Abstract

A theoretical model for spectral forward scatter patterns from a bacterial colony based on elastic light scatter is presented. The spectral forward scatter patterns are computed by scalar diffraction theory, and compared with experimental results of three discrete wavelengths (405 nm, 635 nm, and 904 nm). To provide quantitative analysis, spectral dependence of diffraction ring width, gap, maxima, minima, and the first deflection point are monitored. Both model and experiment results show an excellent agreement; a longer wavelength induces a wider ring width, a wider ring gap, a smaller pattern size, and smaller numbers of rings. Further analysis using spatial fast Fourier transform (SFFT) shows a good agreement; the spatial frequencies are increasing towards the inward direction, and the slope is inversely proportional to the incoming wavelength.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory

Euiwon Bae, Padmapriya P. Banada, Karleigh Huff, Arun K. Bhunia, J. Paul Robinson, and E. Daniel Hirleman
Appl. Opt. 46(17) 3639-3648 (2007)

Bacteria species identification by the statistical analysis of bacterial colonies Fresnel patterns

Agnieszka Suchwalko, Igor Buzalewicz, Alina Wieliczko, and Halina Podbielska
Opt. Express 21(9) 11322-11337 (2013)

Application of sampling criterion on numerical diffraction from bacterial colonies

Euiwon Bae, Nan Bai, and E. Daniel Hirleman
Appl. Opt. 50(15) 2228-2238 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Kapsokalyvas, N. Bruscino, D. Alfieri, V. de Giorgi, G. Cannarozzo, R. Cicchi, D. Massi, N. Pimpinelli, and F. S. Pavone, “Spectral morphological analysis of skin lesions with a polarization multispectral dermoscope,” Opt. Express 21(4), 4826–4840 (2013).
    [Crossref] [PubMed]
  2. T. E. Matthews, M. Medina, J. R. Maher, H. Levinson, W. J. Brown, and A. Wax, “Deep tissue imaging using spectroscopic analysis of multiply scattered light,” Optica 1, 105–111 (2014).
  3. B. K. Wilson and G. D. Vigil, “Automated bacterial identification by angle resolved dark-field imaging,” Biomed. Opt. Express 4(9), 1692–1701 (2013).
    [Crossref] [PubMed]
  4. H. Huang, L. Liu, and M. O. Ngadi, “Recent developments in hyperspectral imaging for assessment of food quality and safety,” Sensors (Basel) 14(4), 7248–7276 (2014).
    [Crossref] [PubMed]
  5. S. C. Yoon, K. C. Lawrence, G. R. Siragusa, J. E. Line, B. Park, and P. W. Feldner, “Hyperspectral reflectance imaging for detecting a foodborne pathogen: Campylobacter,” Trans. ASABE 52, 651–662 (2009).
    [Crossref]
  6. U. Siripatrawan, Y. Makino, Y. Kawagoe, and S. Oshita, “Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging,” Talanta 85(1), 276–281 (2011).
    [Crossref] [PubMed]
  7. A. Suchwałko, I. Buzalewicz, and H. Podbielska, “Bacteria identification in an optical system with optimized diffraction pattern registration condition supported by enhanced statistical analysis,” Opt. Express 22(21), 26312–26327 (2014).
    [Crossref] [PubMed]
  8. P. R. Marcoux, M. Dupoy, A. Cuer, J.-L. Kodja, A. Lefebvre, F. Licari, R. Louvet, A. Narassiguin, and F. Mallard, “Optical forward-scattering for identification of bacteria within microcolonies,” Appl. Microbiol. Biotechnol. 98(5), 2243–2254 (2014).
    [Crossref] [PubMed]
  9. B. Chen, H. Gong, X. Zhang, P. P. Patankar, M. J. Sadowsky, and C. C. Tseng, “Laser imaging for rapid microbial source tracking,” Int J Comput. Biol. Drug Des. 3(3), 177–186 (2010).
    [Crossref] [PubMed]
  10. C. S. Chen, M. Biasca, C. Le, E. Y. T. Chen, E. D. Hirleman, and W. C. Chin, “Determine the quality of human embryonic stem colonies with laser light scattering patterns,” Biol. Proced. Online 15(1), 2 (2013).
    [Crossref] [PubMed]
  11. Y. Tang, H. Kim, A. K. Singh, A. Aroonnual, E. Bae, B. Rajwa, P. M. Fratamico, and A. K. Bhunia, “Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157,” PLoS ONE 9(8), e105272 (2014).
    [Crossref] [PubMed]
  12. A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
    [Crossref] [PubMed]
  13. E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
    [Crossref] [PubMed]
  14. H. Kim, N. Bai, A. K. Bhunia, G. B. King, E. D. Hirleman, and E. Bae, “Development of an integrated optical analyzer for characterization of growth dynamics of bacterial colonies,” J Biophoton. 6(11-12), 929–937 (2013).
    [Crossref] [PubMed]
  15. N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 19, 585–587 (2009).
  16. E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt. 46(17), 3639–3648 (2007).
    [Crossref] [PubMed]
  17. H. Kim, A. K. Singh, A. K. Bhunia, and E. Bae, “Laser-induced speckle scatter patterns in Bacillus colonies,” Front. Microbiol. 5, 537 (2014).
    [Crossref] [PubMed]

