Abstract

Multi-crystalline fibers of poly (3-hexylthiophene) (P3HT) have been grown on a patterned substrate through annealing the spin-coated film in the solvent of 1,5-pentanediol at 120 °C. The large-area patterns of photoresist grating have been fabricated by interference lithography, enabling growth of crystal fibers in a length scale of centimeters. The produced organic crystal fibers were characterized by microscopic, spectroscopic, and electrical conductivity performances. Mechanisms for the crystallization processes were investigated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of strong coupling on photodegradation of the semiconducting polymer P3HT

Vanessa N. Peters, Md Omar Faruk, Joshua Asane, Rohan Alexander, D’angelo A. Peters, Srujana Prayakarao, Sangeeta Rout, and M. A. Noginov
Optica 6(3) 318-325 (2019)

Electric field induced optical anisotropy of P3HT nanofibers in a liquid solution

G. S. Lobov, Y. Zhao, A. Marinins, M. Yan, J. Li, M.S. Toprak, A. Sugunan, L. Thylen, L. Wosinski, M. Östling, and S. Popov
Opt. Mater. Express 5(11) 2642-2647 (2015)

Homogeneous PCBM layers fabricated by horizontal-dip coating for efficient bilayer heterojunction organic photovoltaic cells

Yoon Ho Huh, In-Gon Bae, Hong Goo Jeon, and Byoungchoo Park
Opt. Express 24(22) A1321-A1335 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang and B. Sun, “Organic crystal fibers aligned into oriented bundles with polarized emission,” J. Phys. Chem. B 111(37), 10881–10885 (2007).
    [Crossref] [PubMed]
  2. D. Fichou, “Structural order in conjugated oligothiophenes and its implications on opto-electronic devices,” J. Mater. Chem. 10(3), 571–588 (2000).
    [Crossref]
  3. C. Kloc, P. G. Simpkins, T. Siegrist, and R. A. Laudise, “Physical vapor growth of centimeter-sized crystals of alpha-hexathiophene,” J. Cryst. Growth 182(3–4), 416–427 (1997).
    [Crossref]
  4. G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J. L. Fave, and F. Garnier, “Growth and characterization of sexithiophene single-crystals,” Chem. Mater. 7(7), 1337–1341 (1995).
    [Crossref]
  5. J. F. Moulin, M. Brinkmann, A. Thierry, and J. C. Wittmann, “Oriented crystalline films of tris(8-hydroxyquinoline) aluminum(III): growth of the alpha polymorph onto an ultra-oriented poly(tetrafluoroethylene) substrate,” Adv. Mater. 14(6), 436–439 (2002).
    [Crossref]
  6. G. Z. Wang, Y. Luo, and P. H. Beton, “High mobility organic transistors fabricated from single pentacene microcrystals grown on a polymer film,” Appl. Phys. Lett. 83(15), 3108–3110 (2003).
    [Crossref]
  7. Z. P. Zhu, J. Wang, and B. Wei, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications,” Physica E 59, 83–87 (2014).
    [Crossref]
  8. B. A. Gregg, “Evolution of photophysical and photovoltaic properties of perylene bis(phenethylimide) films upon solvent vapor annealing,” J. Phys. Chem. 100(2), 852–859 (1996).
    [Crossref]
  9. J. C. Conboy, E. J. C. Olson, D. M. Adams, J. Kerimo, A. Zaban, B. A. Gregg, and P. F. Barbara, “Impact of solvent vapor annealing on the morphology and photophysics of molecular semiconductor thin films,” J. Phys. Chem. B 102(23), 4516–4525 (1998).
    [Crossref]
  10. J. Hu, K. W. Clark, R. Hayakawa, A. P. Li, and Y. Wakayama, “Enhanced electrical conductivity in poly(3-hexylthiophene)/fluorinated tetracyanoquinodimethane nanowires grown with a porous alumina template,” Langmuir 29(24), 7266–7270 (2013).
    [Crossref] [PubMed]
  11. Y. L. Lee, W. C. Tsai, C. H. Chang, and Y. M. Yang, “Effects of heat annealing on the film characteristics and gas sensing properties of substituted and un-substituted copper phthalocyanine films,” Appl. Surf. Sci. 172(3–4), 191–199 (2001).
    [Crossref]
  12. J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
    [Crossref] [PubMed]
  13. A. K. Wanekaya, M. A. Bangar, M. Yun, W. Chen, N. V. Myung, and A. Mulchandani, “Field-effect transistors based on single nanowires of conducting polymers,” J. Phys. Chem. C 111(13), 5218–5221 (2007).
    [Crossref]
  14. N. Stutzmann, R. H. Friend, and H. Sirringhaus, “Self-aligned, vertical-channel, polymer field-effect transistors,” Science 299(5614), 1881–1884 (2003).
    [Crossref] [PubMed]
  15. S. R. Forrest and M. E. Thompson, “Introduction: organic electronics and optoelectronics,” Chem. Rev. 107(4), 923–925 (2007).
    [Crossref]
  16. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
    [Crossref]
  17. A. H. Rice, R. Giridharagopal, S. X. Zheng, F. S. Ohuchi, D. S. Ginger, and C. K. Luscombe, “Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester,” ACS Nano 5(4), 3132–3140 (2011).
    [Crossref] [PubMed]
  18. H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, and Z. Bao, “Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors,” Adv. Funct. Mater. 15(4), 671–676 (2005).
    [Crossref]
  19. J. A. Merlo and C. D. Frisbie, “Field effect conductance of conducting polymer nanofibers,” J. Polym. Sci., Part B: Polym. Phys. 41(21), 2674–2680 (2003).
    [Crossref]
  20. G. Nagarjuna, M. Baghgar, J. A. Labastide, D. D. Algaier, M. D. Barnes, and D. Venkataraman, “Tuning aggregation of poly(3-hexylthiophene) within nanoparticles,” ACS Nano 6(12), 10750–10758 (2012).
    [PubMed]
  21. K. J. Ihn, J. Moulton, and P. Smith, “Whiskers of poly(3-alkylthiophene)s,” J. Polym. Sci. Pol. Phys. 31(6), 735–742 (1993).
    [Crossref]
  22. N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
    [Crossref]
  23. Y. Takizawa, T. Shimomura, and T. Miura, “Simulation study of the initial crystallization processes of poly(3-hexylthiophene) in solution: ordering dynamics of main chains and side chains,” J. Phys. Chem. B 117(20), 6282–6289 (2013).
    [Crossref] [PubMed]
  24. D. H. Kim, Y. D. Park, Y. Jang, S. Kim, and K. Cho, “Solvent vapor-induced nanowire formation in poly(3-hexylthiophene) thin films,” Macromol. Rapid Commun. 26(10), 834–839 (2005).
    [Crossref]
  25. X. P. Zhang, S. F. Feng, and T. R. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photon. Nanostruct. 11(2), 109–114 (2013).

