Abstract

We demonstrate high performance 2150 nm InAs/InGaAs/InP quantum well (QW) lasers grown by metalorganic vapor phase epitaxy. The laser structure consists of two InAs/InGaAs QWs, with a 30 μm-wide ridge waveguide and two cleaved cavity facets. The continuous wave operation at room temperature (RT) is achieved, with an output power of larger than 160 mW per facet and with a low threshold current density of 90.4 A/cm2 per QW derived for the infinite cavity length. Under pulse injection mode, the maximal peak power per facet is as high as 1.35 W. By varying the cavity length, the lasing wavelength can be tuned in a range from 2142 nm to 2154 nm. Moreover, the highest operating temperature reaches up to 100 °C, and characteristic temperatures are 50 K (T0) and 132 K (T1) in the temperature range of 20-70 °C, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room-temperature InP/InGaAs nano-ridge lasers grown on Si and emitting at telecom bands

Yu Han, Wai Kit Ng, Chao Ma, Qiang Li, Si Zhu, Christopher C. S. Chan, Kar Wei Ng, Stephen Lennon, Robert A. Taylor, Kam Sing Wong, and Kei May Lau
Optica 5(8) 918-923 (2018)

InP-based pseudomorphic InAs/InGaAs triangular quantum well lasers with bismuth surfactant

W. Y. Ji, Y. Gu, Y. G. Zhang, Y. J. Ma, X. Y. Chen, Q. Gong, B. Du, and Y. H. Shi
Appl. Opt. 56(31) H10-H14 (2017)

Broadband tunable InAs/InP quantum dot external-cavity laser emitting around 1.55 μm

F. Gao, S. Luo, H. M. Ji, X. G. Yang, P. Liang, and T. Yang
Opt. Express 23(14) 18493-18500 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid–infrared laser applications in medicine and biology,” C. Phil. Trans. R. Soc. A 359(1780), 635–644 (2001).
    [Crossref]
  2. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
    [Crossref]
  3. W. Lei and C. Jagadish, “Lasers and photodetectors for mid-infrared 2–3 μm applications,” J. Appl. Phys. 104(9), 091101 (2008).
    [Crossref]
  4. H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
    [Crossref]
  5. G. W. Turner, H. K. Choi, and M. J. Manfra, “Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm,” Appl. Phys. Lett. 72(8), 876–878 (2007).
    [Crossref]
  6. L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4 μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1 W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90(1), 011119 (2007).
    [Crossref]
  7. M. Wesołowski, W. Strupiński, M. Motyka, G. Sęk, E. Dumiszewska, P. Caban, A. Jasik, A. Wójcik, K. Pierściński, and D. Pierścińska, “Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl,” Opto-Electron. Rev. 19(2), 140–144 (2011).
    [Crossref]
  8. Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. S. B. Y. Li, “Improved performance of 2.2-μm InAs/InGaAs QW lasers on InP by using triangular wells,” IEEE Photon. Technol. Lett. 26(6), 571–574 (2014).
    [Crossref]
  9. J. S. Wang, H. H. Lin, and L. W. Sung, “Room-temperature 2.2-μm InAs–InGaAs–InP highly strained multi quantum-well lasers grown by gas-source molecular beam epitaxy,” IEEE J. Quantum Electron. 34(10), 1959–1962 (1998).
    [Crossref]
  10. Y. Gu, Y. G. Zhang, Y. Y. Cao, L. Zhou, X. Y. Chen, H. S. B. Y. Li, and S. P. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
    [Crossref]
  11. T. Sato, M. Mitsuhara, T. Kakitsuka, T. Fujisawa, and Y. Kondo, “Metalorganic vapor phase epitaxial growth of InAs/InGaAs multiple quantum well structures on InP substrates,” IEEE J. Sel. Top. Quantum Electron. 14(4), 992–997 (2008).
    [Crossref]
  12. T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, F. Kano, and Y. Kondo, “2.33-μm-wavelength distributed feedback lasers with InAs–In0.53Ga0.47As multiple-quantum wells on InP substrates,” IEEE Photon. Technol. Lett. 20(12), 1045–1047 (2008).
    [Crossref]
  13. P. J. A. Thijs, L. F. Tiemeijer, P. I. Kuindersma, J. J. M. Binsma, and T. Van Dongen, “High-performance 1.5 µm wavelength InGaAs-InGaAsP strained quantum well lasers and amplifiers,” IEEE J. Quantum Electron. 27(6), 1426–1439 (1991).
    [Crossref]
  14. Y. Tsou, A. Ichii, and E. M. Garmire, “Improving InAs double heterostructure lasers with better confinement,” IEEE J. Quantum Electron. 28(5), 1261–1268 (1992).
    [Crossref]
  15. M. Wang, Y. X. Gu, H. M. Ji, T. Yang, and Z. G. Wang, “Numerical study of strained InGaAs quantum well lasers emitting at 2.33 μm using the eight-band model,” Chin. Phys. B 20(7), 077301 (2011).
    [Crossref]
  16. D. G. Deppe and N. Holonyak., “Atom diffusion and impurity induced layer disordering in quantum well III-V semiconductor heterostructures,” J. Appl. Phys. 64(12), R93 (1988).
    [Crossref]
  17. S. Luo, H. M. Ji, F. Gao, X. G. Yang, P. Liang, L. J. Zhao, and T. Yang, “InAs/InGaAsP/InP quantum dot lasers grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 30(6), 068101 (2013).
    [Crossref]
  18. L. V. Asryan, N. A. Gun’ko, A. S. Polkovnikov, G. G. Zegrya, R. A. Suris, P. K. Lau, and T. Makino, “Threshold characteristics of InGaAsP/InP multiple quantum well lasers,” Semicond. Sci. Technol. 15(12), 1131–1140 (2000).
    [Crossref]