2014 (7)

T. E. Matthews, M. Medina, J. R. Maher, H. Levinson, W. J. Brown, and A. Wax, “Deep tissue imaging using spectroscopic analysis of multiply scattered light,” Optica 1, 105–111 (2014).

H. Huang, L. Liu, and M. O. Ngadi, “Recent developments in hyperspectral imaging for assessment of food quality and safety,” Sensors (Basel) 14(4), 7248–7276 (2014).
[Crossref] [PubMed]

A. Suchwałko, I. Buzalewicz, and H. Podbielska, “Bacteria identification in an optical system with optimized diffraction pattern registration condition supported by enhanced statistical analysis,” Opt. Express 22(21), 26312–26327 (2014).
[Crossref] [PubMed]

P. R. Marcoux, M. Dupoy, A. Cuer, J.-L. Kodja, A. Lefebvre, F. Licari, R. Louvet, A. Narassiguin, and F. Mallard, “Optical forward-scattering for identification of bacteria within microcolonies,” Appl. Microbiol. Biotechnol. 98(5), 2243–2254 (2014).
[Crossref] [PubMed]

Y. Tang, H. Kim, A. K. Singh, A. Aroonnual, E. Bae, B. Rajwa, P. M. Fratamico, and A. K. Bhunia, “Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157,” PLoS ONE 9(8), e105272 (2014).
[Crossref] [PubMed]

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

H. Kim, A. K. Singh, A. K. Bhunia, and E. Bae, “Laser-induced speckle scatter patterns in Bacillus colonies,” Front. Microbiol. 5, 537 (2014).
[Crossref] [PubMed]

2013 (4)

C. S. Chen, M. Biasca, C. Le, E. Y. T. Chen, E. D. Hirleman, and W. C. Chin, “Determine the quality of human embryonic stem colonies with laser light scattering patterns,” Biol. Proced. Online 15(1), 2 (2013).
[Crossref] [PubMed]

H. Kim, N. Bai, A. K. Bhunia, G. B. King, E. D. Hirleman, and E. Bae, “Development of an integrated optical analyzer for characterization of growth dynamics of bacterial colonies,” J Biophoton. 6(11-12), 929–937 (2013).
[Crossref] [PubMed]

D. Kapsokalyvas, N. Bruscino, D. Alfieri, V. de Giorgi, G. Cannarozzo, R. Cicchi, D. Massi, N. Pimpinelli, and F. S. Pavone, “Spectral morphological analysis of skin lesions with a polarization multispectral dermoscope,” Opt. Express 21(4), 4826–4840 (2013).
[Crossref] [PubMed]

B. K. Wilson and G. D. Vigil, “Automated bacterial identification by angle resolved dark-field imaging,” Biomed. Opt. Express 4(9), 1692–1701 (2013).
[Crossref] [PubMed]

2011 (1)

U. Siripatrawan, Y. Makino, Y. Kawagoe, and S. Oshita, “Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging,” Talanta 85(1), 276–281 (2011).
[Crossref] [PubMed]

2010 (2)

B. Chen, H. Gong, X. Zhang, P. P. Patankar, M. J. Sadowsky, and C. C. Tseng, “Laser imaging for rapid microbial source tracking,” Int J Comput. Biol. Drug Des. 3(3), 177–186 (2010).
[Crossref] [PubMed]

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

2009 (2)

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 19, 585–587 (2009).

