Abstract

The mode transition and the dispersion turning point have been explored for optimization of thin-film coated long period fiber gratings during the last years. In this work and additional parameter, the cladding diameter, is combined with the other two phenomena for improving the sensitivity to the surrounding medium refractive index. The numerical data obtained were calculated with a method based on the exact calculation of core and cladding modes and the utilization of coupled mode theory. A sensitivity 143 × 103 nm/RIU is obtained, the highest reported so far with long period fiber gratings.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensitivity optimization with cladding-etched long period fiber gratings at the dispersion turning point

Ignacio Del Villar, Jose L. Cruz, Abian B. Socorro, Jesus M. Corres, and Ignacio R. Matias
Opt. Express 24(16) 17680-17685 (2016)

Highly sensitive surface plasmon resonance sensor utilizing a long period grating with photosensitive cladding

Zhihong Li, Tao Chen, Zhaogang Zhang, Yanming Zhou, Dan Li, and Zhong Xie
Appl. Opt. 55(6) 1470-1480 (2016)

Refractive index sensitivity of nano-film coated long-period fiber gratings

Fang Zou, Yunqi Liu, Chuanlu Deng, Yanhua Dong, Shan Zhu, and Tingyun Wang
Opt. Express 23(2) 1114-1124 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Review of the present status of optical fibre sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
    [Crossref]
  2. C. R. Zamarreño, J. M. Corres, J. Goicoechea, I. Del Villar, I. R. Matias, and F. J. Arregui, “Fibre Optic Nanosensors,” in Optochemical Nanosensors, A. Cusano, F. J. Arregui, M. Giordano, and A. Cutolo, (Taylor and Francis, 2012).
  3. W. G. J. H. M. van Sark, “Deposition and processing of thin films” in Handbook of Thin Films, H. S. Nalwa, (Elsevier, 2002).
  4. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002).
    [Crossref] [PubMed]
  5. I. Del Villar, M. Achaerandio, I. R. Matías, and F. J. Arregui, “Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings,” Opt. Lett. 30(7), 720–722 (2005).
    [Crossref] [PubMed]
  6. I. Del Villar, I. R. Matias, F. J. Arregui, and M. Achaerandio, “Nanodeposition of Materials with complex refractive index in Long Period Fiber Gratings,” J. Lightwave Technol. 23(12), 4192–4199 (2005).
    [Crossref]
  7. I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A 23(3), 651–658 (2006).
    [Crossref] [PubMed]
  8. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity,” Opt. Lett. 30(19), 2536–2538 (2005).
    [Crossref] [PubMed]
  9. I. Del Villar, I. Matías, F. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
    [Crossref] [PubMed]
  10. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14(1), 19–34 (2006).
    [Crossref] [PubMed]
  11. P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005).
    [Crossref]
  12. J. M. Corres, I. del Villar, I. R. Matías, and F. J. Arregui, “Fiber-optic pH sensors in Long-Period Gratings using Electrostatic Self-Assembly,” Opt. Lett. 32(1), 29–31 (2007).
    [Crossref] [PubMed]
  13. F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
    [Crossref] [PubMed]
  14. X. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Grating,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]
  15. Z. Wang, J. Heflin, R. Stolen, and S. Ramachandran, “Analysis of optical response of long period fiber gratings to nm-thick thin-film coating,” Opt. Express 13(8), 2808–2813 (2005).
    [Crossref] [PubMed]
  16. C. S. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber-optic long-period gratings operating near the phase-matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Am. B 25(6), 897–902 (2008).
    [Crossref]
  17. P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
    [Crossref] [PubMed]
  18. M. Śmietana, M. Koba, P. Mikulic, and W. J. Bock, “Measurements of reactive ion etching process effect using long-period fiber gratings,” Opt. Express 22(5), 5988–5994 (2014).
  19. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  20. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Transmission characteristics of long- period fiber gratings having arbitrary azimuthal/radial refractive index variation,” J. Lightwave Technol. 21(1), 218–227 (2003).
    [Crossref]
  21. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber gratings filters,” J. Opt. Soc. Am. A 14(8), 1760–1773 (1997).
    [Crossref]
  22. G. P. Agrawal, Nonlinear fiber optis 3rd ed. (Academic Press: New York, 2001), p. 8.
  23. A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
    [Crossref]
  24. I. Del Villar, I. R. Matias, and F. J. Arregui, “Long-period fiber gratings with overlay of variable refractive index,” IEEE Photon. Technol. Lett. 17(9), 1893–1895 (2005).
    [Crossref]

2014 (3)

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

M. Śmietana, M. Koba, P. Mikulic, and W. J. Bock, “Measurements of reactive ion etching process effect using long-period fiber gratings,” Opt. Express 22(5), 5988–5994 (2014).