2014 (2)

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. S. B. Y. Li, “Improved performance of 2.2-μm InAs/InGaAs QW lasers on InP by using triangular wells,” IEEE Photon. Technol. Lett. 26(6), 571–574 (2014).
[Crossref]

Y. Gu, Y. G. Zhang, Y. Y. Cao, L. Zhou, X. Y. Chen, H. S. B. Y. Li, and S. P. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

2013 (2)

S. Luo, H. M. Ji, F. Gao, X. G. Yang, P. Liang, L. J. Zhao, and T. Yang, “InAs/InGaAsP/InP quantum dot lasers grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 30(6), 068101 (2013).
[Crossref]

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

2011 (2)

M. Wesołowski, W. Strupiński, M. Motyka, G. Sęk, E. Dumiszewska, P. Caban, A. Jasik, A. Wójcik, K. Pierściński, and D. Pierścińska, “Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl,” Opto-Electron. Rev. 19(2), 140–144 (2011).
[Crossref]

M. Wang, Y. X. Gu, H. M. Ji, T. Yang, and Z. G. Wang, “Numerical study of strained InGaAs quantum well lasers emitting at 2.33 μm using the eight-band model,” Chin. Phys. B 20(7), 077301 (2011).
[Crossref]

2008 (3)

T. Sato, M. Mitsuhara, T. Kakitsuka, T. Fujisawa, and Y. Kondo, “Metalorganic vapor phase epitaxial growth of InAs/InGaAs multiple quantum well structures on InP substrates,” IEEE J. Sel. Top. Quantum Electron. 14(4), 992–997 (2008).
[Crossref]

T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, F. Kano, and Y. Kondo, “2.33-μm-wavelength distributed feedback lasers with InAs–In0.53Ga0.47As multiple-quantum wells on InP substrates,” IEEE Photon. Technol. Lett. 20(12), 1045–1047 (2008).
[Crossref]

W. Lei and C. Jagadish, “Lasers and photodetectors for mid-infrared 2–3 μm applications,” J. Appl. Phys. 104(9), 091101 (2008).
[Crossref]

2007 (3)

G. W. Turner, H. K. Choi, and M. J. Manfra, “Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm,” Appl. Phys. Lett. 72(8), 876–878 (2007).
[Crossref]

L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4 μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1 W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90(1), 011119 (2007).
[Crossref]

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

2001 (1)

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid–infrared laser applications in medicine and biology,” C. Phil. Trans. R. Soc. A 359(1780), 635–644 (2001).
[Crossref]

2000 (1)

L. V. Asryan, N. A. Gun’ko, A. S. Polkovnikov, G. G. Zegrya, R. A. Suris, P. K. Lau, and T. Makino, “Threshold characteristics of InGaAsP/InP multiple quantum well lasers,” Semicond. Sci. Technol. 15(12), 1131–1140 (2000).
[Crossref]

1998 (1)

J. S. Wang, H. H. Lin, and L. W. Sung, “Room-temperature 2.2-μm InAs–InGaAs–InP highly strained multi quantum-well lasers grown by gas-source molecular beam epitaxy,” IEEE J. Quantum Electron. 34(10), 1959–1962 (1998).
[Crossref]

1992 (1)

Y. Tsou, A. Ichii, and E. M. Garmire, “Improving InAs double heterostructure lasers with better confinement,” IEEE J. Quantum Electron. 28(5), 1261–1268 (1992).
[Crossref]

1991 (1)

P. J. A. Thijs, L. F. Tiemeijer, P. I. Kuindersma, J. J. M. Binsma, and T. Van Dongen, “High-performance 1.5 µm wavelength InGaAs-InGaAsP strained quantum well lasers and amplifiers,” IEEE J. Quantum Electron. 27(6), 1426–1439 (1991).
[Crossref]

1988 (1)

D. G. Deppe and N. Holonyak., “Atom diffusion and impurity induced layer disordering in quantum well III-V semiconductor heterostructures,” J. Appl. Phys. 64(12), R93 (1988).
[Crossref]

Asryan, L. V.