S. C. Yoon, K. C. Lawrence, G. R. Siragusa, J. E. Line, B. Park, and P. W. Feldner, “Hyperspectral reflectance imaging for detecting a foodborne pathogen: Campylobacter,” Trans. ASABE 52, 651–662 (2009).
[Crossref]

2007 (1)

Alfieri, D.

Aroonnual, A.

Y. Tang, H. Kim, A. K. Singh, A. Aroonnual, E. Bae, B. Rajwa, P. M. Fratamico, and A. K. Bhunia, “Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157,” PLoS ONE 9(8), e105272 (2014).
[Crossref] [PubMed]

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

Bae, E.

H. Kim, A. K. Singh, A. K. Bhunia, and E. Bae, “Laser-induced speckle scatter patterns in Bacillus colonies,” Front. Microbiol. 5, 537 (2014).
[Crossref] [PubMed]

Y. Tang, H. Kim, A. K. Singh, A. Aroonnual, E. Bae, B. Rajwa, P. M. Fratamico, and A. K. Bhunia, “Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157,” PLoS ONE 9(8), e105272 (2014).
[Crossref] [PubMed]

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

H. Kim, N. Bai, A. K. Bhunia, G. B. King, E. D. Hirleman, and E. Bae, “Development of an integrated optical analyzer for characterization of growth dynamics of bacterial colonies,” J Biophoton. 6(11-12), 929–937 (2013).
[Crossref] [PubMed]

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt. 46(17), 3639–3648 (2007).
[Crossref] [PubMed]

Bai, N.

H. Kim, N. Bai, A. K. Bhunia, G. B. King, E. D. Hirleman, and E. Bae, “Development of an integrated optical analyzer for characterization of growth dynamics of bacterial colonies,” J Biophoton. 6(11-12), 929–937 (2013).
[Crossref] [PubMed]

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

Banada, P. P.

Barrett, B.

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

Bettasso, A. M.

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

Bhunia, A. K.

Y. Tang, H. Kim, A. K. Singh, A. Aroonnual, E. Bae, B. Rajwa, P. M. Fratamico, and A. K. Bhunia, “Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157,” PLoS ONE 9(8), e105272 (2014).
[Crossref] [PubMed]

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

H. Kim, A. K. Singh, A. K. Bhunia, and E. Bae, “Laser-induced speckle scatter patterns in Bacillus colonies,” Front. Microbiol. 5, 537 (2014).
[Crossref] [PubMed]

H. Kim, N. Bai, A. K. Bhunia, G. B. King, E. D. Hirleman, and E. Bae, “Development of an integrated optical analyzer for characterization of growth dynamics of bacterial colonies,” J Biophoton. 6(11-12), 929–937 (2013).
[Crossref] [PubMed]

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt. 46(17), 3639–3648 (2007).
[Crossref] [PubMed]

Biasca, M.

C. S. Chen, M. Biasca, C. Le, E. Y. T. Chen, E. D. Hirleman, and W. C. Chin, “Determine the quality of human embryonic stem colonies with laser light scattering patterns,” Biol. Proced. Online 15(1), 2 (2013).
[Crossref] [PubMed]

Brown, W. J.

Bruscino, N.

Buzalewicz, I.

Cannarozzo, G.

Chen, B.

B. Chen, H. Gong, X. Zhang, P. P. Patankar, M. J. Sadowsky, and C. C. Tseng, “Laser imaging for rapid microbial source tracking,” Int J Comput. Biol. Drug Des. 3(3), 177–186 (2010).
[Crossref] [PubMed]

Chen, C. S.

