Abstract

An economical method for fabricating spiral phase plate (SPP) with continuous surface is proposed in this paper. We use an interval to quantize a three dimensional surface of an SPP into two dimensional bars to form a binary mask. The exposure dose can be precisely distributed through this mask in the exposure process. We discuss the select criterion of the quantization interval and the fabricating processes of SPP in detail. In the results, we present the fabrication of four kinds of high quality SPPs with different topological charges. The morphology analysis and the corresponding optical measurements verify the reliability of our fabrication method.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and characterization of high-quality spiral phase plates for optical applications

M. Massari, G. Ruffato, M. Gintoli, F. Ricci, and F. Romanato
Appl. Opt. 54(13) 4077-4083 (2015)

Effective formation method for an aspherical microlens array based on an aperiodic moving mask during exposure

Lifang Shi, Chunlei Du, Xiaochun Dong, Qiling Deng, and Xiangang Luo
Appl. Opt. 46(34) 8346-8350 (2007)

Analysis of multilevel spiral phase plates using a Dammann vortex sensing grating

N. Zhang, Jeffrey A. Davis, Ignacio Moreno, Don M. Cottrell, and X.-C. Yuan
Opt. Express 18(25) 25987-25992 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5–6), 321–327 (1994).
    [Crossref]
  2. S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
    [Crossref]
  3. P. A. M. Dirac, “Quantized singularities in the electromagnetic field,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 133(821), 60–72 (1931).
    [Crossref]
  4. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
    [Crossref]
  5. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  6. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
    [Crossref] [PubMed]
  7. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  8. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  9. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref] [PubMed]
  10. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [Crossref] [PubMed]
  11. S. S. R. Oemrawsingh, A. Aiello, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “How to observe high-dimensional two-photon entanglement with only two detectors,” Phys. Rev. Lett. 92(21), 217901 (2004).
    [Crossref] [PubMed]
  12. A. Aiello, S. S. R. Oemrawsingh, E. R. Eliel, and J. P. Woerdman, “Nonlocality of high-dimensional two-photon orbital angular momentum states,” Phys. Rev. A 72(5), 052114 (2005).
    [Crossref]
  13. S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95(24), 240501 (2005).
    [Crossref] [PubMed]
  14. Z. Dutton and J. Ruostekoski, “Transfer and storage of vortex states in light and matter waves,” Phys. Rev. Lett. 93(19), 193602 (2004).
    [Crossref] [PubMed]
  15. K. T. Kapale and J. P. Dowling, “Vortex phase qubit: generating arbitrary, counterrotating, coherent superpositions in Bose-Einstein condensates via optical angular momentum beams,” Phys. Rev. Lett. 95(17), 173601 (2005).
    [Crossref] [PubMed]
  16. S. Thanvanthri, K. T. Kapale, and J. P. Dowling, “Arbitrary coherent superpositions of quantized vortices in Bose–Einstein condensates via orbital angular momentum of light,” Phys. Rev. A 77(5), 053825 (2008).
    [Crossref]
  17. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements,” Opt. Lett. 29(3), 238–240 (2004).
    [Crossref] [PubMed]
  18. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Rotating vectorial vortices produced by space-variant subwavelength gratings,” Opt. Lett. 30(21), 2933–2935 (2005).
    [Crossref] [PubMed]
  19. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings,” Opt. Lett. 28(7), 510–512 (2003).
    [Crossref] [PubMed]
  20. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref] [PubMed]
  21. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
    [Crossref] [PubMed]
  22. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12(15), 3548–3553 (2004).
    [Crossref] [PubMed]
  23. C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
    [Crossref]
  24. P. Schemmel, G. Pisano, and B. Maffei, “Modular spiral phase plate design for orbital angular momentum generation at millimetre wavelengths,” Opt. Express 22(12), 14712–14726 (2014).
    [Crossref] [PubMed]
  25. Y. S. Rumala and A. E. Leanhardt, “Multiple-beam interference in a spiral phase plate,” J. Opt. Soc. Am. B 30(3), 615–621 (2013).
    [Crossref]
  26. Y. S. Rumala, “Interference theory of multiple optical vortex states in spiral phase plate etalon: thick-plate and thin-plate approximation,” J. Opt. Soc. Am. B 31(6), A6–A12 (2014).
    [Crossref]
  27. B. Chen, L. R. Guo, J. Y. Tang, and W. J. Tian, “Refractivemicrolens arrays with parabolic section profile and no deadarea,” Proc. SPIE 2866, 420–423 (1996).
    [Crossref]
  28. B. Chen, L. R. Guo, J. Y. Tang, P. Xu, and M.- Zhou, “Novel method for making parabolic grating,” Proc. SPIE 2687, 142–149 (1996).
    [Crossref]
  29. L. F. Shi, X. C. Dong, Q. L. Deng, X. G. Luo, and C. L. Du, “Formation for Bass-relief Micro-profiles Based on an Analytic Formulation,” Chin. Phys. Lett. 24(10), 2867–2869 (2007).
    [Crossref]
  30. L. Shi, C. Du, X. Dong, Q. Deng, and X. Luo, “Effective formation method for an aspherical microlens array based on an aperiodic moving mask during exposure,” Appl. Opt. 46(34), 8346–8350 (2007).
    [Crossref] [PubMed]
  31. C. L. Du, X. C. Dong, C. K. Qiu, Q. L. Deng, and C. X. Zhou, “Profile control technology for high performance microlens array,” Opt. Eng. 43(11), 2595–2602 (2004).
    [Crossref]