L. V. Asryan, N. A. Gun’ko, A. S. Polkovnikov, G. G. Zegrya, R. A. Suris, P. K. Lau, and T. Makino, “Threshold characteristics of InGaAsP/InP multiple quantum well lasers,” Semicond. Sci. Technol. 15(12), 1131–1140 (2000).
[Crossref]

Belenky, G.

L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4 μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1 W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90(1), 011119 (2007).
[Crossref]

Binsma, J. J. M.

P. J. A. Thijs, L. F. Tiemeijer, P. I. Kuindersma, J. J. M. Binsma, and T. Van Dongen, “High-performance 1.5 µm wavelength InGaAs-InGaAsP strained quantum well lasers and amplifiers,” IEEE J. Quantum Electron. 27(6), 1426–1439 (1991).
[Crossref]

Caban, P.

M. Wesołowski, W. Strupiński, M. Motyka, G. Sęk, E. Dumiszewska, P. Caban, A. Jasik, A. Wójcik, K. Pierściński, and D. Pierścińska, “Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl,” Opto-Electron. Rev. 19(2), 140–144 (2011).
[Crossref]

Cao, Y. Y.

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. S. B. Y. Li, “Improved performance of 2.2-μm InAs/InGaAs QW lasers on InP by using triangular wells,” IEEE Photon. Technol. Lett. 26(6), 571–574 (2014).
[Crossref]

Y. Gu, Y. G. Zhang, Y. Y. Cao, L. Zhou, X. Y. Chen, H. S. B. Y. Li, and S. P. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Chen, X. Y.

Y. Gu, Y. G. Zhang, Y. Y. Cao, L. Zhou, X. Y. Chen, H. S. B. Y. Li, and S. P. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. S. B. Y. Li, “Improved performance of 2.2-μm InAs/InGaAs QW lasers on InP by using triangular wells,” IEEE Photon. Technol. Lett. 26(6), 571–574 (2014).
[Crossref]

Choi, H. K.

G. W. Turner, H. K. Choi, and M. J. Manfra, “Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm,” Appl. Phys. Lett. 72(8), 876–878 (2007).
[Crossref]

Corbett, B.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Deppe, D. G.

D. G. Deppe and N. Holonyak., “Atom diffusion and impurity induced layer disordering in quantum well III-V semiconductor heterostructures,” J. Appl. Phys. 64(12), R93 (1988).
[Crossref]

Donetsky, D.

L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4 μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1 W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90(1), 011119 (2007).
[Crossref]

Dumiszewska, E.

M. Wesołowski, W. Strupiński, M. Motyka, G. Sęk, E. Dumiszewska, P. Caban, A. Jasik, A. Wójcik, K. Pierściński, and D. Pierścińska, “Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl,” Opto-Electron. Rev. 19(2), 140–144 (2011).
[Crossref]

Fujisawa, T.

T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, F. Kano, and Y. Kondo, “2.33-μm-wavelength distributed feedback lasers with InAs–In0.53Ga0.47As multiple-quantum wells on InP substrates,” IEEE Photon. Technol. Lett. 20(12), 1045–1047 (2008).
[Crossref]

T. Sato, M. Mitsuhara, T. Kakitsuka, T. Fujisawa, and Y. Kondo, “Metalorganic vapor phase epitaxial growth of InAs/InGaAs multiple quantum well structures on InP substrates,” IEEE J. Sel. Top. Quantum Electron. 14(4), 992–997 (2008).
[Crossref]

Gannot, I.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid–infrared laser applications in medicine and biology,” C. Phil. Trans. R. Soc. A 359(1780), 635–644 (2001).
[Crossref]

Gao, F.

S. Luo, H. M. Ji, F. Gao, X. G. Yang, P. Liang, L. J. Zhao, and T. Yang, “InAs/InGaAsP/InP quantum dot lasers grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 30(6), 068101 (2013).
[Crossref]

Garmire, E. M.

Y. Tsou, A. Ichii, and E. M. Garmire, “Improving InAs double heterostructure lasers with better confinement,” IEEE J. Quantum Electron. 28(5), 1261–1268 (1992).
[Crossref]

Godard, A.

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Gu, Y.