C. S. Chen, M. Biasca, C. Le, E. Y. T. Chen, E. D. Hirleman, and W. C. Chin, “Determine the quality of human embryonic stem colonies with laser light scattering patterns,” Biol. Proced. Online 15(1), 2 (2013).
[Crossref] [PubMed]

Chen, E. Y. T.

C. S. Chen, M. Biasca, C. Le, E. Y. T. Chen, E. D. Hirleman, and W. C. Chin, “Determine the quality of human embryonic stem colonies with laser light scattering patterns,” Biol. Proced. Online 15(1), 2 (2013).
[Crossref] [PubMed]

Chin, W. C.

C. S. Chen, M. Biasca, C. Le, E. Y. T. Chen, E. D. Hirleman, and W. C. Chin, “Determine the quality of human embryonic stem colonies with laser light scattering patterns,” Biol. Proced. Online 15(1), 2 (2013).
[Crossref] [PubMed]

Cicchi, R.

Cuer, A.

P. R. Marcoux, M. Dupoy, A. Cuer, J.-L. Kodja, A. Lefebvre, F. Licari, R. Louvet, A. Narassiguin, and F. Mallard, “Optical forward-scattering for identification of bacteria within microcolonies,” Appl. Microbiol. Biotechnol. 98(5), 2243–2254 (2014).
[Crossref] [PubMed]

de Giorgi, V.

Dundar, M. M.

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

Dupoy, M.

P. R. Marcoux, M. Dupoy, A. Cuer, J.-L. Kodja, A. Lefebvre, F. Licari, R. Louvet, A. Narassiguin, and F. Mallard, “Optical forward-scattering for identification of bacteria within microcolonies,” Appl. Microbiol. Biotechnol. 98(5), 2243–2254 (2014).
[Crossref] [PubMed]

Feldner, P. W.

S. C. Yoon, K. C. Lawrence, G. R. Siragusa, J. E. Line, B. Park, and P. W. Feldner, “Hyperspectral reflectance imaging for detecting a foodborne pathogen: Campylobacter,” Trans. ASABE 52, 651–662 (2009).
[Crossref]

Forster, M. D.

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

Fratamico, P. M.

Y. Tang, H. Kim, A. K. Singh, A. Aroonnual, E. Bae, B. Rajwa, P. M. Fratamico, and A. K. Bhunia, “Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157,” PLoS ONE 9(8), e105272 (2014).
[Crossref] [PubMed]

Gong, H.

B. Chen, H. Gong, X. Zhang, P. P. Patankar, M. J. Sadowsky, and C. C. Tseng, “Laser imaging for rapid microbial source tracking,” Int J Comput. Biol. Drug Des. 3(3), 177–186 (2010).
[Crossref] [PubMed]

Hirleman, E. D.

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

H. Kim, N. Bai, A. K. Bhunia, G. B. King, E. D. Hirleman, and E. Bae, “Development of an integrated optical analyzer for characterization of growth dynamics of bacterial colonies,” J Biophoton. 6(11-12), 929–937 (2013).
[Crossref] [PubMed]

C. S. Chen, M. Biasca, C. Le, E. Y. T. Chen, E. D. Hirleman, and W. C. Chin, “Determine the quality of human embryonic stem colonies with laser light scattering patterns,” Biol. Proced. Online 15(1), 2 (2013).
[Crossref] [PubMed]

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt. 46(17), 3639–3648 (2007).
[Crossref] [PubMed]

Huang, H.

H. Huang, L. Liu, and M. O. Ngadi, “Recent developments in hyperspectral imaging for assessment of food quality and safety,” Sensors (Basel) 14(4), 7248–7276 (2014).
[Crossref] [PubMed]

Huff, K.

Kapsokalyvas, D.

Kasarova, S.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 19, 585–587 (2009).

Kawagoe, Y.

U. Siripatrawan, Y. Makino, Y. Kawagoe, and S. Oshita, “Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging,” Talanta 85(1), 276–281 (2011).
[Crossref] [PubMed]

Kim, H.