2014 (2)

Z. P. Zhu, J. Wang, and B. Wei, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications,” Physica E 59, 83–87 (2014).
[Crossref]

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

2013 (3)

J. Hu, K. W. Clark, R. Hayakawa, A. P. Li, and Y. Wakayama, “Enhanced electrical conductivity in poly(3-hexylthiophene)/fluorinated tetracyanoquinodimethane nanowires grown with a porous alumina template,” Langmuir 29(24), 7266–7270 (2013).
[Crossref] [PubMed]

Y. Takizawa, T. Shimomura, and T. Miura, “Simulation study of the initial crystallization processes of poly(3-hexylthiophene) in solution: ordering dynamics of main chains and side chains,” J. Phys. Chem. B 117(20), 6282–6289 (2013).
[Crossref] [PubMed]

X. P. Zhang, S. F. Feng, and T. R. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photon. Nanostruct. 11(2), 109–114 (2013).

2012 (1)

G. Nagarjuna, M. Baghgar, J. A. Labastide, D. D. Algaier, M. D. Barnes, and D. Venkataraman, “Tuning aggregation of poly(3-hexylthiophene) within nanoparticles,” ACS Nano 6(12), 10750–10758 (2012).
[PubMed]

2011 (1)

A. H. Rice, R. Giridharagopal, S. X. Zheng, F. S. Ohuchi, D. S. Ginger, and C. K. Luscombe, “Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester,” ACS Nano 5(4), 3132–3140 (2011).
[Crossref] [PubMed]

2007 (3)

S. R. Forrest and M. E. Thompson, “Introduction: organic electronics and optoelectronics,” Chem. Rev. 107(4), 923–925 (2007).
[Crossref]

A. K. Wanekaya, M. A. Bangar, M. Yun, W. Chen, N. V. Myung, and A. Mulchandani, “Field-effect transistors based on single nanowires of conducting polymers,” J. Phys. Chem. C 111(13), 5218–5221 (2007).
[Crossref]

X. Zhang and B. Sun, “Organic crystal fibers aligned into oriented bundles with polarized emission,” J. Phys. Chem. B 111(37), 10881–10885 (2007).
[Crossref] [PubMed]

2005 (2)

H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, and Z. Bao, “Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors,” Adv. Funct. Mater. 15(4), 671–676 (2005).
[Crossref]

D. H. Kim, Y. D. Park, Y. Jang, S. Kim, and K. Cho, “Solvent vapor-induced nanowire formation in poly(3-hexylthiophene) thin films,” Macromol. Rapid Commun. 26(10), 834–839 (2005).
[Crossref]

2003 (5)

N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
[Crossref]

J. A. Merlo and C. D. Frisbie, “Field effect conductance of conducting polymer nanofibers,” J. Polym. Sci., Part B: Polym. Phys. 41(21), 2674–2680 (2003).
[Crossref]

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[Crossref]

N. Stutzmann, R. H. Friend, and H. Sirringhaus, “Self-aligned, vertical-channel, polymer field-effect transistors,” Science 299(5614), 1881–1884 (2003).
[Crossref] [PubMed]

G. Z. Wang, Y. Luo, and P. H. Beton, “High mobility organic transistors fabricated from single pentacene microcrystals grown on a polymer film,” Appl. Phys. Lett. 83(15), 3108–3110 (2003).
[Crossref]

2002 (1)

J. F. Moulin, M. Brinkmann, A. Thierry, and J. C. Wittmann, “Oriented crystalline films of tris(8-hydroxyquinoline) aluminum(III): growth of the alpha polymorph onto an ultra-oriented poly(tetrafluoroethylene) substrate,” Adv. Mater. 14(6), 436–439 (2002).
[Crossref]

2001 (1)

Y. L. Lee, W. C. Tsai, C. H. Chang, and Y. M. Yang, “Effects of heat annealing on the film characteristics and gas sensing properties of substituted and un-substituted copper phthalocyanine films,” Appl. Surf. Sci. 172(3–4), 191–199 (2001).
[Crossref]

2000 (1)

D. Fichou, “Structural order in conjugated oligothiophenes and its implications on opto-electronic devices,” J. Mater. Chem. 10(3), 571–588 (2000).
[Crossref]

1998 (1)

