Abstract

Efficient and controllable launching function of an optical tweezers is a challenging task. We present and demonstrate a novel single fiber optical tweezers which can trap and launch (clean) a target polystyrene (PS) microsphere (diameter~10μm) with independent control by using two wavelengths beams: 980nm and 1480nm. We employ 980nm laser beam to trap the target PS microsphere by molding the fiber tip into a special tapered-shape; and we employ 1480nm laser beam to launch the trapped PS microsphere with a certain velocity by using the thermophoresis force generated from the thermal effect due to the high absorption of the 1480nm laser beams in water. When the launching force is smaller than the trapping force, the PS microsphere will be trapped near the fiber tip, and the launching force will blow away other PS microspheres in the workspace realizing the cleaning function; When the launching force is larger than the trapping force, the trapped PS microsphere will be launched away from the fiber tip with a certain velocity and towards a certain direction, realizing the launching function. The launching velocity, acceleration and the distance can be measured by detecting the interference signals generated from the PS microsphere surface and the fiber tip end-face. This PS microsphere launching and cleaning functions expanded new features of single fiber optical tweezers, providing for the possibility of more practical applications in the micro manipulation research fields.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application

Zhihai Liu, Chengkai Guo, Jun Yang, and Libo Yuan
Opt. Express 14(25) 12510-12516 (2006)

Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes

Jianbin Huang, Xiaoshuai Liu, Yao Zhang, and Baojun Li
Photon. Res. 3(6) 308-312 (2015)

Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe

Zhaohui Hu, Jia Wang, and Jinwen Liang
Opt. Express 12(17) 4123-4128 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  3. M. Wojdyla, S. Raj, and D. Petrov, “Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps,” J. Biomed. Opt. 17(9), 0970061 (2012).
    [Crossref] [PubMed]
  4. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18(21), 1867–1869 (1993).
    [Crossref] [PubMed]
  5. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
    [Crossref] [PubMed]
  6. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
    [Crossref] [PubMed]
  7. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 039041 (2008).
    [Crossref]
  8. K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151131 (2008).
    [Crossref]
  9. P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141011 (2009).
    [Crossref]
  10. R. Taylor and C. Hnatovsky, “Particle trapping in 3-D using a single fiber probe with an annular light distribution,” Opt. Express 11(21), 2775–2782 (2003).
    [Crossref] [PubMed]
  11. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 12510–12516 (2006).
    [Crossref] [PubMed]
  12. L. Yuan, Z. Liu, and J. Yang, “Measurement approach of Brownian motion force by an abrupt tapered fiber optic tweezers,” Appl. Phys. Lett. 91(5), 054101 (2007).
    [Crossref]
  13. C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
    [Crossref]
  14. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
    [Crossref] [PubMed]
  15. K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, “Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers,” Appl. Phys. Lett. 91(9), 091119 (2007).
    [Crossref]
  16. L. Yuan, Z. Liu, J. Yang, and C. Guan, “Twin-core fiber optical tweezers,” Opt. Express 16(7), 4559–4566 (2008).
    [Crossref] [PubMed]
  17. Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Four-core optical fiber micro-hand,” J. Lightwave Technol. 30(10), 1487–1491 (2012).
    [Crossref]
  18. A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz, “Cell Migration: Integrating Signals from Front to Back,” Science 302(5651), 1704–1709 (2003).
    [Crossref] [PubMed]
  19. K. Hu, L. Ji, K. T. Applegate, G. Danuser, and C. M. Waterman-Storer, “Differential Transmission of Actin Motion Within Focal Adhesions,” Science 315(5808), 111–115 (2007).
    [Crossref] [PubMed]
  20. H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of Colloids by a Nonequilibrium Depletion Force in a Temperature Gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
    [Crossref] [PubMed]
  21. Z. H. Liu, P. B. Liang, Y. Zhang, J. J. Lei, Y. X. Zhang, J. Yang, and L. B. Yuan, “A micro-particle launching apparatus based on mode-division-multiplexing technology,” Opt. Commun. 342, 30–35 (2015).
    [Crossref]
  22. S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
    [Crossref] [PubMed]
  23. K. F. Palmer and D. Williams, “Optical properties of water in near infrared,” J. Opt. Soc. Am. 64(8), 1107–1110 (1974).
    [Crossref]
  24. H. Xin, X. Li, and B. Li, “Massive photothermal trapping and migration of particles by a tapered optical fiber,” Opt. Express 19(18), 17065–17074 (2011).
    [Crossref] [PubMed]
  25. Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
    [Crossref]
  26. P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61(1-4), 165–170 (1995).
    [Crossref]
  27. M. Braibanti, D. Vigolo, and R. Piazza, “Does Thermophoretic Mobility Depend on Particle Size?” Phys. Rev. Lett. 100(10), 108303 (2008).
    [Crossref] [PubMed]
  28. Y. Zhang, P. Liang, Z. Liu, J. Lei, J. Yang, and L. Yuan, “A Novel Temperature Sensor Based on Optical Trapping Technology,” J. Lightwave Technol. 32(7), 1394–1398 (2014).
    [Crossref]