2014 (2)

2013 (1)

2012 (1)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

2011 (2)

2008 (1)

S. Thanvanthri, K. T. Kapale, and J. P. Dowling, “Arbitrary coherent superpositions of quantized vortices in Bose–Einstein condensates via orbital angular momentum of light,” Phys. Rev. A 77(5), 053825 (2008).
[Crossref]

2007 (2)

L. F. Shi, X. C. Dong, Q. L. Deng, X. G. Luo, and C. L. Du, “Formation for Bass-relief Micro-profiles Based on an Analytic Formulation,” Chin. Phys. Lett. 24(10), 2867–2869 (2007).
[Crossref]

L. Shi, C. Du, X. Dong, Q. Deng, and X. Luo, “Effective formation method for an aspherical microlens array based on an aperiodic moving mask during exposure,” Appl. Opt. 46(34), 8346–8350 (2007).
[Crossref] [PubMed]

2006 (2)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
[Crossref]

2005 (4)

A. Aiello, S. S. R. Oemrawsingh, E. R. Eliel, and J. P. Woerdman, “Nonlocality of high-dimensional two-photon orbital angular momentum states,” Phys. Rev. A 72(5), 052114 (2005).
[Crossref]

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95(24), 240501 (2005).
[Crossref] [PubMed]

K. T. Kapale and J. P. Dowling, “Vortex phase qubit: generating arbitrary, counterrotating, coherent superpositions in Bose-Einstein condensates via optical angular momentum beams,” Phys. Rev. Lett. 95(17), 173601 (2005).
[Crossref] [PubMed]

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Rotating vectorial vortices produced by space-variant subwavelength gratings,” Opt. Lett. 30(21), 2933–2935 (2005).
[Crossref] [PubMed]

2004 (6)

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements,” Opt. Lett. 29(3), 238–240 (2004).
[Crossref] [PubMed]

K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12(15), 3548–3553 (2004).
[Crossref] [PubMed]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[Crossref] [PubMed]

Z. Dutton and J. Ruostekoski, “Transfer and storage of vortex states in light and matter waves,” Phys. Rev. Lett. 93(19), 193602 (2004).
[Crossref] [PubMed]

C. L. Du, X. C. Dong, C. K. Qiu, Q. L. Deng, and C. X. Zhou, “Profile control technology for high performance microlens array,” Opt. Eng. 43(11), 2595–2602 (2004).
[Crossref]

S. S. R. Oemrawsingh, A. Aiello, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “How to observe high-dimensional two-photon entanglement with only two detectors,” Phys. Rev. Lett. 92(21), 217901 (2004).
[Crossref] [PubMed]

2003 (3)

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Formation of linearly polarized light with axial symmetry by use of space-variant subwavelength gratings,” Opt. Lett. 28(7), 510–512 (2003).
[Crossref] [PubMed]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