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

2012 (1)

2008 (1)

2007 (1)

2006 (2)

2005 (7)

P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005).
[Crossref]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity,” Opt. Lett. 30(19), 2536–2538 (2005).
[Crossref] [PubMed]

I. Del Villar, I. Matías, F. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
[Crossref] [PubMed]

I. Del Villar, M. Achaerandio, I. R. Matías, and F. J. Arregui, “Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings,” Opt. Lett. 30(7), 720–722 (2005).
[Crossref] [PubMed]

I. Del Villar, I. R. Matias, F. J. Arregui, and M. Achaerandio, “Nanodeposition of Materials with complex refractive index in Long Period Fiber Gratings,” J. Lightwave Technol. 23(12), 4192–4199 (2005).
[Crossref]

Z. Wang, J. Heflin, R. Stolen, and S. Ramachandran, “Analysis of optical response of long period fiber gratings to nm-thick thin-film coating,” Opt. Express 13(8), 2808–2813 (2005).
[Crossref] [PubMed]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Long-period fiber gratings with overlay of variable refractive index,” IEEE Photon. Technol. Lett. 17(9), 1893–1895 (2005).
[Crossref]

2003 (2)

2002 (2)

1997 (2)

Achaerandio, M.

Anemogiannis, E.

Arregui, F.

Arregui, F. J.

Ashwell, G. J.

Baldini, F.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
[Crossref] [PubMed]

Bandyopadhyay, S.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Basumallick, N.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Bennion, I.

Biswas, P.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Bock, W. J.

M. Śmietana, M. Koba, P. Mikulic, and W. J. Bock, “Measurements of reactive ion etching process effect using long-period fiber gratings,” Opt. Express 22(5), 5988–5994 (2014).

Campopiano, S.

Cheung, C. S.

Chiavaioli, F.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
[Crossref] [PubMed]

Contessa, L.

Corres, J. M.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

J. M. Corres, I. del Villar, I. R. Matías, and F. J. Arregui, “Fiber-optic pH sensors in Long-Period Gratings using Electrostatic Self-Assembly,” Opt. Lett. 32(1), 29–31 (2007).
[Crossref] [PubMed]

Cusano, A.

Cutolo, A.

Dasgupta, K.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Del Villar, I.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

J. M. Corres, I. del Villar, I. R. Matías, and F. J. Arregui, “Fiber-optic pH sensors in Long-Period Gratings using Electrostatic Self-Assembly,” Opt. Lett. 32(1), 29–31 (2007).
[Crossref] [PubMed]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A 23(3), 651–658 (2006).
[Crossref] [PubMed]

I. Del Villar, I. R. Matias, F. J. Arregui, and M. Achaerandio, “Nanodeposition of Materials with complex refractive index in Long Period Fiber Gratings,” J. Lightwave Technol. 23(12), 4192–4199 (2005).
[Crossref]

I. Del Villar, M. Achaerandio, I. R. Matías, and F. J. Arregui, “Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings,” Opt. Lett. 30(7), 720–722 (2005).
[Crossref] [PubMed]

I. Del Villar, I. Matías, F. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005).
[Crossref] [PubMed]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Long-period fiber gratings with overlay of variable refractive index,” IEEE Photon. Technol. Lett. 17(9), 1893–1895 (2005).
[Crossref]

Erdogan, T.

Gaylord, T. K.

Giannetti, A.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Giordano, M.

Glytsis, E. N.

Guerra, G.

P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005).
[Crossref]

Heflin, J.

Iadicicco, A.

James, S. W.

Koba, M.

M. Śmietana, M. Koba, P. Mikulic, and W. J. Bock, “Measurements of reactive ion etching process effect using long-period fiber gratings,” Opt. Express 22(5), 5988–5994 (2014).

Lalanne, P.

Lee, B.

B. Lee, “Review of the present status of optical fibre sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Matias, I. R.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Influence on cladding mode distribution of overlay deposition on long-period fiber gratings,” J. Opt. Soc. Am. A 23(3), 651–658 (2006).
[Crossref] [PubMed]

I. Del Villar, I. R. Matias, F. J. Arregui, and M. Achaerandio, “Nanodeposition of Materials with complex refractive index in Long Period Fiber Gratings,” J. Lightwave Technol. 23(12), 4192–4199 (2005).
[Crossref]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Long-period fiber gratings with overlay of variable refractive index,” IEEE Photon. Technol. Lett. 17(9), 1893–1895 (2005).
[Crossref]

Matías, I.

Matías, I. R.

Mikulic, P.

M. Śmietana, M. Koba, P. Mikulic, and W. J. Bock, “Measurements of reactive ion etching process effect using long-period fiber gratings,” Opt. Express 22(5), 5988–5994 (2014).

Pilla, P.

Ramachandran, S.

Rees, N. D.

Shu, X.

Smietana, M.

M. Śmietana, M. Koba, P. Mikulic, and W. J. Bock, “Measurements of reactive ion etching process effect using long-period fiber gratings,” Opt. Express 22(5), 5988–5994 (2014).

Socorro, A. B.