2015 (1)

Z. H. Liu, P. B. Liang, Y. Zhang, J. J. Lei, Y. X. Zhang, J. Yang, and L. B. Yuan, “A micro-particle launching apparatus based on mode-division-multiplexing technology,” Opt. Commun. 342, 30–35 (2015).
[Crossref]

2014 (1)

2012 (2)

Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Four-core optical fiber micro-hand,” J. Lightwave Technol. 30(10), 1487–1491 (2012).
[Crossref]

M. Wojdyla, S. Raj, and D. Petrov, “Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps,” J. Biomed. Opt. 17(9), 0970061 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (2)

H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of Colloids by a Nonequilibrium Depletion Force in a Temperature Gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
[Crossref] [PubMed]

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141011 (2009).
[Crossref]

2008 (5)

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

L. Yuan, Z. Liu, J. Yang, and C. Guan, “Twin-core fiber optical tweezers,” Opt. Express 16(7), 4559–4566 (2008).
[Crossref] [PubMed]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 039041 (2008).
[Crossref]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151131 (2008).
[Crossref]

M. Braibanti, D. Vigolo, and R. Piazza, “Does Thermophoretic Mobility Depend on Particle Size?” Phys. Rev. Lett. 100(10), 108303 (2008).
[Crossref] [PubMed]

2007 (4)

K. Hu, L. Ji, K. T. Applegate, G. Danuser, and C. M. Waterman-Storer, “Differential Transmission of Actin Motion Within Focal Adhesions,” Science 315(5808), 111–115 (2007).
[Crossref] [PubMed]

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, “Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers,” Appl. Phys. Lett. 91(9), 091119 (2007).
[Crossref]

L. Yuan, Z. Liu, and J. Yang, “Measurement approach of Brownian motion force by an abrupt tapered fiber optic tweezers,” Appl. Phys. Lett. 91(5), 054101 (2007).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

2006 (2)

2005 (1)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

2003 (2)

R. Taylor and C. Hnatovsky, “Particle trapping in 3-D using a single fiber probe with an annular light distribution,” Opt. Express 11(21), 2775–2782 (2003).
[Crossref] [PubMed]

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz, “Cell Migration: Integrating Signals from Front to Back,” Science 302(5651), 1704–1709 (2003).
[Crossref] [PubMed]

2000 (1)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

1998 (1)

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

1995 (1)

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61(1-4), 165–170 (1995).
[Crossref]

1993 (1)

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

1986 (1)

1974 (1)

Abedin, K. S.

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, “Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers,” Appl. Phys. Lett. 91(9), 091119 (2007).
[Crossref]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Angelis, F. D.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Applegate, K. T.

K. Hu, L. Ji, K. T. Applegate, G. Danuser, and C. M. Waterman-Storer, “Differential Transmission of Actin Motion Within Focal Adhesions,” Science 315(5808), 111–115 (2007).
[Crossref] [PubMed]

Applegate, R. W.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 039041 (2008).
[Crossref]

Ashkin, A.

Berns, M. W.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Bjorkholm, J. E.

Borisy, G.

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz, “Cell Migration: Integrating Signals from Front to Back,” Science 302(5651), 1704–1709 (2003).
[Crossref] [PubMed]

Bragheri, F.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Braibanti, M.

M. Braibanti, D. Vigolo, and R. Piazza, “Does Thermophoretic Mobility Depend on Particle Size?” Phys. Rev. Lett. 100(10), 108303 (2008).
[Crossref] [PubMed]

Braun, D.

S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
[Crossref] [PubMed]

Burridge, K.

