Abstract

Metamaterial lenses with close values of permittivity and permeability usually display low reflection losses at the expense of narrow single frequency operation. Here, a broadband low-profile lens is designed by exploiting the dispersion of a fishnet metamaterial together with the zoning technique. The lens operates in a broadband regime from 54 GHz to 58 GHz, representing a fractional bandwidth ~7%, and outperforms Silicon lenses between 54 and 55.5 GHz. This broadband operation is demonstrated by a systematic analysis comprising Huygens-Fresnel analytical method, full-wave numerical simulations and experimental measurements at millimeter waves. For demonstrative purposes, a detailed study of the lens operation at two frequencies is done for the most important lens parameters (focal length, depth of focus, resolution, radiation diagram). Experimental results demonstrate diffraction-limited ~0.5λ transverse resolution, in agreement with analytical and numerical calculations. In a lens antenna configuration, a directivity as high as 16.6 dBi is achieved. The different focal lengths implemented into a single lens could be potentially used for realizing the front end of a non-mechanical zoom millimeter-wave imaging system.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-band double-negative-index fishnet metamaterial at millimeter-waves

Miguel Navarro-Cía, Carlos García-Meca, Miguel Beruete, Alejandro Martínez, and Mario Sorolla
Opt. Lett. 36(21) 4245-4247 (2011)

Negative phase advance in polarization independent, multi-layer negative-index metamaterials

Koray Aydin, Zhaofeng Li, Levent Sahin, and Ekmel Ozbay
Opt. Express 16(12) 8835-8844 (2008)

Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband

Takehito Suzuki, Masashi Sekiya, Tatsuya Sato, and Yuki Takebayashi
Opt. Express 26(7) 8314-8324 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. E. Kock, “Metal-Lens Antennas,” Proc. IRE34, 828–836 (1946).
  2. W. E. Kock, “Metallic Delay Lenses,” Bell Syst. Tech. J. 27(1), 58–82 (1948).
    [Crossref]
  3. J. Brown, “Artificial dielectrics having refractive indices less than unity,” Proc. IEE - Part IV Inst. Monogr. 51 – 62 (1953).
    [Crossref]
  4. R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (John Wiley & Sons, 2008).
  5. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).
  6. J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  7. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  8. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  9. V. V. Shevchenko, “The geometric-optics theory of a plane chiral-metamaterial lens,” J. Commun. Technol. Electron. 54(6), 662–666 (2009).
    [Crossref]
  10. A. Demetriadou and Y. Hao, “A Grounded Slim Luneburg Lens Antenna Based on Transformation Electromagnetics,” IEEE Antennas Wirel. Propag. Lett. 10, 1590–1593 (2011).
    [Crossref]
  11. M. Navarro-Cía, M. Beruete, M. Sorolla, and N. Engheta, “Lensing system and Fourier transformation using epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165130 (2012).
    [Crossref]
  12. R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B 81(23), 235111 (2010).
    [Crossref]
  13. M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Planoconcave lens by negative refraction of stacked subwavelength hole arrays,” Opt. Express 16(13), 9677–9683 (2008).
    [PubMed]
  14. M. Navarro-Cía, M. Beruete, M. Sorolla, and I. Campillo, “Converging biconcave metallic lens by double-negative extraordinary transmission metamaterial,” Appl. Phys. Lett. 94(14), 144107 (2009).
    [Crossref]
  15. M. Navarro-Cía, M. Beruete, I. Campillo, and M. S. Ayza, “Beamforming by Left-Handed Extraordinary Transmission Metamaterial Bi- and Plano-Concave Lens at Millimeter-Waves,” IEEE Trans. Antenn. Propag. 59(6), 2141–2151 (2011).
    [Crossref]
  16. P. F. Goldsmith, “Zone plate lens antennas for millimeter and submillimeter wavelengths,” in The Third International Symposium on Space Terahertz Technology: Symposium Proceedings (1992), pp. 345–361.
  17. I. V. Minin and O. V. Minin, Diffractional Optics of Millimetre Waves (CRC Press, 2004).
  18. H. D. Hristov, Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas (Artech House, 2000).
  19. V. Pacheco-Peña, B. Orazbayev, V. Torres, M. Beruete, and M. Navarro-Cía, “Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial,” Appl. Phys. Lett. 103(18), 183507 (2013).
    [Crossref]
  20. V. Pacheco-Peña, B. Orazbayev, M. Beruete, and M. Navarro-Cía, “Zoned Near-Zero Refractive Index Fishnet Lens Antenna: Steering Millimeter Waves,” J. Appl. Phys. 115(12), 124902 (2014).
    [Crossref]
  21. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
    [Crossref] [PubMed]
  22. M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
    [Crossref]
  23. D. F. Filipovic and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical quartz dielectric lenses,” Int. J. Infrared Millim. Waves 14(10), 1905–1924 (1993).
    [Crossref]
  24. N. Llombart, G. Chattopadhyay, A. Skalare, and I. Mehdi, “Novel Terahertz Antenna Based on a Silicon Lens Fed by a Leaky Wave Enhanced Waveguide,” IEEE Trans. Antenn. Propag. 59(6), 2160–2168 (2011).
    [Crossref]
  25. D. L. Runyon, “Optimum directivity coverage of fan-beam antennas,” IEEE Antennas Propag. Mag. 44(2), 66–70 (2002).
    [Crossref]