1996 (2)

B. Chen, L. R. Guo, J. Y. Tang, and W. J. Tian, “Refractivemicrolens arrays with parabolic section profile and no deadarea,” Proc. SPIE 2866, 420–423 (1996).
[Crossref]

B. Chen, L. R. Guo, J. Y. Tang, P. Xu, and M.- Zhou, “Novel method for making parabolic grating,” Proc. SPIE 2687, 142–149 (1996).
[Crossref]

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5–6), 321–327 (1994).
[Crossref]

1992 (1)

S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

1974 (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
[Crossref]

1931 (1)

P. A. M. Dirac, “Quantized singularities in the electromagnetic field,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 133(821), 60–72 (1931).
[Crossref]

’t Hooft, G. W.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95(24), 240501 (2005).
[Crossref] [PubMed]

Ahmed, N.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Aiello, A.

A. Aiello, S. S. R. Oemrawsingh, E. R. Eliel, and J. P. Woerdman, “Nonlocality of high-dimensional two-photon orbital angular momentum states,” Phys. Rev. A 72(5), 052114 (2005).
[Crossref]

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95(24), 240501 (2005).
[Crossref] [PubMed]

S. S. R. Oemrawsingh, A. Aiello, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “How to observe high-dimensional two-photon entanglement with only two detectors,” Phys. Rev. Lett. 92(21), 217901 (2004).
[Crossref] [PubMed]

Barnett, S.

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5–6), 321–327 (1994).
[Crossref]

Berry, M. V.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
[Crossref]

Biener, G.

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Chen, B.

B. Chen, L. R. Guo, J. Y. Tang, and W. J. Tian, “Refractivemicrolens arrays with parabolic section profile and no deadarea,” Proc. SPIE 2866, 420–423 (1996).
[Crossref]

B. Chen, L. R. Guo, J. Y. Tang, P. Xu, and M.- Zhou, “Novel method for making parabolic grating,” Proc. SPIE 2687, 142–149 (1996).
[Crossref]

Chigrinov, V.

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5–6), 321–327 (1994).
[Crossref]

Courtial, J.

Curtis, J. E.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

Deng, Q.

Deng, Q. L.

L. F. Shi, X. C. Dong, Q. L. Deng, X. G. Luo, and C. L. Du, “Formation for Bass-relief Micro-profiles Based on an Analytic Formulation,” Chin. Phys. Lett. 24(10), 2867–2869 (2007).
[Crossref]

C. L. Du, X. C. Dong, C. K. Qiu, Q. L. Deng, and C. X. Zhou, “Profile control technology for high performance microlens array,” Opt. Eng. 43(11), 2595–2602 (2004).
[Crossref]

Ding, J.

C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
[Crossref]

Dirac, P. A. M.

P. A. M. Dirac, “Quantized singularities in the electromagnetic field,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 133(821), 60–72 (1931).
[Crossref]

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dong, X.

Dong, X. C.

L. F. Shi, X. C. Dong, Q. L. Deng, X. G. Luo, and C. L. Du, “Formation for Bass-relief Micro-profiles Based on an Analytic Formulation,” Chin. Phys. Lett. 24(10), 2867–2869 (2007).
[Crossref]

C. L. Du, X. C. Dong, C. K. Qiu, Q. L. Deng, and C. X. Zhou, “Profile control technology for high performance microlens array,” Opt. Eng. 43(11), 2595–2602 (2004).
[Crossref]

Dowling, J. P.

S. Thanvanthri, K. T. Kapale, and J. P. Dowling, “Arbitrary coherent superpositions of quantized vortices in Bose–Einstein condensates via orbital angular momentum of light,” Phys. Rev. A 77(5), 053825 (2008).
[Crossref]

K. T. Kapale and J. P. Dowling, “Vortex phase qubit: generating arbitrary, counterrotating, coherent superpositions in Bose-Einstein condensates via optical angular momentum beams,” Phys. Rev. Lett. 95(17), 173601 (2005).
[Crossref] [PubMed]

Du, C.

Du, C. L.