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz, “Cell Migration: Integrating Signals from Front to Back,” Science 302(5651), 1704–1709 (2003).
[Crossref] [PubMed]

Chu, S.

Chuang, Y. H.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Constable, A.

Cristiani, I.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Cronin-Golomb, M.

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141011 (2009).
[Crossref]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Danuser, G.

K. Hu, L. Ji, K. T. Applegate, G. Danuser, and C. M. Waterman-Storer, “Differential Transmission of Actin Motion Within Focal Adhesions,” Science 315(5808), 111–115 (2007).
[Crossref] [PubMed]

Degiorgio, V.

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151131 (2008).
[Crossref]

Domachuk, P.

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141011 (2009).
[Crossref]

Duhr, S.

S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
[Crossref] [PubMed]

Dutoit, B.

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61(1-4), 165–170 (1995).
[Crossref]

Dziedzic, J. M.

Ebert, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Fabrizio, E. D.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Fernandez-Nieves, A.

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, “Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers,” Appl. Phys. Lett. 91(9), 091119 (2007).
[Crossref]

Firtel, R. A.

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz, “Cell Migration: Integrating Signals from Front to Back,” Science 302(5651), 1704–1709 (2003).
[Crossref] [PubMed]

Ginsberg, M. H.

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz, “Cell Migration: Integrating Signals from Front to Back,” Science 302(5651), 1704–1709 (2003).
[Crossref] [PubMed]

Guan, C.

Guck, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Guo, C.

Hnatovsky, C.

Hoffmann, P.

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61(1-4), 165–170 (1995).
[Crossref]

Horwitz, A. R.

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz, “Cell Migration: Integrating Signals from Front to Back,” Science 302(5651), 1704–1709 (2003).
[Crossref] [PubMed]

Hu, K.

K. Hu, L. Ji, K. T. Applegate, G. Danuser, and C. M. Waterman-Storer, “Differential Transmission of Actin Motion Within Focal Adhesions,” Science 315(5808), 111–115 (2007).
[Crossref] [PubMed]

Huang, J. Y.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Ji, L.

K. Hu, L. Ji, K. T. Applegate, G. Danuser, and C. M. Waterman-Storer, “Differential Transmission of Actin Motion Within Focal Adhesions,” Science 315(5808), 111–115 (2007).
[Crossref] [PubMed]

Jiang, H. R.

H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of Colloids by a Nonequilibrium Depletion Force in a Temperature Gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
[Crossref] [PubMed]

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Kerbage, C.

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, “Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers,” Appl. Phys. Lett. 91(9), 091119 (2007).
[Crossref]

Kim, J.

Lei, J.

Lei, J. J.

Z. H. Liu, P. B. Liang, Y. Zhang, J. J. Lei, Y. X. Zhang, J. Yang, and L. B. Yuan, “A micro-particle launching apparatus based on mode-division-multiplexing technology,” Opt. Commun. 342, 30–35 (2015).
[Crossref]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Li, B.

Li, X.

Liang, P.

Liang, P. B.

Z. H. Liu, P. B. Liang, Y. Zhang, J. J. Lei, Y. X. Zhang, J. Yang, and L. B. Yuan, “A micro-particle launching apparatus based on mode-division-multiplexing technology,” Opt. Commun. 342, 30–35 (2015).
[Crossref]

Liberale, C.

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151131 (2008).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Lincoln, B.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Liu, Z.

Liu, Z. H.

Z. H. Liu, P. B. Liang, Y. Zhang, J. J. Lei, Y. X. Zhang, J. Yang, and L. B. Yuan, “A micro-particle launching apparatus based on mode-division-multiplexing technology,” Opt. Commun. 342, 30–35 (2015).
[Crossref]

Marr, D. W. M.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 039041 (2008).
[Crossref]

Mervis, J.

Minzioni, P.

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Mohanty, K. S.

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151131 (2008).
[Crossref]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

Mohanty, S. K.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151131 (2008).
[Crossref]

Moon, T. J.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Oakey, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 039041 (2008).
[Crossref]

Omenetto, F. G.

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141011 (2009).
[Crossref]

Palmer, K. F.

Pan, C. L.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Parsons, J. T.

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz, “Cell Migration: Integrating Signals from Front to Back,” Science 302(5651), 1704–1709 (2003).
[Crossref] [PubMed]

Petrov, D.

M. Wojdyla, S. Raj, and D. Petrov, “Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps,” J. Biomed. Opt. 17(9), 0970061 (2012).
[Crossref] [PubMed]

Piazza, R.