2014 (1)

V. Pacheco-Peña, B. Orazbayev, M. Beruete, and M. Navarro-Cía, “Zoned Near-Zero Refractive Index Fishnet Lens Antenna: Steering Millimeter Waves,” J. Appl. Phys. 115(12), 124902 (2014).
[Crossref]

2013 (1)

V. Pacheco-Peña, B. Orazbayev, V. Torres, M. Beruete, and M. Navarro-Cía, “Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial,” Appl. Phys. Lett. 103(18), 183507 (2013).
[Crossref]

2012 (1)

M. Navarro-Cía, M. Beruete, M. Sorolla, and N. Engheta, “Lensing system and Fourier transformation using epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165130 (2012).
[Crossref]

2011 (4)

A. Demetriadou and Y. Hao, “A Grounded Slim Luneburg Lens Antenna Based on Transformation Electromagnetics,” IEEE Antennas Wirel. Propag. Lett. 10, 1590–1593 (2011).
[Crossref]

M. Navarro-Cía, M. Beruete, I. Campillo, and M. S. Ayza, “Beamforming by Left-Handed Extraordinary Transmission Metamaterial Bi- and Plano-Concave Lens at Millimeter-Waves,” IEEE Trans. Antenn. Propag. 59(6), 2141–2151 (2011).
[Crossref]

M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
[Crossref]

N. Llombart, G. Chattopadhyay, A. Skalare, and I. Mehdi, “Novel Terahertz Antenna Based on a Silicon Lens Fed by a Leaky Wave Enhanced Waveguide,” IEEE Trans. Antenn. Propag. 59(6), 2160–2168 (2011).
[Crossref]

2010 (1)

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B 81(23), 235111 (2010).
[Crossref]

2009 (2)

V. V. Shevchenko, “The geometric-optics theory of a plane chiral-metamaterial lens,” J. Commun. Technol. Electron. 54(6), 662–666 (2009).
[Crossref]

M. Navarro-Cía, M. Beruete, M. Sorolla, and I. Campillo, “Converging biconcave metallic lens by double-negative extraordinary transmission metamaterial,” Appl. Phys. Lett. 94(14), 144107 (2009).
[Crossref]

2008 (1)

2007 (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

2002 (1)

D. L. Runyon, “Optimum directivity coverage of fan-beam antennas,” IEEE Antennas Propag. Mag. 44(2), 66–70 (2002).
[Crossref]

2000 (1)

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1993 (1)

D. F. Filipovic and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical quartz dielectric lenses,” Int. J. Infrared Millim. Waves 14(10), 1905–1924 (1993).
[Crossref]

1948 (1)

W. E. Kock, “Metallic Delay Lenses,” Bell Syst. Tech. J. 27(1), 58–82 (1948).
[Crossref]

Ayza, M. S.

