Abstract

In this paper, we analyze the stimulated Raman scattering (SRS) effect between multiple TWDM downstream wavelengths in L band and multiple fronthaul wavelength channels in C band theoretically, and investigate its impact on fronthaul signals experimentally for the first time. The impact includes two aspects, one is SRS-induced power depletion and the other is the eye diagram distortion caused by the nonlinear Raman crosstalk. Experimental results show that, up to 1-dB power depletion would be introduced to each fronthaul wavelength channel with the launch power per TWDM channel varying from 8-dBm to 15-dBm. In addition, due to the “1” level broadening of the non-return-to-zero on-off keying (NRZ-OOK) eye diagram, the receiving sensitivity with 20-km standard single mode fiber (SSMF) transmission is decreased by ~1-dB. Therefore, a total of ~2-dB power penalty would be imposed on fronthaul signals when co-transmitting with TWDM downstream signals in the same feeder fiber.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suppression of SRS induced crosstalk in RF-video overlay TWDM-PON system using dicode coding

Jun Li, Meihua Bi, Hao He, and Weisheng Hu
Opt. Express 22(18) 21192-21198 (2014)

10  Gbit/s Delay Modulation Using a Directly Modulated DFB Laser for a TWDM PON With Converged Services [Invited]

Ning Cheng, Min Zhou, and Frank J. Effenberger
J. Opt. Commun. Netw. 7(1) A87-A96 (2015)

Distributed Raman amplification in a 8 x 10-Gb/s, 40-km, 1:128 TWDM PON

Patrick P. Iannone and Alan H. Gnauck
Opt. Express 24(22) 25084-25090 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. Chih-Lin, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 51(2), 90–97 (2013).
  2. A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
    [Crossref]
  3. China Mobile Research Institute, “C-RAN the road towards green RAN,” White Paper Version 2.5 (Oct, 2011) http://labs.chinamobile.com/cran/wp-content/uploads/CRAN_white_paper_v2_5_EN%281%29.pdf
  4. 40 gigabit-capable passive optical networks (NG-PON2): General requirements, ITU-T Recommendation G.989.1, 2013. http://www.itu.int/rec/T-REC-G.989.1-201303-I .
  5. K. Grobe, “Next-generation access/backhaul based on ITU G.989, NG-PON2,” in Proc. of Photonic Networks 2014.
  6. Common Public Radio Interface (CPRI), Interface Specification v6.1 (Jul, 2014) http://www.cpri.info/downloads/CPRI_v_6_1_2014-07-01.pdf
  7. T. A. Diallo, A. Pizzinat, P. Chancloul, F. Salioul, F. Deletrel, and C. Aupetit-Berthelemot, “Jitter impact on mobile fronthaul links,” in Proc. OFC 2014, paper W2A.41.
  8. T. Pfeiffer and F. Schaich, “Optical architectures for mobile back- and fron-thauling,” presented at the OFC/NFOEC Wireless Backhauling Workshop, Los Angeles, CA, USA, Mar. 2012.
  9. 40-Gigabit-capable passive optical networks (NG-PON2): physical media dependent (PMD) layer specification, ITU-T Recommendation G.989.2, 2014.
  10. R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in Proc. of ECOC2013, P.6.1206.
    [Crossref]
  11. V. Curri, S. Capriata, and R. Gaudino, “Outage probability due to Stimulated Raman Scattering in GPON and TWDM-PON coexistence,” in Proc. OFC 2014, paper M3I.2.
    [Crossref]
  12. A. Tanaka, N. Cvijetic, and T. Wang, “Beyond 5dB nonlinear Raman crosstalk reduction via PSD control of 10Gb/s OOK in RF-Video coexistence scenarios for Next-Generation PON,” in Proc. OFC 2014, paper M3I.3.
    [Crossref]
  13. D. Piehler, “Minimising nonlinear Raman crosstalk in future network overlays on legacy passive optical networks,” Electron. Lett. 50(9), 687–688 (2014).
    [Crossref]
  14. N. Cheng, M. Zhou, K. Litvin, and F. J. Effenberger, “Delay modulation for TWDM PONs,” in Proc. OFC 2014, paper W1D.3.
  15. N. Cheng, M. Zhou, and F. J. Effenberger, “10 Gbit/s delay modulation using a directly modulated DFB laser for a TWDM PON with converged services [Invited],” J. Opt. Commun. Netw. 7(1), A87–A96 (2015).
    [Crossref]
  16. J. Li, M. Bi, H. He, and W. Hu, “Suppression of SRS induced crosstalk in RF-video overlay TWDM-PON system using dicode coding,” Opt. Express 22(18), 21192–21198 (2014).
    [Crossref] [PubMed]
  17. S. Schollmann, J. Leibrich, C. Wree, and W. Rosenkranz, “Impact of SRS-induced crosstalk for different modulation formats in WDM systems,” in Proc. OFC2004.
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989), Chap.8.
  19. M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonlinearities in WDM CATV Lightwave systems,” J. Lightwave Technol. 17(10), 1782–1792 (1999).
    [Crossref]
  20. A. Shahpari, J. D. Reis, S. Ziaie, R. Ferreira, M. Lima, A. N. Pinto, and A. Teixeira, “Multi system Next-generation PONs impact on video overlay,” in Proc. of ECOC2013, Tu.3.F.3.
    [Crossref]
  21. S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. of OFC2011, PDPD4.
    [Crossref]
  22. A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
    [Crossref]