L. F. Shi, X. C. Dong, Q. L. Deng, X. G. Luo, and C. L. Du, “Formation for Bass-relief Micro-profiles Based on an Analytic Formulation,” Chin. Phys. Lett. 24(10), 2867–2869 (2007).
[Crossref]

C. L. Du, X. C. Dong, C. K. Qiu, Q. L. Deng, and C. X. Zhou, “Profile control technology for high performance microlens array,” Opt. Eng. 43(11), 2595–2602 (2004).
[Crossref]

Du, T.

Dutton, Z.

Z. Dutton and J. Ruostekoski, “Transfer and storage of vortex states in light and matter waves,” Phys. Rev. Lett. 93(19), 193602 (2004).
[Crossref] [PubMed]

Eliel, E. R.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95(24), 240501 (2005).
[Crossref] [PubMed]

A. Aiello, S. S. R. Oemrawsingh, E. R. Eliel, and J. P. Woerdman, “Nonlocality of high-dimensional two-photon orbital angular momentum states,” Phys. Rev. A 72(5), 052114 (2005).
[Crossref]

S. S. R. Oemrawsingh, A. Aiello, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “How to observe high-dimensional two-photon entanglement with only two detectors,” Phys. Rev. Lett. 92(21), 217901 (2004).
[Crossref] [PubMed]

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Franke-Arnold, S.

Gibson, G.

Grier, D. G.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Guo, C.-S.

C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
[Crossref]

Guo, L. R.

B. Chen, L. R. Guo, J. Y. Tang, and W. J. Tian, “Refractivemicrolens arrays with parabolic section profile and no deadarea,” Proc. SPIE 2866, 420–423 (1996).
[Crossref]

B. Chen, L. R. Guo, J. Y. Tang, P. Xu, and M.- Zhou, “Novel method for making parabolic grating,” Proc. SPIE 2687, 142–149 (1996).
[Crossref]

Han, Y.-J.

C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
[Crossref]

Hasman, E.

Huang, H.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Kapale, K. T.

S. Thanvanthri, K. T. Kapale, and J. P. Dowling, “Arbitrary coherent superpositions of quantized vortices in Bose–Einstein condensates via orbital angular momentum of light,” Phys. Rev. A 77(5), 053825 (2008).
[Crossref]

K. T. Kapale and J. P. Dowling, “Vortex phase qubit: generating arbitrary, counterrotating, coherent superpositions in Bose-Einstein condensates via optical angular momentum beams,” Phys. Rev. Lett. 95(17), 173601 (2005).
[Crossref] [PubMed]

Khonina, S. N.

S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

Kleiner, V.

Kotlyar, V. V.

S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5–6), 321–327 (1994).
[Crossref]

Leanhardt, A. E.

Luo, X.

Luo, X. G.

L. F. Shi, X. C. Dong, Q. L. Deng, X. G. Luo, and C. L. Du, “Formation for Bass-relief Micro-profiles Based on an Analytic Formulation,” Chin. Phys. Lett. 24(10), 2867–2869 (2007).
[Crossref]

Ma, X.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95(24), 240501 (2005).
[Crossref] [PubMed]

Maffei, B.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Marrucci, L.

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19(5), 4085–4090 (2011).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Miyaji, G.

Miyanaga, N.

Murauski, A.

Nakatsuka, M.

Nienhuis, G.

S. S. R. Oemrawsingh, A. Aiello, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “How to observe high-dimensional two-photon entanglement with only two detectors,” Phys. Rev. Lett. 92(21), 217901 (2004).
[Crossref] [PubMed]

Niv, A.

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
[Crossref]

Oemrawsingh, S. S. R.

A. Aiello, S. S. R. Oemrawsingh, E. R. Eliel, and J. P. Woerdman, “Nonlocality of high-dimensional two-photon orbital angular momentum states,” Phys. Rev. A 72(5), 052114 (2005).
[Crossref]

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95(24), 240501 (2005).
[Crossref] [PubMed]

S. S. R. Oemrawsingh, A. Aiello, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “How to observe high-dimensional two-photon entanglement with only two detectors,” Phys. Rev. Lett. 92(21), 217901 (2004).
[Crossref] [PubMed]

Padgett, M.

