Abstract

We report an analytical model describing power and efficiency of a 23 W quasi-continuous-wave diamond Raman laser. The model guides the optimization of the first Stokes output power as a function of resonator and crystal parameters. We show that, in the limit of a weak thermal lens, efficient operation requires strong focussing, low output coupling and low-absorption crystals. Efficient damage-free operation at higher pump powers is predicted to benefit greatly from increased optimum output couplings that act to limit the intracavity Stokes field.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength diversification of high-power external cavity diamond Raman lasers using intracavity harmonic generation

Hadiya Jasbeer, Robert J. Williams, Ondrej Kitzler, Aaron McKay, and Richard P. Mildren
Opt. Express 26(2) 1930-1941 (2018)

High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond

Robert J. Williams, David J. Spence, Oliver Lux, and Richard P. Mildren
Opt. Express 25(2) 749-757 (2017)

Tunable continuous-wave diamond Raman laser

Daniele C. Parrotta, Alan J. Kemp, Martin D. Dawson, and Jennifer E. Hastie
Opt. Express 19(24) 24165-24170 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
    [Crossref] [PubMed]
  2. C. Headley, M. Mermelstein, and J. C. Bouteiller, “Raman fiber laser,” in Raman Amplifiers for Telecommunications 2, M. N. Islam, ed. (Springer, 2004).
    [Crossref]
  3. J. A. Piper and H. M. Pask, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [Crossref]
  4. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett. 23(5), 367–369 (1998).
    [Crossref]
  5. K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, “Performance and design of an off-resonant continuous-wave Raman laser,” J. Opt. Soc. Am. 15(6), 1667–1673 (1998).
    [Crossref]
  6. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett. 29(21), 2524–2526 (2004).
    [Crossref] [PubMed]
  7. O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37(14), 2790–2792 (2012).
    [Crossref] [PubMed]
  8. R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39(14), 4152–4155 (2014).
    [Crossref] [PubMed]
  9. S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
    [Crossref]
  10. D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
    [Crossref]
  11. J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
    [Crossref]
  12. D. J. Spence, “Spatial and spectral effects in continuous-wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1400108 (2015).
    [Crossref]
  13. P. Peterson, A. Gavrielides, and M. P. Sharma, “Modeling of high finesse, doubly resonant cw Raman lasers,” Opt. Commun. 160(1–3), 80–85 (1999).
    [Crossref]
  14. G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quant. Electron. 5(4), 203–206 (1969).
    [Crossref]
  15. A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quant. Electron. 6(2), 55–140 (1979).
    [Crossref]
  16. I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
    [Crossref]
  17. R. P. Mildren and J. R. Rabeau, Optical Engineering of Diamond (Wiley-VCH Verlag GmbH & Co. KGaA, 2013).
    [Crossref]
  18. O. Kitzler, A. McKay, and R. P. Mildren, “High power cw diamond Raman laser: Analysis of efficiency and parasitic loss,” in Conference on Lasers and Electro-Optics 2012, (Optical Society of America, 2012), paper CTh1B.7.
  19. L. J. McKnight, M. D. Dawson, and S. Calvez, “Diamond Raman waveguide lasers: Completely analytical design optimization incorporating scattering losses,” IEEE J. Quant. Electron. 47(8), 1069–1077 (2011).
    [Crossref]
  20. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8(5), 369–374 (2014).
    [Crossref]

2015 (1)

D. J. Spence, “Spatial and spectral effects in continuous-wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1400108 (2015).
[Crossref]

2014 (2)

2012 (1)

2011 (1)

L. J. McKnight, M. D. Dawson, and S. Calvez, “Diamond Raman waveguide lasers: Completely analytical design optimization incorporating scattering losses,” IEEE J. Quant. Electron. 47(8), 1069–1077 (2011).
[Crossref]

2010 (1)

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

2007 (2)

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[Crossref]

J. A. Piper and H. M. Pask, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

2006 (1)

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

2005 (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

2004 (1)

1999 (2)

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

P. Peterson, A. Gavrielides, and M. P. Sharma, “Modeling of high finesse, doubly resonant cw Raman lasers,” Opt. Commun. 160(1–3), 80–85 (1999).
[Crossref]

1998 (2)

J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett. 23(5), 367–369 (1998).
[Crossref]

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, “Performance and design of an off-resonant continuous-wave Raman laser,” J. Opt. Soc. Am. 15(6), 1667–1673 (1998).
[Crossref]

1979 (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quant. Electron. 6(2), 55–140 (1979).
[Crossref]

1969 (1)

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quant. Electron. 5(4), 203–206 (1969).
[Crossref]

Austin, W. L.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

Bouteiller, J. C.