Y. Tang, H. Kim, A. K. Singh, A. Aroonnual, E. Bae, B. Rajwa, P. M. Fratamico, and A. K. Bhunia, “Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157,” PLoS ONE 9(8), e105272 (2014).
[Crossref] [PubMed]

H. Kim, A. K. Singh, A. K. Bhunia, and E. Bae, “Laser-induced speckle scatter patterns in Bacillus colonies,” Front. Microbiol. 5, 537 (2014).
[Crossref] [PubMed]

H. Kim, N. Bai, A. K. Bhunia, G. B. King, E. D. Hirleman, and E. Bae, “Development of an integrated optical analyzer for characterization of growth dynamics of bacterial colonies,” J Biophoton. 6(11-12), 929–937 (2013).
[Crossref] [PubMed]

King, G. B.

H. Kim, N. Bai, A. K. Bhunia, G. B. King, E. D. Hirleman, and E. Bae, “Development of an integrated optical analyzer for characterization of growth dynamics of bacterial colonies,” J Biophoton. 6(11-12), 929–937 (2013).
[Crossref] [PubMed]

Kodja, J.-L.

P. R. Marcoux, M. Dupoy, A. Cuer, J.-L. Kodja, A. Lefebvre, F. Licari, R. Louvet, A. Narassiguin, and F. Mallard, “Optical forward-scattering for identification of bacteria within microcolonies,” Appl. Microbiol. Biotechnol. 98(5), 2243–2254 (2014).
[Crossref] [PubMed]

Lawrence, K. C.

S. C. Yoon, K. C. Lawrence, G. R. Siragusa, J. E. Line, B. Park, and P. W. Feldner, “Hyperspectral reflectance imaging for detecting a foodborne pathogen: Campylobacter,” Trans. ASABE 52, 651–662 (2009).
[Crossref]

Le, C.

C. S. Chen, M. Biasca, C. Le, E. Y. T. Chen, E. D. Hirleman, and W. C. Chin, “Determine the quality of human embryonic stem colonies with laser light scattering patterns,” Biol. Proced. Online 15(1), 2 (2013).
[Crossref] [PubMed]

Lefebvre, A.

P. R. Marcoux, M. Dupoy, A. Cuer, J.-L. Kodja, A. Lefebvre, F. Licari, R. Louvet, A. Narassiguin, and F. Mallard, “Optical forward-scattering for identification of bacteria within microcolonies,” Appl. Microbiol. Biotechnol. 98(5), 2243–2254 (2014).
[Crossref] [PubMed]

Levinson, H.

Licari, F.

P. R. Marcoux, M. Dupoy, A. Cuer, J.-L. Kodja, A. Lefebvre, F. Licari, R. Louvet, A. Narassiguin, and F. Mallard, “Optical forward-scattering for identification of bacteria within microcolonies,” Appl. Microbiol. Biotechnol. 98(5), 2243–2254 (2014).
[Crossref] [PubMed]

Line, J. E.

S. C. Yoon, K. C. Lawrence, G. R. Siragusa, J. E. Line, B. Park, and P. W. Feldner, “Hyperspectral reflectance imaging for detecting a foodborne pathogen: Campylobacter,” Trans. ASABE 52, 651–662 (2009).
[Crossref]

Liu, L.

H. Huang, L. Liu, and M. O. Ngadi, “Recent developments in hyperspectral imaging for assessment of food quality and safety,” Sensors (Basel) 14(4), 7248–7276 (2014).
[Crossref] [PubMed]

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

Louvet, R.

P. R. Marcoux, M. Dupoy, A. Cuer, J.-L. Kodja, A. Lefebvre, F. Licari, R. Louvet, A. Narassiguin, and F. Mallard, “Optical forward-scattering for identification of bacteria within microcolonies,” Appl. Microbiol. Biotechnol. 98(5), 2243–2254 (2014).
[Crossref] [PubMed]

Lovchik, J.

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

Maher, J. R.

Makino, Y.

U. Siripatrawan, Y. Makino, Y. Kawagoe, and S. Oshita, “Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging,” Talanta 85(1), 276–281 (2011).
[Crossref] [PubMed]

Mallard, F.