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Pas’ko, V.

Pisano, G.

Qiu, C. K.

C. L. Du, X. C. Dong, C. K. Qiu, Q. L. Deng, and C. X. Zhou, “Profile control technology for high performance microlens array,” Opt. Eng. 43(11), 2595–2602 (2004).
[Crossref]

Ren, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Rumala, Y. S.

Ruostekoski, J.

Z. Dutton and J. Ruostekoski, “Transfer and storage of vortex states in light and matter waves,” Phys. Rev. Lett. 93(19), 193602 (2004).
[Crossref] [PubMed]

Santamato, E.

Schemmel, P.

Shi, L.

Shi, L. F.

L. F. Shi, X. C. Dong, Q. L. Deng, X. G. Luo, and C. L. Du, “Formation for Bass-relief Micro-profiles Based on an Analytic Formulation,” Chin. Phys. Lett. 24(10), 2867–2869 (2007).
[Crossref]

Shinkaryev, M. V.

S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

Slussarenko, S.

Soifer, V. A.

S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

Sueda, K.

Tang, J. Y.

B. Chen, L. R. Guo, J. Y. Tang, P. Xu, and M.- Zhou, “Novel method for making parabolic grating,” Proc. SPIE 2687, 142–149 (1996).
[Crossref]

B. Chen, L. R. Guo, J. Y. Tang, and W. J. Tian, “Refractivemicrolens arrays with parabolic section profile and no deadarea,” Proc. SPIE 2866, 420–423 (1996).
[Crossref]

Thanvanthri, S.

S. Thanvanthri, K. T. Kapale, and J. P. Dowling, “Arbitrary coherent superpositions of quantized vortices in Bose–Einstein condensates via orbital angular momentum of light,” Phys. Rev. A 77(5), 053825 (2008).
[Crossref]

Tian, W. J.

B. Chen, L. R. Guo, J. Y. Tang, and W. J. Tian, “Refractivemicrolens arrays with parabolic section profile and no deadarea,” Proc. SPIE 2866, 420–423 (1996).
[Crossref]

Tur, M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Uspleniev, G. V.

S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

Vasnetsov, M.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Voigt, D.

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95(24), 240501 (2005).
[Crossref] [PubMed]

Wang, J.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Willner, A. E.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J. P.

A. Aiello, S. S. R. Oemrawsingh, E. R. Eliel, and J. P. Woerdman, “Nonlocality of high-dimensional two-photon orbital angular momentum states,” Phys. Rev. A 72(5), 052114 (2005).
[Crossref]

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95(24), 240501 (2005).
[Crossref] [PubMed]

S. S. R. Oemrawsingh, A. Aiello, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “How to observe high-dimensional two-photon entanglement with only two detectors,” Phys. Rev. Lett. 92(21), 217901 (2004).
[Crossref] [PubMed]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5–6), 321–327 (1994).
[Crossref]

Xu, P.

B. Chen, L. R. Guo, J. Y. Tang, P. Xu, and M.- Zhou, “Novel method for making parabolic grating,” Proc. SPIE 2687, 142–149 (1996).
[Crossref]

Xue, D.-M.

C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
[Crossref]

Yan, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yue, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Zhou, C. X.

C. L. Du, X. C. Dong, C. K. Qiu, Q. L. Deng, and C. X. Zhou, “Profile control technology for high performance microlens array,” Opt. Eng. 43(11), 2595–2602 (2004).
[Crossref]

Zhou, M.-

B. Chen, L. R. Guo, J. Y. Tang, P. Xu, and M.- Zhou, “Novel method for making parabolic grating,” Proc. SPIE 2687, 142–149 (1996).
[Crossref]

Appl. Opt. (1)

Chin. Phys. Lett. (1)

L. F. Shi, X. C. Dong, Q. L. Deng, X. G. Luo, and C. L. Du, “Formation for Bass-relief Micro-profiles Based on an Analytic Formulation,” Chin. Phys. Lett. 24(10), 2867–2869 (2007).
[Crossref]

J. Mod. Opt. (1)

S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, “The phase rotor filter,” J. Mod. Opt. 39(5), 1147–1154 (1992).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (2)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Opt. Commun. (2)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5–6), 321–327 (1994).
[Crossref]