M. Braibanti, D. Vigolo, and R. Piazza, “Does Thermophoretic Mobility Depend on Particle Size?” Phys. Rev. Lett. 100(10), 108303 (2008).
[Crossref] [PubMed]

Prentiss, M.

Raj, S.

M. Wojdyla, S. Raj, and D. Petrov, “Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps,” J. Biomed. Opt. 17(9), 0970061 (2012).
[Crossref] [PubMed]

Ridley, A. J.

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz, “Cell Migration: Integrating Signals from Front to Back,” Science 302(5651), 1704–1709 (2003).
[Crossref] [PubMed]

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Salathe, R. P.

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61(1-4), 165–170 (1995).
[Crossref]

Sano, M.

H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of Colloids by a Nonequilibrium Depletion Force in a Temperature Gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
[Crossref] [PubMed]

Schinkinger, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Schwartz, M. A.

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz, “Cell Migration: Integrating Signals from Front to Back,” Science 302(5651), 1704–1709 (2003).
[Crossref] [PubMed]

Squier, J.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 039041 (2008).
[Crossref]

Sun, K. G.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Taylor, R.

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Vestad, T.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 039041 (2008).
[Crossref]

Vigolo, D.

M. Braibanti, D. Vigolo, and R. Piazza, “Does Thermophoretic Mobility Depend on Particle Size?” Phys. Rev. Lett. 100(10), 108303 (2008).
[Crossref] [PubMed]

Wada, H.

H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of Colloids by a Nonequilibrium Depletion Force in a Temperature Gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
[Crossref] [PubMed]

Wang, C. J.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Waterman-Storer, C. M.

K. Hu, L. Ji, K. T. Applegate, G. Danuser, and C. M. Waterman-Storer, “Differential Transmission of Actin Motion Within Focal Adhesions,” Science 315(5808), 111–115 (2007).
[Crossref] [PubMed]

Weitz, D. A.

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, “Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers,” Appl. Phys. Lett. 91(9), 091119 (2007).
[Crossref]

Williams, D.

Wojdyla, M.

M. Wojdyla, S. Raj, and D. Petrov, “Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps,” J. Biomed. Opt. 17(9), 0970061 (2012).
[Crossref] [PubMed]

Wolchover, N.

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141011 (2009).
[Crossref]

Wottawah, F.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

Xin, H.

Yang, J.

Yoshinaga, N.

H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of Colloids by a Nonequilibrium Depletion Force in a Temperature Gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
[Crossref] [PubMed]

Yuan, L.

Yuan, L. B.

Z. H. Liu, P. B. Liang, Y. Zhang, J. J. Lei, Y. X. Zhang, J. Yang, and L. B. Yuan, “A micro-particle launching apparatus based on mode-division-multiplexing technology,” Opt. Commun. 342, 30–35 (2015).
[Crossref]

Zarinetchi, F.

Zhang, Y.

Zhang, Y. X.

Z. H. Liu, P. B. Liang, Y. Zhang, J. J. Lei, Y. X. Zhang, J. Yang, and L. B. Yuan, “A micro-particle launching apparatus based on mode-division-multiplexing technology,” Opt. Commun. 342, 30–35 (2015).
[Crossref]

Appl. Phys. Lett. (5)

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Fiber-focused diode bar optical trapping for microfluidic flow manipulation,” Appl. Phys. Lett. 92(1), 039041 (2008).
[Crossref]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, “In depth fiber optic trapping of low-index microscopic objects,” Appl. Phys. Lett. 92(15), 151131 (2008).
[Crossref]

P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett. 94(14), 141011 (2009).
[Crossref]

L. Yuan, Z. Liu, and J. Yang, “Measurement approach of Brownian motion force by an abrupt tapered fiber optic tweezers,” Appl. Phys. Lett. 91(5), 054101 (2007).
[Crossref]

K. S. Abedin, C. Kerbage, A. Fernandez-Nieves, and D. A. Weitz, “Optical manipulation and rotation of liquid crystal drops using high-index fiber-optic tweezers,” Appl. Phys. Lett. 91(9), 091119 (2007).
[Crossref]

Biophys. J. (1)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence,” Biophys. J. 88(5), 3689–3698 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

M. Wojdyla, S. Raj, and D. Petrov, “Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps,” J. Biomed. Opt. 17(9), 0970061 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