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. S. B. Y. Li, “Improved performance of 2.2-μm InAs/InGaAs QW lasers on InP by using triangular wells,” IEEE Photon. Technol. Lett. 26(6), 571–574 (2014).
[Crossref]

Y. Gu, Y. G. Zhang, Y. Y. Cao, L. Zhou, X. Y. Chen, H. S. B. Y. Li, and S. P. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Gu, Y. X.

M. Wang, Y. X. Gu, H. M. Ji, T. Yang, and Z. G. Wang, “Numerical study of strained InGaAs quantum well lasers emitting at 2.33 μm using the eight-band model,” Chin. Phys. B 20(7), 077301 (2011).
[Crossref]

Gun’ko, N. A.

L. V. Asryan, N. A. Gun’ko, A. S. Polkovnikov, G. G. Zegrya, R. A. Suris, P. K. Lau, and T. Makino, “Threshold characteristics of InGaAsP/InP multiple quantum well lasers,” Semicond. Sci. Technol. 15(12), 1131–1140 (2000).
[Crossref]

Gunning, F.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Han, W.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Holonyak, N.

D. G. Deppe and N. Holonyak., “Atom diffusion and impurity induced layer disordering in quantum well III-V semiconductor heterostructures,” J. Appl. Phys. 64(12), R93 (1988).
[Crossref]

Ichii, A.

Y. Tsou, A. Ichii, and E. M. Garmire, “Improving InAs double heterostructure lasers with better confinement,” IEEE J. Quantum Electron. 28(5), 1261–1268 (1992).
[Crossref]

Ilev, I. K.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid–infrared laser applications in medicine and biology,” C. Phil. Trans. R. Soc. A 359(1780), 635–644 (2001).
[Crossref]

Jagadish, C.

W. Lei and C. Jagadish, “Lasers and photodetectors for mid-infrared 2–3 μm applications,” J. Appl. Phys. 104(9), 091101 (2008).
[Crossref]

Jasik, A.

M. Wesołowski, W. Strupiński, M. Motyka, G. Sęk, E. Dumiszewska, P. Caban, A. Jasik, A. Wójcik, K. Pierściński, and D. Pierścińska, “Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl,” Opto-Electron. Rev. 19(2), 140–144 (2011).
[Crossref]

Ji, H. M.

S. Luo, H. M. Ji, F. Gao, X. G. Yang, P. Liang, L. J. Zhao, and T. Yang, “InAs/InGaAsP/InP quantum dot lasers grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 30(6), 068101 (2013).
[Crossref]

M. Wang, Y. X. Gu, H. M. Ji, T. Yang, and Z. G. Wang, “Numerical study of strained InGaAs quantum well lasers emitting at 2.33 μm using the eight-band model,” Chin. Phys. B 20(7), 077301 (2011).
[Crossref]

Kakitsuka, T.

T. Sato, M. Mitsuhara, T. Kakitsuka, T. Fujisawa, and Y. Kondo, “Metalorganic vapor phase epitaxial growth of InAs/InGaAs multiple quantum well structures on InP substrates,” IEEE J. Sel. Top. Quantum Electron. 14(4), 992–997 (2008).
[Crossref]

Kano, F.

T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, F. Kano, and Y. Kondo, “2.33-μm-wavelength distributed feedback lasers with InAs–In0.53Ga0.47As multiple-quantum wells on InP substrates,” IEEE Photon. Technol. Lett. 20(12), 1045–1047 (2008).
[Crossref]

Kasaya, K.

T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, F. Kano, and Y. Kondo, “2.33-μm-wavelength distributed feedback lasers with InAs–In0.53Ga0.47As multiple-quantum wells on InP substrates,” IEEE Photon. Technol. Lett. 20(12), 1045–1047 (2008).
[Crossref]

Kelly, B.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Kisin, M. V.

L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4 μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1 W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90(1), 011119 (2007).
[Crossref]

Kondo, Y.

T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, F. Kano, and Y. Kondo, “2.33-μm-wavelength distributed feedback lasers with InAs–In0.53Ga0.47As multiple-quantum wells on InP substrates,” IEEE Photon. Technol. Lett. 20(12), 1045–1047 (2008).
[Crossref]

T. Sato, M. Mitsuhara, T. Kakitsuka, T. Fujisawa, and Y. Kondo, “Metalorganic vapor phase epitaxial growth of InAs/InGaAs multiple quantum well structures on InP substrates,” IEEE J. Sel. Top. Quantum Electron. 14(4), 992–997 (2008).
[Crossref]

Kuindersma, P. I.

P. J. A. Thijs, L. F. Tiemeijer, P. I. Kuindersma, J. J. M. Binsma, and T. Van Dongen, “High-performance 1.5 µm wavelength InGaAs-InGaAsP strained quantum well lasers and amplifiers,” IEEE J. Quantum Electron. 27(6), 1426–1439 (1991).
[Crossref]

Lau, P. K.