P. R. Marcoux, M. Dupoy, A. Cuer, J.-L. Kodja, A. Lefebvre, F. Licari, R. Louvet, A. Narassiguin, and F. Mallard, “Optical forward-scattering for identification of bacteria within microcolonies,” Appl. Microbiol. Biotechnol. 98(5), 2243–2254 (2014).
[Crossref] [PubMed]

Marcoux, P. R.

P. R. Marcoux, M. Dupoy, A. Cuer, J.-L. Kodja, A. Lefebvre, F. Licari, R. Louvet, A. Narassiguin, and F. Mallard, “Optical forward-scattering for identification of bacteria within microcolonies,” Appl. Microbiol. Biotechnol. 98(5), 2243–2254 (2014).
[Crossref] [PubMed]

Massi, D.

Matthews, T. E.

Medina, M.

Narassiguin, A.

P. R. Marcoux, M. Dupoy, A. Cuer, J.-L. Kodja, A. Lefebvre, F. Licari, R. Louvet, A. Narassiguin, and F. Mallard, “Optical forward-scattering for identification of bacteria within microcolonies,” Appl. Microbiol. Biotechnol. 98(5), 2243–2254 (2014).
[Crossref] [PubMed]

Ngadi, M. O.

H. Huang, L. Liu, and M. O. Ngadi, “Recent developments in hyperspectral imaging for assessment of food quality and safety,” Sensors (Basel) 14(4), 7248–7276 (2014).
[Crossref] [PubMed]

Nikolov, I.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 19, 585–587 (2009).

Oshita, S.

U. Siripatrawan, Y. Makino, Y. Kawagoe, and S. Oshita, “Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging,” Talanta 85(1), 276–281 (2011).
[Crossref] [PubMed]

Park, B.

S. C. Yoon, K. C. Lawrence, G. R. Siragusa, J. E. Line, B. Park, and P. W. Feldner, “Hyperspectral reflectance imaging for detecting a foodborne pathogen: Campylobacter,” Trans. ASABE 52, 651–662 (2009).
[Crossref]

Patankar, P. P.

B. Chen, H. Gong, X. Zhang, P. P. Patankar, M. J. Sadowsky, and C. C. Tseng, “Laser imaging for rapid microbial source tracking,” Int J Comput. Biol. Drug Des. 3(3), 177–186 (2010).
[Crossref] [PubMed]

Pavone, F. S.

Pimpinelli, N.

Podbielska, H.

Rajwa, B.

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

Y. Tang, H. Kim, A. K. Singh, A. Aroonnual, E. Bae, B. Rajwa, P. M. Fratamico, and A. K. Bhunia, “Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157,” PLoS ONE 9(8), e105272 (2014).
[Crossref] [PubMed]

Robinson, J. P.

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

E. Bae, P. P. Banada, K. Huff, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory,” Appl. Opt. 46(17), 3639–3648 (2007).
[Crossref] [PubMed]

Sadowsky, M. J.

B. Chen, H. Gong, X. Zhang, P. P. Patankar, M. J. Sadowsky, and C. C. Tseng, “Laser imaging for rapid microbial source tracking,” Int J Comput. Biol. Drug Des. 3(3), 177–186 (2010).
[Crossref] [PubMed]

Singh, A. K.

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

Y. Tang, H. Kim, A. K. Singh, A. Aroonnual, E. Bae, B. Rajwa, P. M. Fratamico, and A. K. Bhunia, “Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157,” PLoS ONE 9(8), e105272 (2014).
[Crossref] [PubMed]

H. Kim, A. K. Singh, A. K. Bhunia, and E. Bae, “Laser-induced speckle scatter patterns in Bacillus colonies,” Front. Microbiol. 5, 537 (2014).
[Crossref] [PubMed]

Siragusa, G. R.

S. C. Yoon, K. C. Lawrence, G. R. Siragusa, J. E. Line, B. Park, and P. W. Feldner, “Hyperspectral reflectance imaging for detecting a foodborne pathogen: Campylobacter,” Trans. ASABE 52, 651–662 (2009).
[Crossref]

Siripatrawan, U.