J. C. Conboy, E. J. C. Olson, D. M. Adams, J. Kerimo, A. Zaban, B. A. Gregg, and P. F. Barbara, “Impact of solvent vapor annealing on the morphology and photophysics of molecular semiconductor thin films,” J. Phys. Chem. B 102(23), 4516–4525 (1998).
[Crossref]

1997 (1)

C. Kloc, P. G. Simpkins, T. Siegrist, and R. A. Laudise, “Physical vapor growth of centimeter-sized crystals of alpha-hexathiophene,” J. Cryst. Growth 182(3–4), 416–427 (1997).
[Crossref]

1996 (1)

B. A. Gregg, “Evolution of photophysical and photovoltaic properties of perylene bis(phenethylimide) films upon solvent vapor annealing,” J. Phys. Chem. 100(2), 852–859 (1996).
[Crossref]

1995 (1)

G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J. L. Fave, and F. Garnier, “Growth and characterization of sexithiophene single-crystals,” Chem. Mater. 7(7), 1337–1341 (1995).
[Crossref]

1993 (1)

K. J. Ihn, J. Moulton, and P. Smith, “Whiskers of poly(3-alkylthiophene)s,” J. Polym. Sci. Pol. Phys. 31(6), 735–742 (1993).
[Crossref]

Adams, D. M.

J. C. Conboy, E. J. C. Olson, D. M. Adams, J. Kerimo, A. Zaban, B. A. Gregg, and P. F. Barbara, “Impact of solvent vapor annealing on the morphology and photophysics of molecular semiconductor thin films,” J. Phys. Chem. B 102(23), 4516–4525 (1998).
[Crossref]

Adler, H.-J.

N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
[Crossref]

Algaier, D. D.

G. Nagarjuna, M. Baghgar, J. A. Labastide, D. D. Algaier, M. D. Barnes, and D. Venkataraman, “Tuning aggregation of poly(3-hexylthiophene) within nanoparticles,” ACS Nano 6(12), 10750–10758 (2012).
[PubMed]

Bachet, B.

G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J. L. Fave, and F. Garnier, “Growth and characterization of sexithiophene single-crystals,” Chem. Mater. 7(7), 1337–1341 (1995).
[Crossref]

Baghgar, M.

G. Nagarjuna, M. Baghgar, J. A. Labastide, D. D. Algaier, M. D. Barnes, and D. Venkataraman, “Tuning aggregation of poly(3-hexylthiophene) within nanoparticles,” ACS Nano 6(12), 10750–10758 (2012).
[PubMed]

Bangar, M. A.

A. K. Wanekaya, M. A. Bangar, M. Yun, W. Chen, N. V. Myung, and A. Mulchandani, “Field-effect transistors based on single nanowires of conducting polymers,” J. Phys. Chem. C 111(13), 5218–5221 (2007).
[Crossref]

Bao, Z.

H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, and Z. Bao, “Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors,” Adv. Funct. Mater. 15(4), 671–676 (2005).
[Crossref]

Barbara, P. F.

J. C. Conboy, E. J. C. Olson, D. M. Adams, J. Kerimo, A. Zaban, B. A. Gregg, and P. F. Barbara, “Impact of solvent vapor annealing on the morphology and photophysics of molecular semiconductor thin films,” J. Phys. Chem. B 102(23), 4516–4525 (1998).
[Crossref]

Barnes, M. D.

G. Nagarjuna, M. Baghgar, J. A. Labastide, D. D. Algaier, M. D. Barnes, and D. Venkataraman, “Tuning aggregation of poly(3-hexylthiophene) within nanoparticles,” ACS Nano 6(12), 10750–10758 (2012).
[PubMed]

Beton, P. H.

G. Z. Wang, Y. Luo, and P. H. Beton, “High mobility organic transistors fabricated from single pentacene microcrystals grown on a polymer film,” Appl. Phys. Lett. 83(15), 3108–3110 (2003).
[Crossref]

Brinkmann, M.

J. F. Moulin, M. Brinkmann, A. Thierry, and J. C. Wittmann, “Oriented crystalline films of tris(8-hydroxyquinoline) aluminum(III): growth of the alpha polymorph onto an ultra-oriented poly(tetrafluoroethylene) substrate,” Adv. Mater. 14(6), 436–439 (2002).
[Crossref]

Chang, C. H.

Y. L. Lee, W. C. Tsai, C. H. Chang, and Y. M. Yang, “Effects of heat annealing on the film characteristics and gas sensing properties of substituted and un-substituted copper phthalocyanine films,” Appl. Surf. Sci. 172(3–4), 191–199 (2001).
[Crossref]

Chen, W.

A. K. Wanekaya, M. A. Bangar, M. Yun, W. Chen, N. V. Myung, and A. Mulchandani, “Field-effect transistors based on single nanowires of conducting polymers,” J. Phys. Chem. C 111(13), 5218–5221 (2007).
[Crossref]

Cho, K.

H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, and Z. Bao, “Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors,” Adv. Funct. Mater. 15(4), 671–676 (2005).
[Crossref]

D. H. Kim, Y. D. Park, Y. Jang, S. Kim, and K. Cho, “Solvent vapor-induced nanowire formation in poly(3-hexylthiophene) thin films,” Macromol. Rapid Commun. 26(10), 834–839 (2005).
[Crossref]

Clark, K. W.

J. Hu, K. W. Clark, R. Hayakawa, A. P. Li, and Y. Wakayama, “Enhanced electrical conductivity in poly(3-hexylthiophene)/fluorinated tetracyanoquinodimethane nanowires grown with a porous alumina template,” Langmuir 29(24), 7266–7270 (2013).
[Crossref] [PubMed]

Conboy, J. C.