L. V. Asryan, N. A. Gun’ko, A. S. Polkovnikov, G. G. Zegrya, R. A. Suris, P. K. Lau, and T. Makino, “Threshold characteristics of InGaAsP/InP multiple quantum well lasers,” Semicond. Sci. Technol. 15(12), 1131–1140 (2000).
[Crossref]

Lei, W.

W. Lei and C. Jagadish, “Lasers and photodetectors for mid-infrared 2–3 μm applications,” J. Appl. Phys. 104(9), 091101 (2008).
[Crossref]

Li, H. S. B. Y.

Y. Gu, Y. G. Zhang, Y. Y. Cao, L. Zhou, X. Y. Chen, H. S. B. Y. Li, and S. P. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. S. B. Y. Li, “Improved performance of 2.2-μm InAs/InGaAs QW lasers on InP by using triangular wells,” IEEE Photon. Technol. Lett. 26(6), 571–574 (2014).
[Crossref]

Liang, P.

S. Luo, H. M. Ji, F. Gao, X. G. Yang, P. Liang, L. J. Zhao, and T. Yang, “InAs/InGaAsP/InP quantum dot lasers grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 30(6), 068101 (2013).
[Crossref]

Lin, H. H.

J. S. Wang, H. H. Lin, and L. W. Sung, “Room-temperature 2.2-μm InAs–InGaAs–InP highly strained multi quantum-well lasers grown by gas-source molecular beam epitaxy,” IEEE J. Quantum Electron. 34(10), 1959–1962 (1998).
[Crossref]

Luo, S.

S. Luo, H. M. Ji, F. Gao, X. G. Yang, P. Liang, L. J. Zhao, and T. Yang, “InAs/InGaAsP/InP quantum dot lasers grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 30(6), 068101 (2013).
[Crossref]

MacSuibhne, N.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Makino, T.

L. V. Asryan, N. A. Gun’ko, A. S. Polkovnikov, G. G. Zegrya, R. A. Suris, P. K. Lau, and T. Makino, “Threshold characteristics of InGaAsP/InP multiple quantum well lasers,” Semicond. Sci. Technol. 15(12), 1131–1140 (2000).
[Crossref]

Manfra, M. J.

G. W. Turner, H. K. Choi, and M. J. Manfra, “Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm,” Appl. Phys. Lett. 72(8), 876–878 (2007).
[Crossref]

Mitsuhara, M.

T. Sato, M. Mitsuhara, T. Kakitsuka, T. Fujisawa, and Y. Kondo, “Metalorganic vapor phase epitaxial growth of InAs/InGaAs multiple quantum well structures on InP substrates,” IEEE J. Sel. Top. Quantum Electron. 14(4), 992–997 (2008).
[Crossref]

T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, F. Kano, and Y. Kondo, “2.33-μm-wavelength distributed feedback lasers with InAs–In0.53Ga0.47As multiple-quantum wells on InP substrates,” IEEE Photon. Technol. Lett. 20(12), 1045–1047 (2008).
[Crossref]

Motyka, M.

M. Wesołowski, W. Strupiński, M. Motyka, G. Sęk, E. Dumiszewska, P. Caban, A. Jasik, A. Wójcik, K. Pierściński, and D. Pierścińska, “Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl,” Opto-Electron. Rev. 19(2), 140–144 (2011).
[Crossref]

Nudds, N.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Nunoya, N.

T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, F. Kano, and Y. Kondo, “2.33-μm-wavelength distributed feedback lasers with InAs–In0.53Ga0.47As multiple-quantum wells on InP substrates,” IEEE Photon. Technol. Lett. 20(12), 1045–1047 (2008).
[Crossref]

O’Brien, P.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

O’Carroll, J.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Peters, F. H.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Phelan, R.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Pierscinska, D.

M. Wesołowski, W. Strupiński, M. Motyka, G. Sęk, E. Dumiszewska, P. Caban, A. Jasik, A. Wójcik, K. Pierściński, and D. Pierścińska, “Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl,” Opto-Electron. Rev. 19(2), 140–144 (2011).
[Crossref]

Pierscinski, K.

M. Wesołowski, W. Strupiński, M. Motyka, G. Sęk, E. Dumiszewska, P. Caban, A. Jasik, A. Wójcik, K. Pierściński, and D. Pierścińska, “Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl,” Opto-Electron. Rev. 19(2), 140–144 (2011).
[Crossref]

Polkovnikov, A. S.

L. V. Asryan, N. A. Gun’ko, A. S. Polkovnikov, G. G. Zegrya, R. A. Suris, P. K. Lau, and T. Makino, “Threshold characteristics of InGaAsP/InP multiple quantum well lasers,” Semicond. Sci. Technol. 15(12), 1131–1140 (2000).
[Crossref]

Sato, T.