U. Siripatrawan, Y. Makino, Y. Kawagoe, and S. Oshita, “Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging,” Talanta 85(1), 276–281 (2011).
[Crossref] [PubMed]

Suchwalko, A.

Sultanova, N.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 19, 585–587 (2009).

Tang, Y.

Y. Tang, H. Kim, A. K. Singh, A. Aroonnual, E. Bae, B. Rajwa, P. M. Fratamico, and A. K. Bhunia, “Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157,” PLoS ONE 9(8), e105272 (2014).
[Crossref] [PubMed]

Tseng, C. C.

B. Chen, H. Gong, X. Zhang, P. P. Patankar, M. J. Sadowsky, and C. C. Tseng, “Laser imaging for rapid microbial source tracking,” Int J Comput. Biol. Drug Des. 3(3), 177–186 (2010).
[Crossref] [PubMed]

Vigil, G. D.

Wax, A.

Wilson, B. K.

Yoon, S. C.

S. C. Yoon, K. C. Lawrence, G. R. Siragusa, J. E. Line, B. Park, and P. W. Feldner, “Hyperspectral reflectance imaging for detecting a foodborne pathogen: Campylobacter,” Trans. ASABE 52, 651–662 (2009).
[Crossref]

Zhang, X.

B. Chen, H. Gong, X. Zhang, P. P. Patankar, M. J. Sadowsky, and C. C. Tseng, “Laser imaging for rapid microbial source tracking,” Int J Comput. Biol. Drug Des. 3(3), 177–186 (2010).
[Crossref] [PubMed]

Acta Phys. Pol. A (1)

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 19, 585–587 (2009).

Appl. Microbiol. Biotechnol. (1)

P. R. Marcoux, M. Dupoy, A. Cuer, J.-L. Kodja, A. Lefebvre, F. Licari, R. Louvet, A. Narassiguin, and F. Mallard, “Optical forward-scattering for identification of bacteria within microcolonies,” Appl. Microbiol. Biotechnol. 98(5), 2243–2254 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Biol. Proced. Online (1)

C. S. Chen, M. Biasca, C. Le, E. Y. T. Chen, E. D. Hirleman, and W. C. Chin, “Determine the quality of human embryonic stem colonies with laser light scattering patterns,” Biol. Proced. Online 15(1), 2 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Front. Microbiol. (1)

H. Kim, A. K. Singh, A. K. Bhunia, and E. Bae, “Laser-induced speckle scatter patterns in Bacillus colonies,” Front. Microbiol. 5, 537 (2014).
[Crossref] [PubMed]

Int J Comput. Biol. Drug Des. (1)

B. Chen, H. Gong, X. Zhang, P. P. Patankar, M. J. Sadowsky, and C. C. Tseng, “Laser imaging for rapid microbial source tracking,” Int J Comput. Biol. Drug Des. 3(3), 177–186 (2010).
[Crossref] [PubMed]

J Biophoton. (1)

H. Kim, N. Bai, A. K. Bhunia, G. B. King, E. D. Hirleman, and E. Bae, “Development of an integrated optical analyzer for characterization of growth dynamics of bacterial colonies,” J Biophoton. 6(11-12), 929–937 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia, and E. D. Hirleman, “Modeling light propagation through bacterial colonies and its correlation with forward scattering patterns,” J. Biomed. Opt. 15(4), 045001 (2010).
[Crossref] [PubMed]

MBio (1)

A. K. Singh, A. M. Bettasso, E. Bae, B. Rajwa, M. M. Dundar, M. D. Forster, L. Liu, B. Barrett, J. Lovchik, J. P. Robinson, E. D. Hirleman, and A. K. Bhunia, “Laser optical sensor, a label-free on-plate Salmonella enterica colony detection tool,” MBio 5(1), e01019 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Optica (1)

PLoS ONE (1)