C. Headley, M. Mermelstein, and J. C. Bouteiller, “Raman fiber laser,” in Raman Amplifiers for Telecommunications 2, M. N. Islam, ed. (Springer, 2004).
[Crossref]

Boyd, G. D.

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quant. Electron. 5(4), 203–206 (1969).
[Crossref]

Brasseur, J. K.

J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett. 23(5), 367–369 (1998).
[Crossref]

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, “Performance and design of an off-resonant continuous-wave Raman laser,” J. Opt. Soc. Am. 15(6), 1667–1673 (1998).
[Crossref]

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8(5), 369–374 (2014).
[Crossref]

Calvez, S.

L. J. McKnight, M. D. Dawson, and S. Calvez, “Diamond Raman waveguide lasers: Completely analytical design optimization incorporating scattering losses,” IEEE J. Quant. Electron. 47(8), 1069–1077 (2011).
[Crossref]

Carlsten, J. L.

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, “Performance and design of an off-resonant continuous-wave Raman laser,” J. Opt. Soc. Am. 15(6), 1667–1673 (1998).
[Crossref]

J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett. 23(5), 367–369 (1998).
[Crossref]

Chang, J.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Dawson, M. D.

L. J. McKnight, M. D. Dawson, and S. Calvez, “Diamond Raman waveguide lasers: Completely analytical design optimization incorporating scattering losses,” IEEE J. Quant. Electron. 47(8), 1069–1077 (2011).
[Crossref]

Dekker, P.

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[Crossref]

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8(5), 369–374 (2014).
[Crossref]

Ding, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Fan, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Friel, I.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Gavrielides, A.

P. Peterson, A. Gavrielides, and M. P. Sharma, “Modeling of high finesse, doubly resonant cw Raman lasers,” Opt. Commun. 160(1–3), 80–85 (1999).
[Crossref]

Geoghegan, S. L.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Grabtchikov, A. S.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8(5), 369–374 (2014).
[Crossref]

Headley, C.

C. Headley, M. Mermelstein, and J. C. Bouteiller, “Raman fiber laser,” in Raman Amplifiers for Telecommunications 2, M. N. Islam, ed. (Springer, 2004).
[Crossref]

Johnston, W. D.

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quant. Electron. 5(4), 203–206 (1969).
[Crossref]

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Kaiser, W.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quant. Electron. 6(2), 55–140 (1979).
[Crossref]

Kaminow, I. P.

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quant. Electron. 5(4), 203–206 (1969).
[Crossref]

Kiefer, W.

Kitzler, O.

Laubereau, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quant. Electron. 6(2), 55–140 (1979).
[Crossref]

Li, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Lisinetskii, V. A.

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Liu, Y.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Loncar, M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8(5), 369–374 (2014).
[Crossref]

Maksimenka, R.

McKay, A.

McKnight, L. J.

L. J. McKnight, M. D. Dawson, and S. Calvez, “Diamond Raman waveguide lasers: Completely analytical design optimization incorporating scattering losses,” IEEE J. Quant. Electron. 47(8), 1069–1077 (2011).
[Crossref]

Meng, L.

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, “Performance and design of an off-resonant continuous-wave Raman laser,” J. Opt. Soc. Am. 15(6), 1667–1673 (1998).
[Crossref]

Mermelstein, M.

C. Headley, M. Mermelstein, and J. C. Bouteiller, “Raman fiber laser,” in Raman Amplifiers for Telecommunications 2, M. N. Islam, ed. (Springer, 2004).
[Crossref]

Mildren, R. P.

R. J. Williams, O. Kitzler, A. McKay, and R. P. Mildren, “Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping,” Opt. Lett. 39(14), 4152–4155 (2014).
[Crossref] [PubMed]

O. Kitzler, A. McKay, and R. P. Mildren, “Continuous-wave wavelength conversion for high-power applications using an external cavity diamond Raman laser,” Opt. Lett. 37(14), 2790–2792 (2012).
[Crossref] [PubMed]

O. Kitzler, A. McKay, and R. P. Mildren, “High power cw diamond Raman laser: Analysis of efficiency and parasitic loss,” in Conference on Lasers and Electro-Optics 2012, (Optical Society of America, 2012), paper CTh1B.7.