T. Sato, M. Mitsuhara, T. Kakitsuka, T. Fujisawa, and Y. Kondo, “Metalorganic vapor phase epitaxial growth of InAs/InGaAs multiple quantum well structures on InP substrates,” IEEE J. Sel. Top. Quantum Electron. 14(4), 992–997 (2008).
[Crossref]

T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, F. Kano, and Y. Kondo, “2.33-μm-wavelength distributed feedback lasers with InAs–In0.53Ga0.47As multiple-quantum wells on InP substrates,” IEEE Photon. Technol. Lett. 20(12), 1045–1047 (2008).
[Crossref]

Sek, G.

M. Wesołowski, W. Strupiński, M. Motyka, G. Sęk, E. Dumiszewska, P. Caban, A. Jasik, A. Wójcik, K. Pierściński, and D. Pierścińska, “Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl,” Opto-Electron. Rev. 19(2), 140–144 (2011).
[Crossref]

Shterengas, L.

L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4 μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1 W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90(1), 011119 (2007).
[Crossref]

Strupinski, W.

M. Wesołowski, W. Strupiński, M. Motyka, G. Sęk, E. Dumiszewska, P. Caban, A. Jasik, A. Wójcik, K. Pierściński, and D. Pierścińska, “Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl,” Opto-Electron. Rev. 19(2), 140–144 (2011).
[Crossref]

Sung, L. W.

J. S. Wang, H. H. Lin, and L. W. Sung, “Room-temperature 2.2-μm InAs–InGaAs–InP highly strained multi quantum-well lasers grown by gas-source molecular beam epitaxy,” IEEE J. Quantum Electron. 34(10), 1959–1962 (1998).
[Crossref]

Suris, R. A.

L. V. Asryan, N. A. Gun’ko, A. S. Polkovnikov, G. G. Zegrya, R. A. Suris, P. K. Lau, and T. Makino, “Threshold characteristics of InGaAsP/InP multiple quantum well lasers,” Semicond. Sci. Technol. 15(12), 1131–1140 (2000).
[Crossref]

Thijs, P. J. A.

P. J. A. Thijs, L. F. Tiemeijer, P. I. Kuindersma, J. J. M. Binsma, and T. Van Dongen, “High-performance 1.5 µm wavelength InGaAs-InGaAsP strained quantum well lasers and amplifiers,” IEEE J. Quantum Electron. 27(6), 1426–1439 (1991).
[Crossref]

Tiemeijer, L. F.

P. J. A. Thijs, L. F. Tiemeijer, P. I. Kuindersma, J. J. M. Binsma, and T. Van Dongen, “High-performance 1.5 µm wavelength InGaAs-InGaAsP strained quantum well lasers and amplifiers,” IEEE J. Quantum Electron. 27(6), 1426–1439 (1991).
[Crossref]

Tsou, Y.

Y. Tsou, A. Ichii, and E. M. Garmire, “Improving InAs double heterostructure lasers with better confinement,” IEEE J. Quantum Electron. 28(5), 1261–1268 (1992).
[Crossref]

Turner, G. W.

G. W. Turner, H. K. Choi, and M. J. Manfra, “Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm,” Appl. Phys. Lett. 72(8), 876–878 (2007).
[Crossref]

Van Dongen, T.

P. J. A. Thijs, L. F. Tiemeijer, P. I. Kuindersma, J. J. M. Binsma, and T. Van Dongen, “High-performance 1.5 µm wavelength InGaAs-InGaAsP strained quantum well lasers and amplifiers,” IEEE J. Quantum Electron. 27(6), 1426–1439 (1991).
[Crossref]

Wang, J. S.

J. S. Wang, H. H. Lin, and L. W. Sung, “Room-temperature 2.2-μm InAs–InGaAs–InP highly strained multi quantum-well lasers grown by gas-source molecular beam epitaxy,” IEEE J. Quantum Electron. 34(10), 1959–1962 (1998).
[Crossref]

Wang, M.

M. Wang, Y. X. Gu, H. M. Ji, T. Yang, and Z. G. Wang, “Numerical study of strained InGaAs quantum well lasers emitting at 2.33 μm using the eight-band model,” Chin. Phys. B 20(7), 077301 (2011).
[Crossref]

Wang, X.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Wang, Z. G.

M. Wang, Y. X. Gu, H. M. Ji, T. Yang, and Z. G. Wang, “Numerical study of strained InGaAs quantum well lasers emitting at 2.33 μm using the eight-band model,” Chin. Phys. B 20(7), 077301 (2011).
[Crossref]

Waynant, R. W.