M. Navarro-Cía, M. Beruete, I. Campillo, and M. S. Ayza, “Beamforming by Left-Handed Extraordinary Transmission Metamaterial Bi- and Plano-Concave Lens at Millimeter-Waves,” IEEE Trans. Antenn. Propag. 59(6), 2141–2151 (2011).
[Crossref]

Beruete, M.

V. Pacheco-Peña, B. Orazbayev, M. Beruete, and M. Navarro-Cía, “Zoned Near-Zero Refractive Index Fishnet Lens Antenna: Steering Millimeter Waves,” J. Appl. Phys. 115(12), 124902 (2014).
[Crossref]

V. Pacheco-Peña, B. Orazbayev, V. Torres, M. Beruete, and M. Navarro-Cía, “Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial,” Appl. Phys. Lett. 103(18), 183507 (2013).
[Crossref]

M. Navarro-Cía, M. Beruete, M. Sorolla, and N. Engheta, “Lensing system and Fourier transformation using epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165130 (2012).
[Crossref]

M. Navarro-Cía, M. Beruete, I. Campillo, and M. S. Ayza, “Beamforming by Left-Handed Extraordinary Transmission Metamaterial Bi- and Plano-Concave Lens at Millimeter-Waves,” IEEE Trans. Antenn. Propag. 59(6), 2141–2151 (2011).
[Crossref]

M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
[Crossref]

M. Navarro-Cía, M. Beruete, M. Sorolla, and I. Campillo, “Converging biconcave metallic lens by double-negative extraordinary transmission metamaterial,” Appl. Phys. Lett. 94(14), 144107 (2009).
[Crossref]

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Planoconcave lens by negative refraction of stacked subwavelength hole arrays,” Opt. Express 16(13), 9677–9683 (2008).
[PubMed]

Campillo, I.

M. Navarro-Cía, M. Beruete, I. Campillo, and M. S. Ayza, “Beamforming by Left-Handed Extraordinary Transmission Metamaterial Bi- and Plano-Concave Lens at Millimeter-Waves,” IEEE Trans. Antenn. Propag. 59(6), 2141–2151 (2011).
[Crossref]

M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
[Crossref]

M. Navarro-Cía, M. Beruete, M. Sorolla, and I. Campillo, “Converging biconcave metallic lens by double-negative extraordinary transmission metamaterial,” Appl. Phys. Lett. 94(14), 144107 (2009).
[Crossref]

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Planoconcave lens by negative refraction of stacked subwavelength hole arrays,” Opt. Express 16(13), 9677–9683 (2008).
[PubMed]

Chattopadhyay, G.

N. Llombart, G. Chattopadhyay, A. Skalare, and I. Mehdi, “Novel Terahertz Antenna Based on a Silicon Lens Fed by a Leaky Wave Enhanced Waveguide,” IEEE Trans. Antenn. Propag. 59(6), 2160–2168 (2011).
[Crossref]

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Demetriadou, A.

A. Demetriadou and Y. Hao, “A Grounded Slim Luneburg Lens Antenna Based on Transformation Electromagnetics,” IEEE Antennas Wirel. Propag. Lett. 10, 1590–1593 (2011).
[Crossref]

Economou, E. N.

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B 81(23), 235111 (2010).
[Crossref]

Engheta, N.

M. Navarro-Cía, M. Beruete, M. Sorolla, and N. Engheta, “Lensing system and Fourier transformation using epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165130 (2012).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Filipovic, D. F.

D. F. Filipovic and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical quartz dielectric lenses,” Int. J. Infrared Millim. Waves 14(10), 1905–1924 (1993).
[Crossref]

Goldsmith, P. F.

P. F. Goldsmith, “Zone plate lens antennas for millimeter and submillimeter wavelengths,” in The Third International Symposium on Space Terahertz Technology: Symposium Proceedings (1992), pp. 345–361.

