swapping of scalable in-band address labels and 160-Gb/s data packets,” J. Lightwave Technol. 27(3), 214–223 (2009).
[Crossref]

Uenohara, H.

Wei, X.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16(6), 1582–1584 (2004).
[Crossref]

Yoo, S. J. B.

J. Kurumida and S. J. B. Yoo, “Nonlinear optical signal processing in optical packet switching systems,” IEEE J. Sel. Top. Quantum Electron. 18(2), 978–987 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Katayama, T. Ooi, and H. Kawaguchi, “Experimental demonstration of multi-bit optical buffer memory using 1.55-µm polarization bistable vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45(11), 1495–1504 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Kurumida and S. J. B. Yoo, “Nonlinear optical signal processing in optical packet switching systems,” IEEE J. Sel. Top. Quantum Electron. 18(2), 978–987 (2012).
[Crossref]

IEEE Photon. J. (1)

N. Calabretta, H.-D. Jung, E. Tangdiongga, and H. Dorren, “All-optical packet switching and label rewriting for data packets beyond 160 Gb/s,” IEEE Photon. J. 2(2), 113–129 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (2)

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett. 16(6), 1582–1584 (2004).
[Crossref]

T. Katayama, T. Okamoto, and H. Kawaguchi, “All-optical header recognition and packet switching using polarization bistable VCSEL,” IEEE Photon. Technol. Lett. 25(9), 802–805 (2013).
[Crossref]

IEICE Electron. Express (1)

M. Takenaka, K. Takeda, and Y. Nakano, “All-optical packet switching and label buffering by MMI-BLD optical flip-flop,” IEICE Electron. Express 3(15), 368–372 (2006).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (3)

Other (5)

N. Calabretta, I. M. Soganci, T. Tanemura, W. Wang, O. Raz, K. Higuchi, K. A. Williams, T. J. de Vries, Y. Nakano, and H. J. S. Dorren, “1×16 optical packet switch sub-system with a monolithically integrated InP optical switch,” in Optical Fiber Communication Conference(San Diego, CA,2010), paper OTuN.
[Crossref]

G. Nakagawa, Y. Kai, K. Sone, S. Yoshida, S. Tanaka, K. Morito, and S. Kinoshita, “Ultra-high extinction ratio and low cross talk characteristics of 4-array integrated SOA module with compact-packaging technologies,” in European Conference and Exposition on Optical Communications (Geneva, Switzerland, 2011), paper Mo. 2. LeSaleve.
[Crossref]

T. Katayama, T. Okamoto, and H. Kawaguchi, “Optical packet switching by all-optical header recognition using 1.55-µm polarization bistable VCSEL,” in the European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (CLEO/EUROPE-IQEC) (Munich, Germany, 2013), paper CI-5.1.

D. Hayashi, H. Takahashi, T. Katayama, and H. Kawaguchi, “Bit error rate measurements of all-optical flip-flop operations using a 1.55-μm polarization bistable VCSEL,” in the OptoElectronics and Communications Conference and Australian Conference on Optical Fibre Technology (OECC/ACOFT) (Melbourne, Australia, 2014), paper MO1D2.

D. Hayashi, K. Nakao, T. Katayama, and H. Kawaguchi, are preparing a manuscript to be called “Bit error rate measurements of all-optical memory operations using a 1.55-μm polarization bistable VCSEL.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Principle of optical header recognition and packet switching based on flip-flop operation with AND-gate functionality using polarization bistable VCSEL. (a) Implementation and (b) timing chart for case in which the second bit of header is recognized.
Fig. 2
Fig. 2 All-optical flip-flop operation with AND-gate functionality: (a) timing chart and (b) eye diagram with BER of 5.00 × 10−9.
Fig. 3
Fig. 3 Timing chart of all-optical 2-bit header recognition and packet switching.
Fig. 4
Fig. 4 Experimental setup for all-optical 2-bit header recognition and packet switching. LD: laser diode, LNM: LiNbO3 modulator, PPG: pulse pattern generator, PD: photodiode, PBS: polarization beam splitter, EDFA: erbium-doped fiber amplifier, LNSW: LiNbO3 switch, 3 dB: optical 3-dB coupler.
Fig. 5
Fig. 5 Experimental results of all-optical 2-bit header recognition and packet switching. Waveforms of Set1, Reset1, Set2, and Reset2 are not measured results but eye guides indicating timing of these pulses.
Fig. 6
Fig. 6 Schematic configuration of proposed 4-bit header recognition and packet switching. 3 dB, 1 × 4, 1 × 8: optical coupler, SOA: semiconductor optical amplifier, ATT: optical attenuator, VOA: variable optical attenuator. Numbers noted in brackets are optical power levels in dBm.

Metrics