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid–infrared laser applications in medicine and biology,” C. Phil. Trans. R. Soc. A 359(1780), 635–644 (2001).
[Crossref]

Wesolowski, M.

M. Wesołowski, W. Strupiński, M. Motyka, G. Sęk, E. Dumiszewska, P. Caban, A. Jasik, A. Wójcik, K. Pierściński, and D. Pierścińska, “Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl,” Opto-Electron. Rev. 19(2), 140–144 (2011).
[Crossref]

Wójcik, A.

M. Wesołowski, W. Strupiński, M. Motyka, G. Sęk, E. Dumiszewska, P. Caban, A. Jasik, A. Wójcik, K. Pierściński, and D. Pierścińska, “Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl,” Opto-Electron. Rev. 19(2), 140–144 (2011).
[Crossref]

Xi, S. P.

Y. Gu, Y. G. Zhang, Y. Y. Cao, L. Zhou, X. Y. Chen, H. S. B. Y. Li, and S. P. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Yang, H.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Yang, T.

S. Luo, H. M. Ji, F. Gao, X. G. Yang, P. Liang, L. J. Zhao, and T. Yang, “InAs/InGaAsP/InP quantum dot lasers grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 30(6), 068101 (2013).
[Crossref]

M. Wang, Y. X. Gu, H. M. Ji, T. Yang, and Z. G. Wang, “Numerical study of strained InGaAs quantum well lasers emitting at 2.33 μm using the eight-band model,” Chin. Phys. B 20(7), 077301 (2011).
[Crossref]

Yang, X. G.

S. Luo, H. M. Ji, F. Gao, X. G. Yang, P. Liang, L. J. Zhao, and T. Yang, “InAs/InGaAsP/InP quantum dot lasers grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 30(6), 068101 (2013).
[Crossref]

Ye, N.

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

Zegrya, G. G.

L. V. Asryan, N. A. Gun’ko, A. S. Polkovnikov, G. G. Zegrya, R. A. Suris, P. K. Lau, and T. Makino, “Threshold characteristics of InGaAsP/InP multiple quantum well lasers,” Semicond. Sci. Technol. 15(12), 1131–1140 (2000).
[Crossref]

Zhang, Y. G.

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. S. B. Y. Li, “Improved performance of 2.2-μm InAs/InGaAs QW lasers on InP by using triangular wells,” IEEE Photon. Technol. Lett. 26(6), 571–574 (2014).
[Crossref]

Y. Gu, Y. G. Zhang, Y. Y. Cao, L. Zhou, X. Y. Chen, H. S. B. Y. Li, and S. P. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Zhao, L. J.

S. Luo, H. M. Ji, F. Gao, X. G. Yang, P. Liang, L. J. Zhao, and T. Yang, “InAs/InGaAsP/InP quantum dot lasers grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 30(6), 068101 (2013).
[Crossref]

Zhou, L.

Y. Gu, Y. G. Zhang, Y. Y. Cao, L. Zhou, X. Y. Chen, H. S. B. Y. Li, and S. P. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. S. B. Y. Li, “Improved performance of 2.2-μm InAs/InGaAs QW lasers on InP by using triangular wells,” IEEE Photon. Technol. Lett. 26(6), 571–574 (2014).
[Crossref]

Appl. Phys. Express (1)

Y. Gu, Y. G. Zhang, Y. Y. Cao, L. Zhou, X. Y. Chen, H. S. B. Y. Li, and S. P. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7(3), 032701 (2014).
[Crossref]

Appl. Phys. Lett. (2)

G. W. Turner, H. K. Choi, and M. J. Manfra, “Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm,” Appl. Phys. Lett. 72(8), 876–878 (2007).
[Crossref]

L. Shterengas, G. Belenky, M. V. Kisin, and D. Donetsky, “High power 2.4 μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1 W of continuous wave output power and a maximum power-conversion efficiency of 17.5%,” Appl. Phys. Lett. 90(1), 011119 (2007).
[Crossref]

C. Phil. Trans. R. Soc. A (1)

R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid–infrared laser applications in medicine and biology,” C. Phil. Trans. R. Soc. A 359(1780), 635–644 (2001).
[Crossref]

C. R. Phys. (1)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Chin. Phys. B (1)

M. Wang, Y. X. Gu, H. M. Ji, T. Yang, and Z. G. Wang, “Numerical study of strained InGaAs quantum well lasers emitting at 2.33 μm using the eight-band model,” Chin. Phys. B 20(7), 077301 (2011).
[Crossref]

Chin. Phys. Lett. (1)

S. Luo, H. M. Ji, F. Gao, X. G. Yang, P. Liang, L. J. Zhao, and T. Yang, “InAs/InGaAsP/InP quantum dot lasers grown by metalorganic chemical vapor deposition,” Chin. Phys. Lett. 30(6), 068101 (2013).
[Crossref]