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

Stolen, R.

Tatam, R. P.

Tombelli, S.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

Topliss, S. M.

Trono, C.

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

P. Pilla, C. Trono, F. Baldini, F. Chiavaioli, M. Giordano, and A. Cusano, “Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach,” Opt. Lett. 37(19), 4152–4154 (2012).
[Crossref] [PubMed]

Wang, Z.

Zhang, L.

Biosens. Bioelectron. (1)

F. Chiavaioli, P. Biswas, C. Trono, S. Bandyopadhyay, A. Giannetti, S. Tombelli, N. Basumallick, K. Dasgupta, and F. Baldini, “Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings,” Biosens. Bioelectron. 60, 305–310 (2014).
[Crossref] [PubMed]

IEEE Photon. Technol. Lett. (2)

P. Pilla, A. Iadicicco, L. Contessa, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra, and A. Cusano, “Optical chemo-sensor based on long-period gratings coated with δ form syndiotactic polystyrene,” IEEE Photon. Technol. Lett. 17(8), 1713–1715 (2005).
[Crossref]

I. Del Villar, I. R. Matias, and F. J. Arregui, “Long-period fiber gratings with overlay of variable refractive index,” IEEE Photon. Technol. Lett. 17(9), 1893–1895 (2005).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fibre sensors,” Opt. Fiber Technol. 9(2), 57–79 (2003).
[Crossref]

Opt. Lett. (5)

Sens. Actuators B Chem. (1)

A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias, “Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures,” Sens. Actuators B Chem. 200, 53–60 (2014).
[Crossref]

Other (3)

G. P. Agrawal, Nonlinear fiber optis 3rd ed. (Academic Press: New York, 2001), p. 8.

C. R. Zamarreño, J. M. Corres, J. Goicoechea, I. Del Villar, I. R. Matias, and F. J. Arregui, “Fibre Optic Nanosensors,” in Optochemical Nanosensors, A. Cusano, F. J. Arregui, M. Giordano, and A. Cutolo, (Taylor and Francis, 2012).

W. G. J. H. M. van Sark, “Deposition and processing of thin films” in Handbook of Thin Films, H. S. Nalwa, (Elsevier, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Calculated variation of mode resonance wavelength with LPFG period for a) cladding diameter 125 μm; b) cladding diameter 113.03 μm. SRI = 1.33. The LPFGs are uncoated.
Fig. 2
Fig. 2 Calculated variation of mode resonance wavelength with LPFG period for a) cladding diameter 41.31 μm; b) cladding diameter 29.24 μm; c) cladding diameter 17.27 μm. SRI = 1.33. The LPFGs are uncoated.
Fig. 3
Fig. 3 Transmission spectra for uncoated LPFG of cladding diameter 125 μm, 101.06 μm, 77.12 μm and 53.18 μm. Grating length 40 mm. SRI 1.33. The attenuation bands fade progressively as the LPFG diameter is reduced.
Fig. 4
Fig. 4 Transmission spectra for 6 LPFGs as a function of the cladding diameter. The grating period is 188 μm. SRI values: 1.33 and 1.35.
Fig. 5
Fig. 5 dneff/dthickness as a function of thickness for an LPFG with cladding diameter 125 µm.
Fig. 6
Fig. 6 Calculated variation of mode resonance wavelength with LPFG period for a) cladding diameter 125 μm; b) cladding diameter 124 μm. The LPFG is covered with a 313 nm thin-film. SRI = 1.33.
Fig. 7
Fig. 7 Calculated variation of mode resonance wavelength with LPFG period for a) cladding diameter 57 μm; b) cladding diameter 46 μm; c) cladding diameter 34.8 μm. The LPFG is covered with a 313 nm thin-film. SRI = 1.33.
Fig. 8
Fig. 8 Transmission spectra for 4 LPFGs for different combinations of cladding diameter and grating length. SRI values: 1.33 and 1.331.
Fig. 9
Fig. 9 Transmission spectra for an LPFG with 34.8 μm and grating period is 288.5 μm. SRI values: 1.33 and 1.331.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

β 11 (λ)+ s 0 ζ 11,11 (λ)( β 1j (λ)+ s 0 ζ 1j,1j (λ) )= 2πN Λ
d F 1k ( z ) dz =j j=1 M K 1j,1k F 1j ( z )exp( j( β 1j β 1k )z ) fork=1,2,...M
( F 11 . (z) F 12 . (z) F 1N . (z) )=( Q 11 V 12,11 V 1N,11 V 11,12 Q 12 V 1N,12 V 11,1N V 12,1N Q 1N )( F 11 (z) F 12 (z) F 1N (z) )
Q 1j =jσ(z) s 0 ζ 1j,1j
V 1j,1k =jσ(z) s 1 2 ζ 1j,1k exp[ jz( β 1j β 1k ± 2π Λ ) ]
F 11 (L) 2 F 11 (0) 2

Metrics