R. P. Mildren and J. R. Rabeau, Optical Engineering of Diamond (Wiley-VCH Verlag GmbH & Co. KGaA, 2013).
[Crossref]

Murray, J. T.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

Orlovich, V. A.

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Pask, H. M.

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[Crossref]

J. A. Piper and H. M. Pask, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Penzkofer, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quant. Electron. 6(2), 55–140 (1979).
[Crossref]

Peterson, P.

P. Peterson, A. Gavrielides, and M. P. Sharma, “Modeling of high finesse, doubly resonant cw Raman lasers,” Opt. Commun. 160(1–3), 80–85 (1999).
[Crossref]

Piper, J. A.

J. A. Piper and H. M. Pask, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

Powell, R. C.

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

Rabeau, J. R.

R. P. Mildren and J. R. Rabeau, Optical Engineering of Diamond (Wiley-VCH Verlag GmbH & Co. KGaA, 2013).
[Crossref]

Repasky, K. S.

J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, “Continuous-wave Raman laser in H2,” Opt. Lett. 23(5), 367–369 (1998).
[Crossref]

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, “Performance and design of an off-resonant continuous-wave Raman laser,” J. Opt. Soc. Am. 15(6), 1667–1673 (1998).
[Crossref]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Scarsbrook, G. A.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Schmitt, M.

Sharma, M. P.

P. Peterson, A. Gavrielides, and M. P. Sharma, “Modeling of high finesse, doubly resonant cw Raman lasers,” Opt. Commun. 160(1–3), 80–85 (1999).
[Crossref]

Spence, D. J.

D. J. Spence, “Spatial and spectral effects in continuous-wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1400108 (2015).
[Crossref]

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[Crossref]

Su, F.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Twitchen, D. J.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Venkataraman, V.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8(5), 369–374 (2014).
[Crossref]

Wang, Q.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Wang, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Williams, R. J.

Zhang, S.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Zhang, X.

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

Appl. Phys. B (1)

S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, S. Zhang, J. Chang, S. Wang, and Y. Liu, “Theoretical models for the extracavity Raman laser with crystalline Raman medium,” Appl. Phys. B 85(1), 89–95 (2006).
[Crossref]

IEEE J. Quant. Electron. (2)

G. D. Boyd, W. D. Johnston, and I. P. Kaminow, “Optimization of the stimulated Raman scattering threshold,” IEEE J. Quant. Electron. 5(4), 203–206 (1969).
[Crossref]

L. J. McKnight, M. D. Dawson, and S. Calvez, “Diamond Raman waveguide lasers: Completely analytical design optimization incorporating scattering losses,” IEEE J. Quant. Electron. 47(8), 1069–1077 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[Crossref]

D. J. Spence, “Spatial and spectral effects in continuous-wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1400108 (2015).
[Crossref]

J. A. Piper and H. M. Pask, “Crystalline Raman Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

K. S. Repasky, J. K. Brasseur, L. Meng, and J. L. Carlsten, “Performance and design of an off-resonant continuous-wave Raman laser,” J. Opt. Soc. Am. 15(6), 1667–1673 (1998).
[Crossref]

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Nature Photon. (1)

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Loncar, “Diamond nonlinear photonics,” Nature Photon. 8(5), 369–374 (2014).
[Crossref]

Opt. Commun. (1)

P. Peterson, A. Gavrielides, and M. P. Sharma, “Modeling of high finesse, doubly resonant cw Raman lasers,” Opt. Commun. 160(1–3), 80–85 (1999).
[Crossref]

Opt. Lett. (4)

Opt. Mater. (1)

J. T. Murray, W. L. Austin, and R. C. Powell, “Intracavity Raman conversion and Raman beam cleanup,” Opt. Mater. 11(4), 353–371 (1999).
[Crossref]

Proc. SPIE (1)

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE 7838, 783819 (2010).
[Crossref]

Prog. Quant. Electron. (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quant. Electron. 6(2), 55–140 (1979).
[Crossref]

Other (3)

R. P. Mildren and J. R. Rabeau, Optical Engineering of Diamond (Wiley-VCH Verlag GmbH & Co. KGaA, 2013).
[Crossref]

O. Kitzler, A. McKay, and R. P. Mildren, “High power cw diamond Raman laser: Analysis of efficiency and parasitic loss,” in Conference on Lasers and Electro-Optics 2012, (Optical Society of America, 2012), paper CTh1B.7.