Nat. Photonics (1)

C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. D. Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Opt. Commun. (1)

Z. H. Liu, P. B. Liang, Y. Zhang, J. J. Lei, Y. X. Zhang, J. Yang, and L. B. Yuan, “A micro-particle launching apparatus based on mode-division-multiplexing technology,” Opt. Commun. 342, 30–35 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of Colloids by a Nonequilibrium Depletion Force in a Temperature Gradient,” Phys. Rev. Lett. 102(20), 208301 (2009).
[Crossref] [PubMed]

M. Braibanti, D. Vigolo, and R. Piazza, “Does Thermophoretic Mobility Depend on Particle Size?” Phys. Rev. Lett. 100(10), 108303 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Science (3)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz, “Cell Migration: Integrating Signals from Front to Back,” Science 302(5651), 1704–1709 (2003).
[Crossref] [PubMed]

K. Hu, L. Ji, K. T. Applegate, G. Danuser, and C. M. Waterman-Storer, “Differential Transmission of Actin Motion Within Focal Adhesions,” Science 315(5808), 111–115 (2007).
[Crossref] [PubMed]

Ultramicroscopy (1)

P. Hoffmann, B. Dutoit, and R. P. Salathe, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61(1-4), 165–170 (1995).
[Crossref]

Supplementary Material (4)

» Media 1: MP4 (1303 KB)     
» Media 2: MP4 (723 KB)     
» Media 3: MP4 (1303 KB)     
» Media 4: MP4 (723 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the dual-wavelength single fiber optical tweezers. (a) 980nm laser beam is used to generate optical trapping force, as labeled with the red arrow; (b) 1480nm laser beam is used to generate launching force, as labeled with the green arrow; when the power of 1480nm laser beam is smaller than p0, the launching force is relative small, which can blow other PS microsphere away keeping the target PS microsphere being trapped; (c) when the power of 1480nm laser beam is larger than p0, the launching force is relative large, which can launch the target PS microsphere away with a certain velocity.
Fig. 2
Fig. 2 Image of the fiber tapered-tip fabricated by acid etching method. (a) scale bar, 5μm; magnified image of (b), (b) scale bar, 20μm.
Fig. 3
Fig. 3 Simulated results of the axial (a) and transverse (b) optical trapping force generated from the 980nm and 1480nm laser light source
Fig. 4
Fig. 4 (a) The output light field power distribution simulated result; (b) the temperature increment simulated result; (c) temperature increasing response time, including three positions in the simulated domains; (d) the temperature gradient simulated result. The results are simulated by using the COMSOL Multiphysics software, and the simulation conditions: the input light power is 30mW, the refractive indices of the water and the tapered fiber are 1.33 and 1.4681 respectively, the light wavelength is 1480nm, the absorption coefficient of the 1480nm laser in water is α = 26.0 cm−1 .
Fig. 5
Fig. 5 Sketch diagram of the experiment setup. WDM: wavelength division multiplexing; PC: personal computer; CCD: charge coupled device.
Fig. 6
Fig. 6 The optical cleaner blows away the PS microspheres. A normal fiber is placed as a rulers and reference. (a) before the optical cleaner blows; (b) after the optical cleaner blows (Media 1); The optical tweezers launches the target PS microspheres away from the fiber tip with a certain velocity (c) before launching; (d) after launching (Media 2).
Fig. 7
Fig. 7 Testing and calculated (a) Displacement-time curve, (b) Velocity-time curve, and (c) Acceleration-time curve of the PS microsphere launching along the z axis. Here p1480 in the figures means the 1480nm light source power.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

m d 2 r d t 2 = F l ( r )+ F η ( r )
E 1 = E 01 expj( ωt+ φ 01 )
E 2 = E 02 expj( ωt+ φ 02 + 2π λ z ˙ t )
E n = E 12 expj( ϕt )
E 12 = E 01 2 + E 02 2 +2 E 01 E 02 cos( φ 02 φ 01 + 2π λ z ˙ t )
ϕ=arctan[ E 01 sin( ωt+ φ 01 )+ E 02 sin( ωt+ φ 02 + 2π λ z ˙ t ) E 01 cos( ωt+ φ 01 )+ E 02 cos( ωt+ φ 02 + 2π λ z ˙ t ) ]
v=n×1.55/0.01=0.155n( mm/s )

Metrics