Y. Tang, H. Kim, A. K. Singh, A. Aroonnual, E. Bae, B. Rajwa, P. M. Fratamico, and A. K. Bhunia, “Light scattering sensor for direct identification of colonies of Escherichia coli serogroups O26, O45, O103, O111, O121, O145 and O157,” PLoS ONE 9(8), e105272 (2014).
[Crossref] [PubMed]

Sensors (Basel) (1)

H. Huang, L. Liu, and M. O. Ngadi, “Recent developments in hyperspectral imaging for assessment of food quality and safety,” Sensors (Basel) 14(4), 7248–7276 (2014).
[Crossref] [PubMed]

Talanta (1)

U. Siripatrawan, Y. Makino, Y. Kawagoe, and S. Oshita, “Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging,” Talanta 85(1), 276–281 (2011).
[Crossref] [PubMed]

Trans. ASABE (1)

S. C. Yoon, K. C. Lawrence, G. R. Siragusa, J. E. Line, B. Park, and P. W. Feldner, “Hyperspectral reflectance imaging for detecting a foodborne pathogen: Campylobacter,” Trans. ASABE 52, 651–662 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of proposed in situ multispectral forward scatterometer. Three different wavelength laser diodes (light sources), a photo diode (PD) for intensity monitoring, and one CMOS camera (scatterometer) were integrated to two of stacked cage type pellicle beam splitters (R45:T55). d1 = 67 mm (collimated region) for an easy access and loading for a sample specimen, and d2 = 9.7 mm for scatter measurements with a small size CMOS camera. (b) Coordinate system of the proposed scatter model.
Fig. 2
Fig. 2 Comparison of five different measurement modalities for S. aureus; (a) Image of S. aureus on BHI agar plate, (b) 3D morphology map by ICMA, (c) OD map by ICMA, (d) PCM, (e-g) ELS (405 nm, 635 nm, and 904 nm), (h) cross sectional morphology and OD profile of center region of S. aureus.
Fig. 3
Fig. 3 Definition of parameters for the multispectral forward scatter pattern analysis. The order of the minima and maxima is determined toward the inward direction from the outer most intensity; the first local minimum is specifically defined by the first deflection point.
Fig. 4
Fig. 4 Analysis of spectral forward scatter patterns. Distance of the first to third (a) ring gap and (b) ring width, and (c) number of diffraction ring along incident wavelength. (d) Comparison of the half diffraction angle estimated by algorithm (blue triangle), manual calculation from predicted pattern (red square), and experiment result (green star). Both the ring gap and ring width were proportional to incident wavelength, while number of rings and half diffraction angle were inversely proportional.
Fig. 5
Fig. 5 Comparison of spectral forward scatter pattern prediction and experimental result of S. aureus ATCC25923 measured by a proposed instrument. Cross sectional view of the spectral forward scatter pattern at boundary area of a) simulation model, b) experimental result, a quarter view of c) predicted model, and d) experimental measurement.
Fig. 6
Fig. 6 Comparison of spatial frequency shift of the spectral forward scatter pattern in between predicted model and experimental measurement of S. aureus (1) 405nm, (2) 635 nm, and (3) 905 nm, and patterns from (a) predicted model, (b) experimental result. SFFT result of the center cross sectional area of (c) predicted model and (d) experimental result shows good agreement. Arrows have been added for better visualization.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E i ( x i , y i ,λ)=C T( x a , y a ,λ)exp[ i Φ overall ( x a , y a ,λ) ]                           exp[ 2πi( f x (λ) x a + f y (λ) y a ) ]d x a d y a
T( x a , y a ,λ)=exp[ ( x a 2 + y a 2 ) ω 2 ( z,λ ) ]f( n bac , n air , n ec ,λ)
Φ c ( x a , y a ,λ)=k(λ)( n bac (λ)1)Γ( x a , y a )
Φ q ( x a , y a ,λ)= k(λ)( x a 2 + y a 2 ) 2 z i
Φ r ( x a , y a ,λ)= k(λ)( x a 2 + y a 2 ) 2R
N ring (λ)= Δ Φ overall (λ) max 2π
θ(λ)/ 2 max = 1 k ( dΔ Φ overall (λ) dr ) max

Metrics