C.-S. Guo, D.-M. Xue, Y.-J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268(2), 235–239 (2006).
[Crossref]

Opt. Eng. (1)

C. L. Du, X. C. Dong, C. K. Qiu, Q. L. Deng, and C. X. Zhou, “Profile control technology for high performance microlens array,” Opt. Eng. 43(11), 2595–2602 (2004).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (2)

S. Thanvanthri, K. T. Kapale, and J. P. Dowling, “Arbitrary coherent superpositions of quantized vortices in Bose–Einstein condensates via orbital angular momentum of light,” Phys. Rev. A 77(5), 053825 (2008).
[Crossref]

A. Aiello, S. S. R. Oemrawsingh, E. R. Eliel, and J. P. Woerdman, “Nonlocality of high-dimensional two-photon orbital angular momentum states,” Phys. Rev. A 72(5), 052114 (2005).
[Crossref]

Phys. Rev. Lett. (6)

S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95(24), 240501 (2005).
[Crossref] [PubMed]

Z. Dutton and J. Ruostekoski, “Transfer and storage of vortex states in light and matter waves,” Phys. Rev. Lett. 93(19), 193602 (2004).
[Crossref] [PubMed]

K. T. Kapale and J. P. Dowling, “Vortex phase qubit: generating arbitrary, counterrotating, coherent superpositions in Bose-Einstein condensates via optical angular momentum beams,” Phys. Rev. Lett. 95(17), 173601 (2005).
[Crossref] [PubMed]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[Crossref] [PubMed]

S. S. R. Oemrawsingh, A. Aiello, E. R. Eliel, G. Nienhuis, and J. P. Woerdman, “How to observe high-dimensional two-photon entanglement with only two detectors,” Phys. Rev. Lett. 92(21), 217901 (2004).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
[Crossref]

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

P. A. M. Dirac, “Quantized singularities in the electromagnetic field,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 133(821), 60–72 (1931).
[Crossref]

Proc. SPIE (2)

B. Chen, L. R. Guo, J. Y. Tang, and W. J. Tian, “Refractivemicrolens arrays with parabolic section profile and no deadarea,” Proc. SPIE 2866, 420–423 (1996).
[Crossref]

B. Chen, L. R. Guo, J. Y. Tang, P. Xu, and M.- Zhou, “Novel method for making parabolic grating,” Proc. SPIE 2687, 142–149 (1996).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 the mask design and the fabrication process: (a) 3D schematic view of SPP; (b) the view after quanlizing with an interval d; (c) the transverse section of the micro-slices and the sub-masks after projection; (d) the mask figure of the whole SPP; (e) the fabrication of the exposure process; (f) the relationship among the mask, exposure dose distribution and the fabricated 3D relief.
Fig. 2
Fig. 2 the explanation of effect of the interval to the roughness in the horizontal direction: (a) the 3D relief shaped with a smaller interval d; (b) the transverse section in the position shown by dashed line in (a); (c) the 3D relief shaped with a larger interval d; (d) the transverse section in the position shown by dashed line in (b);
Fig. 3
Fig. 3 the explanation of the effect of the interval to the roughness in the vertical direction:(a) the sub-mask obtained with a larger interval d ;(b) the sub-mask obtained with a smaller interval d .
Fig. 4
Fig. 4 masks with different topological charges: (a) l = 1; (b) l = 3; (c) l = 10; (d) l = 20; (e) zoomed in figure of the mask.
Fig. 5
Fig. 5 pictures of SPP with different topological charges: (a) l = 1; (b) l = 3; (c) l = 10; (d) l = 20;
Fig. 6
Fig. 6 3D profiles and step heights of SPPs with different topological charges: (a) l = 1; (b) l = 3; (c) l = 10; (d) l = 20.
Fig. 7
Fig. 7 Roughness of the SPP element tested by step profile.
Fig. 8
Fig. 8 Optical vortex obtained by SPPs with different topological charges: (a) l = 1; (b) l = 3; (c) l = 10; (d) l = 20.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q i (x,y)= I 0 υ M i (x,y)rect( yd/2 d ).

Metrics