J. C. Conboy, E. J. C. Olson, D. M. Adams, J. Kerimo, A. Zaban, B. A. Gregg, and P. F. Barbara, “Impact of solvent vapor annealing on the morphology and photophysics of molecular semiconductor thin films,” J. Phys. Chem. B 102(23), 4516–4525 (1998).
[Crossref]

D’Arcy, J. M.

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

Davis, N. R.

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

Demanze, F.

G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J. L. Fave, and F. Garnier, “Growth and characterization of sexithiophene single-crystals,” Chem. Mater. 7(7), 1337–1341 (1995).
[Crossref]

El-Kady, M. F.

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

Fave, J. L.

G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J. L. Fave, and F. Garnier, “Growth and characterization of sexithiophene single-crystals,” Chem. Mater. 7(7), 1337–1341 (1995).
[Crossref]

Feng, S. F.

X. P. Zhang, S. F. Feng, and T. R. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photon. Nanostruct. 11(2), 109–114 (2013).

Fichou, D.

D. Fichou, “Structural order in conjugated oligothiophenes and its implications on opto-electronic devices,” J. Mater. Chem. 10(3), 571–588 (2000).
[Crossref]

Fokin, A. A.

N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
[Crossref]

Forrest, S. R.

S. R. Forrest and M. E. Thompson, “Introduction: organic electronics and optoelectronics,” Chem. Rev. 107(4), 923–925 (2007).
[Crossref]

Fréchet, J. M. J.

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[Crossref]

Friend, R. H.

N. Stutzmann, R. H. Friend, and H. Sirringhaus, “Self-aligned, vertical-channel, polymer field-effect transistors,” Science 299(5614), 1881–1884 (2003).
[Crossref] [PubMed]

Frisbie, C. D.

J. A. Merlo and C. D. Frisbie, “Field effect conductance of conducting polymer nanofibers,” J. Polym. Sci., Part B: Polym. Phys. 41(21), 2674–2680 (2003).
[Crossref]

Garnier, F.

G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J. L. Fave, and F. Garnier, “Growth and characterization of sexithiophene single-crystals,” Chem. Mater. 7(7), 1337–1341 (1995).
[Crossref]

Ginger, D. S.

A. H. Rice, R. Giridharagopal, S. X. Zheng, F. S. Ohuchi, D. S. Ginger, and C. K. Luscombe, “Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester,” ACS Nano 5(4), 3132–3140 (2011).
[Crossref] [PubMed]

Giridharagopal, R.

A. H. Rice, R. Giridharagopal, S. X. Zheng, F. S. Ohuchi, D. S. Ginger, and C. K. Luscombe, “Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester,” ACS Nano 5(4), 3132–3140 (2011).
[Crossref] [PubMed]

Gorodyska, G.

N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
[Crossref]

Gregg, B. A.

J. C. Conboy, E. J. C. Olson, D. M. Adams, J. Kerimo, A. Zaban, B. A. Gregg, and P. F. Barbara, “Impact of solvent vapor annealing on the morphology and photophysics of molecular semiconductor thin films,” J. Phys. Chem. B 102(23), 4516–4525 (1998).
[Crossref]

B. A. Gregg, “Evolution of photophysical and photovoltaic properties of perylene bis(phenethylimide) films upon solvent vapor annealing,” J. Phys. Chem. 100(2), 852–859 (1996).
[Crossref]

Hammond, P. T.

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

Hayakawa, R.

J. Hu, K. W. Clark, R. Hayakawa, A. P. Li, and Y. Wakayama, “Enhanced electrical conductivity in poly(3-hexylthiophene)/fluorinated tetracyanoquinodimethane nanowires grown with a porous alumina template,” Langmuir 29(24), 7266–7270 (2013).
[Crossref] [PubMed]

Horowitz, G.

G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J. L. Fave, and F. Garnier, “Growth and characterization of sexithiophene single-crystals,” Chem. Mater. 7(7), 1337–1341 (1995).
[Crossref]

Hu, J.

J. Hu, K. W. Clark, R. Hayakawa, A. P. Li, and Y. Wakayama, “Enhanced electrical conductivity in poly(3-hexylthiophene)/fluorinated tetracyanoquinodimethane nanowires grown with a porous alumina template,” Langmuir 29(24), 7266–7270 (2013).
[Crossref] [PubMed]

Ihn, K. J.

K. J. Ihn, J. Moulton, and P. Smith, “Whiskers of poly(3-alkylthiophene)s,” J. Polym. Sci. Pol. Phys. 31(6), 735–742 (1993).
[Crossref]

Jähne, E.

N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
[Crossref]

Jang, Y.

D. H. Kim, Y. D. Park, Y. Jang, S. Kim, and K. Cho, “Solvent vapor-induced nanowire formation in poly(3-hexylthiophene) thin films,” Macromol. Rapid Commun. 26(10), 834–839 (2005).
[Crossref]

Jehnichen, D.

N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
[Crossref]

Kadnikova, E. N.

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[Crossref]

Kaner, R. B.

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

Kerimo, J.

J. C. Conboy, E. J. C. Olson, D. M. Adams, J. Kerimo, A. Zaban, B. A. Gregg, and P. F. Barbara, “Impact of solvent vapor annealing on the morphology and photophysics of molecular semiconductor thin films,” J. Phys. Chem. B 102(23), 4516–4525 (1998).
[Crossref]

Khine, P. P.

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

Kim, D. H.

D. H. Kim, Y. D. Park, Y. Jang, S. Kim, and K. Cho, “Solvent vapor-induced nanowire formation in poly(3-hexylthiophene) thin films,” Macromol. Rapid Commun. 26(10), 834–839 (2005).
[Crossref]

Kim, S.