2015 (1)

2014 (3)

J. Li, M. Bi, H. He, and W. Hu, “Suppression of SRS induced crosstalk in RF-video overlay TWDM-PON system using dicode coding,” Opt. Express 22(18), 21192–21198 (2014).
[Crossref] [PubMed]

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

D. Piehler, “Minimising nonlinear Raman crosstalk in future network overlays on legacy passive optical networks,” Electron. Lett. 50(9), 687–688 (2014).
[Crossref]

2013 (1)

I. Chih-Lin, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 51(2), 90–97 (2013).

1999 (1)

1990 (1)

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[Crossref]

Bi, M.

Boccardi, F.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Braun, V.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Capriata, S.

R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in Proc. of ECOC2013, P.6.1206.
[Crossref]

Cheng, N.

Chih-Lin, I.

I. Chih-Lin, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 51(2), 90–97 (2013).

Chraplyvy, A. R.

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[Crossref]

Curri, V.

R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in Proc. of ECOC2013, P.6.1206.
[Crossref]

Effenberger, F. J.

Fallgren, M.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Ferreira, R.

A. Shahpari, J. D. Reis, S. Ziaie, R. Ferreira, M. Lima, A. N. Pinto, and A. Teixeira, “Multi system Next-generation PONs impact on video overlay,” in Proc. of ECOC2013, Tu.3.F.3.
[Crossref]

Gaudino, R.

R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in Proc. of ECOC2013, P.6.1206.
[Crossref]

Gottwald, E.

S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. of OFC2011, PDPD4.
[Crossref]

Han, S.

I. Chih-Lin, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 51(2), 90–97 (2013).

He, H.

Hu, W.

Kusume, K.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Leibrich, J.

S. Schollmann, J. Leibrich, C. Wree, and W. Rosenkranz, “Impact of SRS-induced crosstalk for different modulation formats in WDM systems,” in Proc. OFC2004.

Li, G.

I. Chih-Lin, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 51(2), 90–97 (2013).

Li, J.

Lima, M.

A. Shahpari, J. D. Reis, S. Ziaie, R. Ferreira, M. Lima, A. N. Pinto, and A. Teixeira, “Multi system Next-generation PONs impact on video overlay,” in Proc. of ECOC2013, Tu.3.F.3.
[Crossref]

Marsch, P.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Maternia, M.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Osseiran, A.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Ott, D. M.

Pan, Z.

I. Chih-Lin, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 51(2), 90–97 (2013).

Phillips, M. R.

Piehler, D.

D. Piehler, “Minimising nonlinear Raman crosstalk in future network overlays on legacy passive optical networks,” Electron. Lett. 50(9), 687–688 (2014).
[Crossref]

Pinto, A. N.

A. Shahpari, J. D. Reis, S. Ziaie, R. Ferreira, M. Lima, A. N. Pinto, and A. Teixeira, “Multi system Next-generation PONs impact on video overlay,” in Proc. of ECOC2013, Tu.3.F.3.
[Crossref]

Poustie, A.