C. Headley, M. Mermelstein, and J. C. Bouteiller, “Raman fiber laser,” in Raman Amplifiers for Telecommunications 2, M. N. Islam, ed. (Springer, 2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Normalised Raman laser threshold as a function of pump and Stokes confocal parameters normalised on crystal length. Ideal Gaussian pump and Stokes beams were assumed.
Fig. 2
Fig. 2 Stokes output power, conversion efficiency and residual pump power as a function of threshold pump power for a double pass pump. Powers are normalized to the threshold pump power.
Fig. 3
Fig. 3 Schematics of experimental setup of the q-cw pumped DRL. The residual pump power is rejected from the optical isolator on a calibrated power meter.
Fig. 4
Fig. 4 Stokes output power and residual pump power as a function of pump power for a 10 W and 20 W DRLs compared with the model.
Fig. 5
Fig. 5 Intensity profiles of residual pump, left, and Stokes, right, exiting the diamond imaged on the CCD camera. Black full line - residual at maximum 48 W pump in the absence of Stokes output, Blue dashed line - residual at threshold 18 W, Red dotted line - residual at maximum pump 48 W and maximum Stokes 23 W.
Fig. 6
Fig. 6 Stokes output power as a function of pump waist radius (bottom axis) for pump powers in the range 10 to approximately 160 W for T = 0.5%, L = 8 mm, α = 0.17% cm−1. Top axis shows corresponding pump beam confocal parameter. The two data points show measured output power of the q-cw DRL at 30 W and 48 W pump power. The red curve indicates the waist size required to reach 99% of maximal Stokes output for a given pump.
Fig. 7
Fig. 7 Stokes output power as a function of output coupling for pump powers in the range 10–160 W for wP = 42 μm, L = 8 mm, α = 0.17% cm−1. The red line indicates optimal values of output coupler transmission maximizing Stokes output power. The squares show the measured output power for the q-cw DRL when pumped at 30 W and 48 W.
Fig. 8
Fig. 8 Stokes output power as a function of crystal length for different pump powers in the range 10–160 W for T = 0.5%, wP = 42 μm, α = 0.17% cm−1. The red curve Lopt shows optimal length of the crystal and the squares show output power of the q-cw DRL at PP = 30 W and 48 W.
Fig. 9
Fig. 9 Output conversion efficiency PS/PP as a function of (a) output coupling T and crystal length L, (b) output coupling and pump waist radius wP, and (c) crystal length and pump waist radius wP. The contours show corresponding Stokes output power. The maximum operation point of the 23 W laser is indicated by the black square. Plots are shown for a typical value of α = 0.17% cm−1 and pump power of 48 W.
Fig. 10
Fig. 10 Output conversion efficiency PS/PP as a function of parasitic absorption α and crystal length L (a), output coupling T (b), and pump waist radius wP (c). The contours show corresponding Stokes output power. The maximum operation point of the laser 23 W DRL for 48 W of pump power is indicated by the black square.

Tables (1)

Tables Icon

Table 1 Variables used to model the cw 10 W and q-cw 23 W extra-cavity DRLs.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

d I S ( r , z ) d z = g S I P I S α S I S , d I P ( r , z ) d z = g S η I P I S α P I P ,
I P , S ( r , z ) = P P , S ( z ) 2 π 1 w P , S 2 ( z ) exp [ 2 ( r w P , S ( z ) ) 2 ]
P P , S ( z ) = I P , S ( 0 , z ) π w P , S 2 ( 0 ) 2 ,
w P , S ( z ) = w P , S ( 0 ) 1 + ( 2 z b P , S ) 2 ,
d P P ( z ) d z = 2 π g S η P P ( z ) P S int ( z ) 1 w P 2 ( z ) + w S 2 ( z ) .
P Res = P P exp ( G P S int ) ,
G = 2 g S η arctan ( ξ ) Λ ,
ξ = L b P b S η + b PS η b PS + 1 ,
Λ = 1 2 λ P λ S ( η + 1 / η ) + ( b PS + 1 / b PS )
P S gen = η ( P P P Res ) , = η P P [ 1 exp ( G P S int ) ] .
P S = T 2 P S int ,
P P = T + 2 α L η T P S [ 1 exp ( 2 G T P S ) ] 1 .
P Res = P P exp ( 2 G T P S ) = P P T + 2 α L η T P S .
σ = η T T + 2 α L .
P Thr = T 2 G σ .
ξ = L b Λ = 1 2 ( λ P n P + λ S n S ) .
P Thr = T + 2 α L 2 g S L π w P 2 ( 0 ) .

Metrics