D. H. Kim, Y. D. Park, Y. Jang, S. Kim, and K. Cho, “Solvent vapor-induced nanowire formation in poly(3-hexylthiophene) thin films,” Macromol. Rapid Commun. 26(10), 834–839 (2005).
[Crossref]

Kim, S. Y.

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

Kiriy, A.

N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
[Crossref]

Kiriy, N.

N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
[Crossref]

Kline, R. J.

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[Crossref]

Kloc, C.

C. Kloc, P. G. Simpkins, T. Siegrist, and R. A. Laudise, “Physical vapor growth of centimeter-sized crystals of alpha-hexathiophene,” J. Cryst. Growth 182(3–4), 416–427 (1997).
[Crossref]

Labastide, J. A.

G. Nagarjuna, M. Baghgar, J. A. Labastide, D. D. Algaier, M. D. Barnes, and D. Venkataraman, “Tuning aggregation of poly(3-hexylthiophene) within nanoparticles,” ACS Nano 6(12), 10750–10758 (2012).
[PubMed]

Lang, P.

G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J. L. Fave, and F. Garnier, “Growth and characterization of sexithiophene single-crystals,” Chem. Mater. 7(7), 1337–1341 (1995).
[Crossref]

Laudise, R. A.

C. Kloc, P. G. Simpkins, T. Siegrist, and R. A. Laudise, “Physical vapor growth of centimeter-sized crystals of alpha-hexathiophene,” J. Cryst. Growth 182(3–4), 416–427 (1997).
[Crossref]

Lech, A. T.

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

Lee, S. H.

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

Lee, Y. L.

Y. L. Lee, W. C. Tsai, C. H. Chang, and Y. M. Yang, “Effects of heat annealing on the film characteristics and gas sensing properties of substituted and un-substituted copper phthalocyanine films,” Appl. Surf. Sci. 172(3–4), 191–199 (2001).
[Crossref]

Li, A. P.

J. Hu, K. W. Clark, R. Hayakawa, A. P. Li, and Y. Wakayama, “Enhanced electrical conductivity in poly(3-hexylthiophene)/fluorinated tetracyanoquinodimethane nanowires grown with a porous alumina template,” Langmuir 29(24), 7266–7270 (2013).
[Crossref] [PubMed]

Liu, D. S.

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

Liu, J.

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[Crossref]

Luo, Y.

G. Z. Wang, Y. Luo, and P. H. Beton, “High mobility organic transistors fabricated from single pentacene microcrystals grown on a polymer film,” Appl. Phys. Lett. 83(15), 3108–3110 (2003).
[Crossref]

Luscombe, C. K.

A. H. Rice, R. Giridharagopal, S. X. Zheng, F. S. Ohuchi, D. S. Ginger, and C. K. Luscombe, “Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester,” ACS Nano 5(4), 3132–3140 (2011).
[Crossref] [PubMed]

McGehee, M. D.

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[Crossref]

Merlo, J. A.

J. A. Merlo and C. D. Frisbie, “Field effect conductance of conducting polymer nanofibers,” J. Polym. Sci., Part B: Polym. Phys. 41(21), 2674–2680 (2003).
[Crossref]

Minko, S.

N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
[Crossref]

Miura, T.

Y. Takizawa, T. Shimomura, and T. Miura, “Simulation study of the initial crystallization processes of poly(3-hexylthiophene) in solution: ordering dynamics of main chains and side chains,” J. Phys. Chem. B 117(20), 6282–6289 (2013).
[Crossref] [PubMed]

Moulin, J. F.

J. F. Moulin, M. Brinkmann, A. Thierry, and J. C. Wittmann, “Oriented crystalline films of tris(8-hydroxyquinoline) aluminum(III): growth of the alpha polymorph onto an ultra-oriented poly(tetrafluoroethylene) substrate,” Adv. Mater. 14(6), 436–439 (2002).
[Crossref]

Moulton, J.

K. J. Ihn, J. Moulton, and P. Smith, “Whiskers of poly(3-alkylthiophene)s,” J. Polym. Sci. Pol. Phys. 31(6), 735–742 (1993).
[Crossref]

Mulchandani, A.

A. K. Wanekaya, M. A. Bangar, M. Yun, W. Chen, N. V. Myung, and A. Mulchandani, “Field-effect transistors based on single nanowires of conducting polymers,” J. Phys. Chem. C 111(13), 5218–5221 (2007).
[Crossref]

Myung, N. V.

A. K. Wanekaya, M. A. Bangar, M. Yun, W. Chen, N. V. Myung, and A. Mulchandani, “Field-effect transistors based on single nanowires of conducting polymers,” J. Phys. Chem. C 111(13), 5218–5221 (2007).
[Crossref]

Nagarjuna, G.

G. Nagarjuna, M. Baghgar, J. A. Labastide, D. D. Algaier, M. D. Barnes, and D. Venkataraman, “Tuning aggregation of poly(3-hexylthiophene) within nanoparticles,” ACS Nano 6(12), 10750–10758 (2012).
[PubMed]

Ohuchi, F. S.

A. H. Rice, R. Giridharagopal, S. X. Zheng, F. S. Ohuchi, D. S. Ginger, and C. K. Luscombe, “Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester,” ACS Nano 5(4), 3132–3140 (2011).
[Crossref] [PubMed]

Olson, E. J. C.

J. C. Conboy, E. J. C. Olson, D. M. Adams, J. Kerimo, A. Zaban, B. A. Gregg, and P. F. Barbara, “Impact of solvent vapor annealing on the morphology and photophysics of molecular semiconductor thin films,” J. Phys. Chem. B 102(23), 4516–4525 (1998).
[Crossref]

Park, Y. D.