S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. of OFC2011, PDPD4.
[Crossref]

Queseth, O.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Reis, J. D.

A. Shahpari, J. D. Reis, S. Ziaie, R. Ferreira, M. Lima, A. N. Pinto, and A. Teixeira, “Multi system Next-generation PONs impact on video overlay,” in Proc. of ECOC2013, Tu.3.F.3.
[Crossref]

Rohde, H.

S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. of OFC2011, PDPD4.
[Crossref]

Rosenkranz, W.

S. Schollmann, J. Leibrich, C. Wree, and W. Rosenkranz, “Impact of SRS-induced crosstalk for different modulation formats in WDM systems,” in Proc. OFC2004.

Rowell, C.

I. Chih-Lin, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 51(2), 90–97 (2013).

Schellmann, M.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Schollmann, S.

S. Schollmann, J. Leibrich, C. Wree, and W. Rosenkranz, “Impact of SRS-induced crosstalk for different modulation formats in WDM systems,” in Proc. OFC2004.

Schotten, H.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Shahpari, A.

A. Shahpari, J. D. Reis, S. Ziaie, R. Ferreira, M. Lima, A. N. Pinto, and A. Teixeira, “Multi system Next-generation PONs impact on video overlay,” in Proc. of ECOC2013, Tu.3.F.3.
[Crossref]

Smith, D.

S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. of OFC2011, PDPD4.
[Crossref]

Smolorz, S.

S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. of OFC2011, PDPD4.
[Crossref]

Taoka, H.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Teixeira, A.

A. Shahpari, J. D. Reis, S. Ziaie, R. Ferreira, M. Lima, A. N. Pinto, and A. Teixeira, “Multi system Next-generation PONs impact on video overlay,” in Proc. of ECOC2013, Tu.3.F.3.
[Crossref]

Timus, B.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Tullberg, H.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Uusitalo, M. A.

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

Wree, C.

S. Schollmann, J. Leibrich, C. Wree, and W. Rosenkranz, “Impact of SRS-induced crosstalk for different modulation formats in WDM systems,” in Proc. OFC2004.

Xu, Z.

I. Chih-Lin, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 51(2), 90–97 (2013).

Zhou, M.

Ziaie, S.

A. Shahpari, J. D. Reis, S. Ziaie, R. Ferreira, M. Lima, A. N. Pinto, and A. Teixeira, “Multi system Next-generation PONs impact on video overlay,” in Proc. of ECOC2013, Tu.3.F.3.
[Crossref]

Electron. Lett. (1)

D. Piehler, “Minimising nonlinear Raman crosstalk in future network overlays on legacy passive optical networks,” Electron. Lett. 50(9), 687–688 (2014).
[Crossref]

IEEE Commun. Mag. (2)

I. Chih-Lin, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward green and soft: a 5G perspective,” IEEE Commun. Mag. 51(2), 90–97 (2013).

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Commun. Mag. 52(5), 26–35 (2014).
[Crossref]

J. Lightwave Technol. (2)

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[Crossref]

M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonlinearities in WDM CATV Lightwave systems,” J. Lightwave Technol. 17(10), 1782–1792 (1999).
[Crossref]

J. Opt. Commun. Netw. (1)

Opt. Express (1)

Other (15)

N. Cheng, M. Zhou, K. Litvin, and F. J. Effenberger, “Delay modulation for TWDM PONs,” in Proc. OFC 2014, paper W1D.3.

S. Schollmann, J. Leibrich, C. Wree, and W. Rosenkranz, “Impact of SRS-induced crosstalk for different modulation formats in WDM systems,” in Proc. OFC2004.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989), Chap.8.