Electron. Lett. (1)

H. Yang, N. Ye, R. Phelan, J. O’Carroll, B. Kelly, W. Han, X. Wang, N. Nudds, N. MacSuibhne, F. Gunning, P. O’Brien, F. H. Peters, and B. Corbett, “Butterfly packaged high-speed and low leakage InGaAs quantum well photodiode for 2000 nm wavelength systems,” Electron. Lett. 49(4), 281–282 (2013).
[Crossref]

IEEE J. Quantum Electron. (3)

J. S. Wang, H. H. Lin, and L. W. Sung, “Room-temperature 2.2-μm InAs–InGaAs–InP highly strained multi quantum-well lasers grown by gas-source molecular beam epitaxy,” IEEE J. Quantum Electron. 34(10), 1959–1962 (1998).
[Crossref]

P. J. A. Thijs, L. F. Tiemeijer, P. I. Kuindersma, J. J. M. Binsma, and T. Van Dongen, “High-performance 1.5 µm wavelength InGaAs-InGaAsP strained quantum well lasers and amplifiers,” IEEE J. Quantum Electron. 27(6), 1426–1439 (1991).
[Crossref]

Y. Tsou, A. Ichii, and E. M. Garmire, “Improving InAs double heterostructure lasers with better confinement,” IEEE J. Quantum Electron. 28(5), 1261–1268 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Sato, M. Mitsuhara, T. Kakitsuka, T. Fujisawa, and Y. Kondo, “Metalorganic vapor phase epitaxial growth of InAs/InGaAs multiple quantum well structures on InP substrates,” IEEE J. Sel. Top. Quantum Electron. 14(4), 992–997 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (2)

T. Sato, M. Mitsuhara, N. Nunoya, T. Fujisawa, K. Kasaya, F. Kano, and Y. Kondo, “2.33-μm-wavelength distributed feedback lasers with InAs–In0.53Ga0.47As multiple-quantum wells on InP substrates,” IEEE Photon. Technol. Lett. 20(12), 1045–1047 (2008).
[Crossref]

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. S. B. Y. Li, “Improved performance of 2.2-μm InAs/InGaAs QW lasers on InP by using triangular wells,” IEEE Photon. Technol. Lett. 26(6), 571–574 (2014).
[Crossref]

J. Appl. Phys. (2)

W. Lei and C. Jagadish, “Lasers and photodetectors for mid-infrared 2–3 μm applications,” J. Appl. Phys. 104(9), 091101 (2008).
[Crossref]

D. G. Deppe and N. Holonyak., “Atom diffusion and impurity induced layer disordering in quantum well III-V semiconductor heterostructures,” J. Appl. Phys. 64(12), R93 (1988).
[Crossref]

Opto-Electron. Rev. (1)

M. Wesołowski, W. Strupiński, M. Motyka, G. Sęk, E. Dumiszewska, P. Caban, A. Jasik, A. Wójcik, K. Pierściński, and D. Pierścińska, “Study of MOCVD growth of InGaAsSb/AlGaAsSb/GaSb heterostructures using two different aluminium precursors TMAl and DMEAAl,” Opto-Electron. Rev. 19(2), 140–144 (2011).
[Crossref]

Semicond. Sci. Technol. (1)

L. V. Asryan, N. A. Gun’ko, A. S. Polkovnikov, G. G. Zegrya, R. A. Suris, P. K. Lau, and T. Makino, “Threshold characteristics of InGaAsP/InP multiple quantum well lasers,” Semicond. Sci. Technol. 15(12), 1131–1140 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Statistical RT PL spectra of the QW active region across the epi-wafer. The inset schematically shows a 2 in. wafer and the spots above indicate the PL measurement sites.
Fig. 2
Fig. 2 (a) RT L-I curves (red) of the QW lasers with different cavity lengths and voltages (blue) as a function of injected current of the laser with 3 mm cavity length. (b) RT L-I curve of the QW laser with a cavity length of 1.5 mm under the pulse driving condition.
Fig. 3
Fig. 3 The dependence of the Jth on the l−1. The inset shows inverse external quantum efficiency versus the l. The solid lines are the fitting of the experimental data.
Fig. 4
Fig. 4 (a) Lasing spectra of the QW lasers with different cavity lengths under CW driving condition. The injection currents are set at 1.1 times of the Ith. (b) Lasing wavelength versus the cavity length.
Fig. 5
Fig. 5 Temperature dependence of L–I curves of the QW laser with a cavity length of 3 mm. The inset presents the dependence of the Jth (square) and reciprocal slope efficiency (circle) on temperature.

Metrics