D. H. Kim, Y. D. Park, Y. Jang, S. Kim, and K. Cho, “Solvent vapor-induced nanowire formation in poly(3-hexylthiophene) thin films,” Macromol. Rapid Commun. 26(10), 834–839 (2005).
[Crossref]

Rice, A. H.

A. H. Rice, R. Giridharagopal, S. X. Zheng, F. S. Ohuchi, D. S. Ginger, and C. K. Luscombe, “Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester,” ACS Nano 5(4), 3132–3140 (2011).
[Crossref] [PubMed]

Ryu, C. Y.

H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, and Z. Bao, “Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors,” Adv. Funct. Mater. 15(4), 671–676 (2005).
[Crossref]

Schneider, M.

N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
[Crossref]

Shimomura, T.

Y. Takizawa, T. Shimomura, and T. Miura, “Simulation study of the initial crystallization processes of poly(3-hexylthiophene) in solution: ordering dynamics of main chains and side chains,” J. Phys. Chem. B 117(20), 6282–6289 (2013).
[Crossref] [PubMed]

Shin, T. J.

H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, and Z. Bao, “Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors,” Adv. Funct. Mater. 15(4), 671–676 (2005).
[Crossref]

Siegrist, T.

C. Kloc, P. G. Simpkins, T. Siegrist, and R. A. Laudise, “Physical vapor growth of centimeter-sized crystals of alpha-hexathiophene,” J. Cryst. Growth 182(3–4), 416–427 (1997).
[Crossref]

Simon, P.

N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
[Crossref]

Simpkins, P. G.

C. Kloc, P. G. Simpkins, T. Siegrist, and R. A. Laudise, “Physical vapor growth of centimeter-sized crystals of alpha-hexathiophene,” J. Cryst. Growth 182(3–4), 416–427 (1997).
[Crossref]

Sirringhaus, H.

N. Stutzmann, R. H. Friend, and H. Sirringhaus, “Self-aligned, vertical-channel, polymer field-effect transistors,” Science 299(5614), 1881–1884 (2003).
[Crossref] [PubMed]

Smith, P.

K. J. Ihn, J. Moulton, and P. Smith, “Whiskers of poly(3-alkylthiophene)s,” J. Polym. Sci. Pol. Phys. 31(6), 735–742 (1993).
[Crossref]

Stamm, M.

N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
[Crossref]

Stutzmann, N.

N. Stutzmann, R. H. Friend, and H. Sirringhaus, “Self-aligned, vertical-channel, polymer field-effect transistors,” Science 299(5614), 1881–1884 (2003).
[Crossref] [PubMed]

Sun, B.

X. Zhang and B. Sun, “Organic crystal fibers aligned into oriented bundles with polarized emission,” J. Phys. Chem. B 111(37), 10881–10885 (2007).
[Crossref] [PubMed]

Takizawa, Y.

Y. Takizawa, T. Shimomura, and T. Miura, “Simulation study of the initial crystallization processes of poly(3-hexylthiophene) in solution: ordering dynamics of main chains and side chains,” J. Phys. Chem. B 117(20), 6282–6289 (2013).
[Crossref] [PubMed]

Thierry, A.

J. F. Moulin, M. Brinkmann, A. Thierry, and J. C. Wittmann, “Oriented crystalline films of tris(8-hydroxyquinoline) aluminum(III): growth of the alpha polymorph onto an ultra-oriented poly(tetrafluoroethylene) substrate,” Adv. Mater. 14(6), 436–439 (2002).
[Crossref]

Thompson, M. E.

S. R. Forrest and M. E. Thompson, “Introduction: organic electronics and optoelectronics,” Chem. Rev. 107(4), 923–925 (2007).
[Crossref]

Tsai, W. C.

Y. L. Lee, W. C. Tsai, C. H. Chang, and Y. M. Yang, “Effects of heat annealing on the film characteristics and gas sensing properties of substituted and un-substituted copper phthalocyanine films,” Appl. Surf. Sci. 172(3–4), 191–199 (2001).
[Crossref]

Turner, C. L.

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

Venkataraman, D.

G. Nagarjuna, M. Baghgar, J. A. Labastide, D. D. Algaier, M. D. Barnes, and D. Venkataraman, “Tuning aggregation of poly(3-hexylthiophene) within nanoparticles,” ACS Nano 6(12), 10750–10758 (2012).
[PubMed]

Wakayama, Y.

J. Hu, K. W. Clark, R. Hayakawa, A. P. Li, and Y. Wakayama, “Enhanced electrical conductivity in poly(3-hexylthiophene)/fluorinated tetracyanoquinodimethane nanowires grown with a porous alumina template,” Langmuir 29(24), 7266–7270 (2013).
[Crossref] [PubMed]

Wanekaya, A. K.

A. K. Wanekaya, M. A. Bangar, M. Yun, W. Chen, N. V. Myung, and A. Mulchandani, “Field-effect transistors based on single nanowires of conducting polymers,” J. Phys. Chem. C 111(13), 5218–5221 (2007).
[Crossref]

Wang, G. Z.

G. Z. Wang, Y. Luo, and P. H. Beton, “High mobility organic transistors fabricated from single pentacene microcrystals grown on a polymer film,” Appl. Phys. Lett. 83(15), 3108–3110 (2003).
[Crossref]

Wang, J.

Z. P. Zhu, J. Wang, and B. Wei, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications,” Physica E 59, 83–87 (2014).
[Crossref]

Wei, B.

Z. P. Zhu, J. Wang, and B. Wei, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications,” Physica E 59, 83–87 (2014).
[Crossref]

Wittmann, J. C.