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Hao, Y.

A. Demetriadou and Y. Hao, “A Grounded Slim Luneburg Lens Antenna Based on Transformation Electromagnetics,” IEEE Antennas Wirel. Propag. Lett. 10, 1590–1593 (2011).
[Crossref]

Kafesaki, M.

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B 81(23), 235111 (2010).
[Crossref]

Kock, W. E.

W. E. Kock, “Metallic Delay Lenses,” Bell Syst. Tech. J. 27(1), 58–82 (1948).
[Crossref]

W. E. Kock, “Metal-Lens Antennas,” Proc. IRE34, 828–836 (1946).

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Koschny, T.

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B 81(23), 235111 (2010).
[Crossref]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Llombart, N.

N. Llombart, G. Chattopadhyay, A. Skalare, and I. Mehdi, “Novel Terahertz Antenna Based on a Silicon Lens Fed by a Leaky Wave Enhanced Waveguide,” IEEE Trans. Antenn. Propag. 59(6), 2160–2168 (2011).
[Crossref]

Mehdi, I.

N. Llombart, G. Chattopadhyay, A. Skalare, and I. Mehdi, “Novel Terahertz Antenna Based on a Silicon Lens Fed by a Leaky Wave Enhanced Waveguide,” IEEE Trans. Antenn. Propag. 59(6), 2160–2168 (2011).
[Crossref]

Navarro-Cía, M.

V. Pacheco-Peña, B. Orazbayev, M. Beruete, and M. Navarro-Cía, “Zoned Near-Zero Refractive Index Fishnet Lens Antenna: Steering Millimeter Waves,” J. Appl. Phys. 115(12), 124902 (2014).
[Crossref]

V. Pacheco-Peña, B. Orazbayev, V. Torres, M. Beruete, and M. Navarro-Cía, “Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial,” Appl. Phys. Lett. 103(18), 183507 (2013).
[Crossref]

M. Navarro-Cía, M. Beruete, M. Sorolla, and N. Engheta, “Lensing system and Fourier transformation using epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165130 (2012).
[Crossref]

M. Navarro-Cía, M. Beruete, I. Campillo, and M. S. Ayza, “Beamforming by Left-Handed Extraordinary Transmission Metamaterial Bi- and Plano-Concave Lens at Millimeter-Waves,” IEEE Trans. Antenn. Propag. 59(6), 2141–2151 (2011).
[Crossref]

M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
[Crossref]

M. Navarro-Cía, M. Beruete, M. Sorolla, and I. Campillo, “Converging biconcave metallic lens by double-negative extraordinary transmission metamaterial,” Appl. Phys. Lett. 94(14), 144107 (2009).
[Crossref]

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Planoconcave lens by negative refraction of stacked subwavelength hole arrays,” Opt. Express 16(13), 9677–9683 (2008).
[PubMed]

Orazbayev, B.

V. Pacheco-Peña, B. Orazbayev, M. Beruete, and M. Navarro-Cía, “Zoned Near-Zero Refractive Index Fishnet Lens Antenna: Steering Millimeter Waves,” J. Appl. Phys. 115(12), 124902 (2014).
[Crossref]

V. Pacheco-Peña, B. Orazbayev, V. Torres, M. Beruete, and M. Navarro-Cía, “Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial,” Appl. Phys. Lett. 103(18), 183507 (2013).
[Crossref]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Pacheco-Peña, V.

V. Pacheco-Peña, B. Orazbayev, M. Beruete, and M. Navarro-Cía, “Zoned Near-Zero Refractive Index Fishnet Lens Antenna: Steering Millimeter Waves,” J. Appl. Phys. 115(12), 124902 (2014).
[Crossref]

V. Pacheco-Peña, B. Orazbayev, V. Torres, M. Beruete, and M. Navarro-Cía, “Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial,” Appl. Phys. Lett. 103(18), 183507 (2013).
[Crossref]

Penciu, R. S.

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B 81(23), 235111 (2010).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Rebeiz, G. M.