A. Shahpari, J. D. Reis, S. Ziaie, R. Ferreira, M. Lima, A. N. Pinto, and A. Teixeira, “Multi system Next-generation PONs impact on video overlay,” in Proc. of ECOC2013, Tu.3.F.3.
[Crossref]

S. Smolorz, E. Gottwald, H. Rohde, D. Smith, and A. Poustie, “Demonstration of a coherent UDWDM-PON with real-time processing,” in Proc. of OFC2011, PDPD4.
[Crossref]

China Mobile Research Institute, “C-RAN the road towards green RAN,” White Paper Version 2.5 (Oct, 2011) http://labs.chinamobile.com/cran/wp-content/uploads/CRAN_white_paper_v2_5_EN%281%29.pdf

40 gigabit-capable passive optical networks (NG-PON2): General requirements, ITU-T Recommendation G.989.1, 2013. http://www.itu.int/rec/T-REC-G.989.1-201303-I .

K. Grobe, “Next-generation access/backhaul based on ITU G.989, NG-PON2,” in Proc. of Photonic Networks 2014.

Common Public Radio Interface (CPRI), Interface Specification v6.1 (Jul, 2014) http://www.cpri.info/downloads/CPRI_v_6_1_2014-07-01.pdf

T. A. Diallo, A. Pizzinat, P. Chancloul, F. Salioul, F. Deletrel, and C. Aupetit-Berthelemot, “Jitter impact on mobile fronthaul links,” in Proc. OFC 2014, paper W2A.41.

T. Pfeiffer and F. Schaich, “Optical architectures for mobile back- and fron-thauling,” presented at the OFC/NFOEC Wireless Backhauling Workshop, Los Angeles, CA, USA, Mar. 2012.

40-Gigabit-capable passive optical networks (NG-PON2): physical media dependent (PMD) layer specification, ITU-T Recommendation G.989.2, 2014.

R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in Proc. of ECOC2013, P.6.1206.
[Crossref]

V. Curri, S. Capriata, and R. Gaudino, “Outage probability due to Stimulated Raman Scattering in GPON and TWDM-PON coexistence,” in Proc. OFC 2014, paper M3I.2.
[Crossref]

A. Tanaka, N. Cvijetic, and T. Wang, “Beyond 5dB nonlinear Raman crosstalk reduction via PSD control of 10Gb/s OOK in RF-Video coexistence scenarios for Next-Generation PON,” in Proc. OFC 2014, paper M3I.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The downstream transmission with TWDM-PON and fronthaul signals. WDM: wavelength division multiplexing; ONU: optical network unit; RRH: remote radio head; inset (i) is the whole downstream wavelengths.
Fig. 2
Fig. 2 The calculated SRS-caused power depletion on fronthaul wavelengths at different number of TWDM downstream wavelengths (NTWDM = 4, 8, 16 or 32).
Fig. 3
Fig. 3 The calculated SRS-caused nonlinear crosstalk on fronthaul wavelengths at 13-dBm launch power per TWDM channel (NTWDM = 4, 8, 16 or 32).
Fig. 4
Fig. 4 Experimental setup for measuring the SRS-caused power depletion and the nonlinear Raman crosstalk using four fronthaul wavelengths (λ14) and four TWDM downstream wavelengths (λ58); Inset (i) is the whole wavelengths in the experiment. PPG: pulse pattern generator; AWG: arrayed waveguide grating; MZM: Mach-Zehnder Modulator; PC: polarization controller; TOF: tunable optical filter.
Fig. 5
Fig. 5 Measured SRS-caused power depletion on each fronthaul channel (λ14) under four TWDM downstream wavelength channels (NTWDM = 4).
Fig. 6
Fig. 6 Measured nonlinear Raman crosstalk on fronthaul wavelength channels caused by four TWDM downstream wavelength channels (NTWDM = 4).
Fig. 7
Fig. 7 Measured DC to 100-MHz spectrum and eye diagrams (i ~vi) at the data rate of (a): 10137-Mbit/s; (b): 4915-Mbit/s; (c): 1228-Mbit/s.
Fig. 8
Fig. 8 BER performance of different bit-rate NRZ-OOK signal modulated on fronthaul channels.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P T z + 1 v T P T t =( g P F α ) P T
P F z + 1 v F P F t =( g P T α ) P F
ΔP=( 10lo g 10 e )N g R / A eff P T ( 0 ) L eff
L eff = ( 1 e αL ) /α
Crosstalk=10log{ N ( P T ( 0 ) g R A eff ) 2 1+ e 2αL 2 e αL cos( 2πfdL ) α 2 + ( 2πfd ) 2 }

Metrics