J. F. Moulin, M. Brinkmann, A. Thierry, and J. C. Wittmann, “Oriented crystalline films of tris(8-hydroxyquinoline) aluminum(III): growth of the alpha polymorph onto an ultra-oriented poly(tetrafluoroethylene) substrate,” Adv. Mater. 14(6), 436–439 (2002).
[Crossref]

Yang, H.

H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, and Z. Bao, “Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors,” Adv. Funct. Mater. 15(4), 671–676 (2005).
[Crossref]

Yang, L.

H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, and Z. Bao, “Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors,” Adv. Funct. Mater. 15(4), 671–676 (2005).
[Crossref]

Yang, Y. M.

Y. L. Lee, W. C. Tsai, C. H. Chang, and Y. M. Yang, “Effects of heat annealing on the film characteristics and gas sensing properties of substituted and un-substituted copper phthalocyanine films,” Appl. Surf. Sci. 172(3–4), 191–199 (2001).
[Crossref]

Yassar, A.

G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J. L. Fave, and F. Garnier, “Growth and characterization of sexithiophene single-crystals,” Chem. Mater. 7(7), 1337–1341 (1995).
[Crossref]

Yeung, M. T.

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

Yun, M.

A. K. Wanekaya, M. A. Bangar, M. Yun, W. Chen, N. V. Myung, and A. Mulchandani, “Field-effect transistors based on single nanowires of conducting polymers,” J. Phys. Chem. C 111(13), 5218–5221 (2007).
[Crossref]

Zaban, A.

J. C. Conboy, E. J. C. Olson, D. M. Adams, J. Kerimo, A. Zaban, B. A. Gregg, and P. F. Barbara, “Impact of solvent vapor annealing on the morphology and photophysics of molecular semiconductor thin films,” J. Phys. Chem. B 102(23), 4516–4525 (1998).
[Crossref]

Zhai, T. R.

X. P. Zhang, S. F. Feng, and T. R. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photon. Nanostruct. 11(2), 109–114 (2013).

Zhang, L.

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

Zhang, X.

X. Zhang and B. Sun, “Organic crystal fibers aligned into oriented bundles with polarized emission,” J. Phys. Chem. B 111(37), 10881–10885 (2007).
[Crossref] [PubMed]

Zhang, X. P.

X. P. Zhang, S. F. Feng, and T. R. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photon. Nanostruct. 11(2), 109–114 (2013).

Zheng, S. X.

A. H. Rice, R. Giridharagopal, S. X. Zheng, F. S. Ohuchi, D. S. Ginger, and C. K. Luscombe, “Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester,” ACS Nano 5(4), 3132–3140 (2011).
[Crossref] [PubMed]

Zhu, Z. P.

Z. P. Zhu, J. Wang, and B. Wei, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications,” Physica E 59, 83–87 (2014).
[Crossref]

ACS Nano (3)

J. M. D’Arcy, M. F. El-Kady, P. P. Khine, L. Zhang, S. H. Lee, N. R. Davis, D. S. Liu, M. T. Yeung, S. Y. Kim, C. L. Turner, A. T. Lech, P. T. Hammond, and R. B. Kaner, “Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors,” ACS Nano 8(2), 1500–1510 (2014).
[Crossref] [PubMed]

A. H. Rice, R. Giridharagopal, S. X. Zheng, F. S. Ohuchi, D. S. Ginger, and C. K. Luscombe, “Controlling vertical morphology within the active layer of organic photovoltaics using poly(3-hexylthiophene) nanowires and phenyl-C61-butyric acid methyl ester,” ACS Nano 5(4), 3132–3140 (2011).
[Crossref] [PubMed]

G. Nagarjuna, M. Baghgar, J. A. Labastide, D. D. Algaier, M. D. Barnes, and D. Venkataraman, “Tuning aggregation of poly(3-hexylthiophene) within nanoparticles,” ACS Nano 6(12), 10750–10758 (2012).
[PubMed]

Adv. Funct. Mater. (1)

H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, and Z. Bao, “Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors,” Adv. Funct. Mater. 15(4), 671–676 (2005).
[Crossref]

Adv. Mater. (2)

J. F. Moulin, M. Brinkmann, A. Thierry, and J. C. Wittmann, “Oriented crystalline films of tris(8-hydroxyquinoline) aluminum(III): growth of the alpha polymorph onto an ultra-oriented poly(tetrafluoroethylene) substrate,” Adv. Mater. 14(6), 436–439 (2002).
[Crossref]

R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. M. J. Fréchet, “Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15(18), 1519–1522 (2003).
[Crossref]

Appl. Phys. Lett. (1)

G. Z. Wang, Y. Luo, and P. H. Beton, “High mobility organic transistors fabricated from single pentacene microcrystals grown on a polymer film,” Appl. Phys. Lett. 83(15), 3108–3110 (2003).
[Crossref]

Appl. Surf. Sci. (1)

Y. L. Lee, W. C. Tsai, C. H. Chang, and Y. M. Yang, “Effects of heat annealing on the film characteristics and gas sensing properties of substituted and un-substituted copper phthalocyanine films,” Appl. Surf. Sci. 172(3–4), 191–199 (2001).
[Crossref]

Chem. Mater. (1)

G. Horowitz, B. Bachet, A. Yassar, P. Lang, F. Demanze, J. L. Fave, and F. Garnier, “Growth and characterization of sexithiophene single-crystals,” Chem. Mater. 7(7), 1337–1341 (1995).
[Crossref]

Chem. Rev. (1)

S. R. Forrest and M. E. Thompson, “Introduction: organic electronics and optoelectronics,” Chem. Rev. 107(4), 923–925 (2007).
[Crossref]