D. F. Filipovic and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical quartz dielectric lenses,” Int. J. Infrared Millim. Waves 14(10), 1905–1924 (1993).
[Crossref]

Runyon, D. L.

D. L. Runyon, “Optimum directivity coverage of fan-beam antennas,” IEEE Antennas Propag. Mag. 44(2), 66–70 (2002).
[Crossref]

Shevchenko, V. V.

V. V. Shevchenko, “The geometric-optics theory of a plane chiral-metamaterial lens,” J. Commun. Technol. Electron. 54(6), 662–666 (2009).
[Crossref]

Skalare, A.

N. Llombart, G. Chattopadhyay, A. Skalare, and I. Mehdi, “Novel Terahertz Antenna Based on a Silicon Lens Fed by a Leaky Wave Enhanced Waveguide,” IEEE Trans. Antenn. Propag. 59(6), 2160–2168 (2011).
[Crossref]

Sorolla, M.

M. Navarro-Cía, M. Beruete, M. Sorolla, and N. Engheta, “Lensing system and Fourier transformation using epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165130 (2012).
[Crossref]

M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
[Crossref]

M. Navarro-Cía, M. Beruete, M. Sorolla, and I. Campillo, “Converging biconcave metallic lens by double-negative extraordinary transmission metamaterial,” Appl. Phys. Lett. 94(14), 144107 (2009).
[Crossref]

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, “Planoconcave lens by negative refraction of stacked subwavelength hole arrays,” Opt. Express 16(13), 9677–9683 (2008).
[PubMed]

Soukoulis, C. M.

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B 81(23), 235111 (2010).
[Crossref]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Torres, V.

V. Pacheco-Peña, B. Orazbayev, V. Torres, M. Beruete, and M. Navarro-Cía, “Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial,” Appl. Phys. Lett. 103(18), 183507 (2013).
[Crossref]

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

M. Navarro-Cía, M. Beruete, M. Sorolla, and I. Campillo, “Converging biconcave metallic lens by double-negative extraordinary transmission metamaterial,” Appl. Phys. Lett. 94(14), 144107 (2009).
[Crossref]

V. Pacheco-Peña, B. Orazbayev, V. Torres, M. Beruete, and M. Navarro-Cía, “Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial,” Appl. Phys. Lett. 103(18), 183507 (2013).
[Crossref]

Bell Syst. Tech. J. (1)

W. E. Kock, “Metallic Delay Lenses,” Bell Syst. Tech. J. 27(1), 58–82 (1948).
[Crossref]

IEEE Antennas Propag. Mag. (1)

D. L. Runyon, “Optimum directivity coverage of fan-beam antennas,” IEEE Antennas Propag. Mag. 44(2), 66–70 (2002).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

A. Demetriadou and Y. Hao, “A Grounded Slim Luneburg Lens Antenna Based on Transformation Electromagnetics,” IEEE Antennas Wirel. Propag. Lett. 10, 1590–1593 (2011).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

M. Navarro-Cía, M. Beruete, I. Campillo, and M. S. Ayza, “Beamforming by Left-Handed Extraordinary Transmission Metamaterial Bi- and Plano-Concave Lens at Millimeter-Waves,” IEEE Trans. Antenn. Propag. 59(6), 2141–2151 (2011).
[Crossref]

N. Llombart, G. Chattopadhyay, A. Skalare, and I. Mehdi, “Novel Terahertz Antenna Based on a Silicon Lens Fed by a Leaky Wave Enhanced Waveguide,” IEEE Trans. Antenn. Propag. 59(6), 2160–2168 (2011).
[Crossref]

Int. J. Infrared Millim. Waves (1)

D. F. Filipovic and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical quartz dielectric lenses,” Int. J. Infrared Millim. Waves 14(10), 1905–1924 (1993).
[Crossref]

J. Appl. Phys. (1)

V. Pacheco-Peña, B. Orazbayev, M. Beruete, and M. Navarro-Cía, “Zoned Near-Zero Refractive Index Fishnet Lens Antenna: Steering Millimeter Waves,” J. Appl. Phys. 115(12), 124902 (2014).
[Crossref]

J. Commun. Technol. Electron. (1)

V. V. Shevchenko, “The geometric-optics theory of a plane chiral-metamaterial lens,” J. Commun. Technol. Electron. 54(6), 662–666 (2009).
[Crossref]

Opt. Express (1)

Phys. Rev. B (3)

M. Navarro-Cía, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission,” Phys. Rev. B 83(11), 115112 (2011).
[Crossref]

M. Navarro-Cía, M. Beruete, M. Sorolla, and N. Engheta, “Lensing system and Fourier transformation using epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165130 (2012).
[Crossref]

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B 81(23), 235111 (2010).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Science (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Other (7)

W. E. Kock, “Metal-Lens Antennas,” Proc. IRE34, 828–836 (1946).

J. Brown, “Artificial dielectrics having refractive indices less than unity,” Proc. IEE - Part IV Inst. Monogr. 51 – 62 (1953).
[Crossref]

R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications (John Wiley & Sons, 2008).

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).

P. F. Goldsmith, “Zone plate lens antennas for millimeter and submillimeter wavelengths,” in The Third International Symposium on Space Terahertz Technology: Symposium Proceedings (1992), pp. 345–361.

I. V. Minin and O. V. Minin, Diffractional Optics of Millimetre Waves (CRC Press, 2004).

H. D. Hristov, Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas (Artech House, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Effective refractive index, nz, for a fishnet metamaterial made of 2 (blue dashed-dot curve), 4 (red dashed curve), 5 (green dashed-dot curve), 6 (brown dashed-dot-dot curve) and infinite number of plates (black solid curve). Dimensions of fishnet metamaterial unit cell (Inset); (b) Lens profiles and curves of the successive steps for: nlens1 = −0.78 (dotted blue curve) and for nlens2 = −0.43 (dashed pink curve) along with the values of the thickness limits, t1 and t2 (blue and pink horizontal curves, respectively); (c) color map of RMSE of the zoned lens profile as a function of frequency and focal length. The vertical dotted white lines indicate the frequencies whose associated RMSE are plotted on the on the right-hand side graph: f1 = 54 GHz (dotted blue curve) and f2 = 55.5 GHz (dashed pink curve).
Fig. 2
Fig. 2 Sketch of the experimental setup. Tx and Rx stand for transmitter and receiver, respectively.
Fig. 3
Fig. 3 Power distribution along z axis for the frequency range 52–58 GHz: (a) analytical results, (b) experimental and (c) simulation results.
Fig. 4
Fig. 4 Analytical (a), experimental (b) and simulation results (c) for of the spatial power distribution on the xz-plane for: (top) f1 = 54 GHz and (bottom) f2 = 55.5 GHz. The normalized power distributions along x-axis (at each focal length) and along the optical axis are represented in each panel on the top- and right-side plots, respectively.
Fig. 5
Fig. 5 (a) Numerical results for the enhancement as a function of frequency for the single-mode zoned lens (red curve) and for the broadband zoned lens (blue curve); (b) reflectance for the zoned fishnet metamaterial lens (solid black line) and the Silicon zoned lens (dashed grey line).
Fig. 6
Fig. 6 H-plane (xz-plane) radiation pattern for: (top) f1 = 54 GHz and (bottom) f2 = 55.5 GHz. Dashed and solid lines represent experimental and numerical results, respectively. Purple and blue colors stand for co- and cross-polar data, respectively.

Tables (1)

Tables Icon

Table 1 Results of the zoned lens

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t = λ 0 1 n
( 1 n l e n s 2 ) ( z + m t ) 2 2 ( F L + m t ) ( 1 n l e n s ) ( z + m t ) + x 2 = 0
A x , y = i = 1 37 A i l ( x , y ) e j ( k 0 l ( x , y ) + k 0 n ( f ) d i + φ 0 ) l ( x , y ) = ( x x i ) 2 + ( y y i ) 2

Metrics