J. Cryst. Growth (1)

C. Kloc, P. G. Simpkins, T. Siegrist, and R. A. Laudise, “Physical vapor growth of centimeter-sized crystals of alpha-hexathiophene,” J. Cryst. Growth 182(3–4), 416–427 (1997).
[Crossref]

J. Mater. Chem. (1)

D. Fichou, “Structural order in conjugated oligothiophenes and its implications on opto-electronic devices,” J. Mater. Chem. 10(3), 571–588 (2000).
[Crossref]

J. Phys. Chem. (1)

B. A. Gregg, “Evolution of photophysical and photovoltaic properties of perylene bis(phenethylimide) films upon solvent vapor annealing,” J. Phys. Chem. 100(2), 852–859 (1996).
[Crossref]

J. Phys. Chem. B (3)

J. C. Conboy, E. J. C. Olson, D. M. Adams, J. Kerimo, A. Zaban, B. A. Gregg, and P. F. Barbara, “Impact of solvent vapor annealing on the morphology and photophysics of molecular semiconductor thin films,” J. Phys. Chem. B 102(23), 4516–4525 (1998).
[Crossref]

X. Zhang and B. Sun, “Organic crystal fibers aligned into oriented bundles with polarized emission,” J. Phys. Chem. B 111(37), 10881–10885 (2007).
[Crossref] [PubMed]

Y. Takizawa, T. Shimomura, and T. Miura, “Simulation study of the initial crystallization processes of poly(3-hexylthiophene) in solution: ordering dynamics of main chains and side chains,” J. Phys. Chem. B 117(20), 6282–6289 (2013).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

A. K. Wanekaya, M. A. Bangar, M. Yun, W. Chen, N. V. Myung, and A. Mulchandani, “Field-effect transistors based on single nanowires of conducting polymers,” J. Phys. Chem. C 111(13), 5218–5221 (2007).
[Crossref]

J. Polym. Sci. Pol. Phys. (1)

K. J. Ihn, J. Moulton, and P. Smith, “Whiskers of poly(3-alkylthiophene)s,” J. Polym. Sci. Pol. Phys. 31(6), 735–742 (1993).
[Crossref]

J. Polym. Sci., Part B: Polym. Phys. (1)

J. A. Merlo and C. D. Frisbie, “Field effect conductance of conducting polymer nanofibers,” J. Polym. Sci., Part B: Polym. Phys. 41(21), 2674–2680 (2003).
[Crossref]

Langmuir (1)

J. Hu, K. W. Clark, R. Hayakawa, A. P. Li, and Y. Wakayama, “Enhanced electrical conductivity in poly(3-hexylthiophene)/fluorinated tetracyanoquinodimethane nanowires grown with a porous alumina template,” Langmuir 29(24), 7266–7270 (2013).
[Crossref] [PubMed]

Macromol. Rapid Commun. (1)

D. H. Kim, Y. D. Park, Y. Jang, S. Kim, and K. Cho, “Solvent vapor-induced nanowire formation in poly(3-hexylthiophene) thin films,” Macromol. Rapid Commun. 26(10), 834–839 (2005).
[Crossref]

Nano Lett. (1)

N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon, A. A. Fokin, and M. Stamm, “One-dimensional aggregation of regioregular polyalkylthiophenes,” Nano Lett. 3(6), 707–712 (2003).
[Crossref]

Photon. Nanostruct. (1)

X. P. Zhang, S. F. Feng, and T. R. Zhai, “Energy transfer channels at the diffraction-anomaly in transparent gratings and applications in sensors,” Photon. Nanostruct. 11(2), 109–114 (2013).

Physica E (1)

Z. P. Zhu, J. Wang, and B. Wei, “Self-assembly of ordered poly(3-hexylthiophene) nanowires for organic field-effect transistor applications,” Physica E 59, 83–87 (2014).
[Crossref]

Science (1)

N. Stutzmann, R. H. Friend, and H. Sirringhaus, “Self-aligned, vertical-channel, polymer field-effect transistors,” Science 299(5614), 1881–1884 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration for the crystallization process of P3HT molecules on the photoresist (PR)-grating-patterned substrate through annealing in 1,5-pentanediol.
Fig. 2
Fig. 2 AFM images of the photoresist grating structures before (a) and after (b) being spin-coated with P3HT.
Fig. 3
Fig. 3 (a), (b), (c): polarization optical microscopic images of the grown P3HT crystals that are orientated at 0, 45, and 90 degrees, respectively, with respect to the transmission axis of the polarizer. (d), (e): AFM images of the P3HT crystal fibers grown on the patterned substrate with different magnification factors. (f): PL spectra of the spin-coated film (black) and the crystal fibers in a polarization direction perpendicular (blue)/parallel (red) to the grating lines.
Fig. 4
Fig. 4 I-V performance of the devices with the electrical field applied (a) perpendicular and (b) parallel to the crystal fibers.
Fig. 5
Fig. 5 Current as a function of excitation light laser intensity at 470 nm for an external electrical field of 10 V applied perpendicular (circles) and parallel (squares) to the crystal fibers. Solid lines: linear fits.
Fig. 6
Fig. 6 Photocurrent as a function of applied voltage at different excitation intensities at 470 nm for a device consisting of P3HT film spin-coated on a PR grating with a period of about 420 nm. Inset: optical microscopic image of the device with the grating line perpendicular to the orientation direction of the electrodes.
Fig. 7
Fig. 7 Investigation on the mechanisms for the directional crystallization of P3HT molecules using differently patterned substrate: (a) PR grating with a period of about 420 nm; (b) PR grating with a period of about 480 nm; (c) gold grating with a period of about 420 nm. Scale bar: 2 μm.

Metrics