S. Kim, T. Punshon, A. Lanzirotti, L. Li, J. Alonso, J. Ecker, J. Kaplan, and M. Guerinot, “Localization of iron in arabidopsis seed requires the vacuolar membrane transporter VIT1,” Science 314, 1295–1298, (2006).
[Crossref]
[PubMed]
J. H. Chang, J. M. M. Anderson, and J. R. Votaw, “Regularized image reconstruction algorithms for positron emission tomography,” IEEE T. Med. Imaging 23, 1165–1175, (2004).
[Crossref]
B. A. Dowd, G. H. Campbell, R. B. Marr, V. Nagarkar, S. Tipnis, L. Axe, and D. P. Siddons, “Developments in synchrotron x-ray computed microtomography at the National Synchrotron Light Source,” Proc. SPIE 3772, 224–236, (1999).
[Crossref]
T. Bicer, “Supporting data-intensive scientific computing on bandwidth and space constrained environments”. PhD Dissertation, (2014).
S. Bohic, A. Simionovici, X. Biquard, G. Martinez-Criado, and J. Susini, “Synchrotron X-ray microfluorescence and microspectroscopy: Application and perspectives in materials science,” Oil Gas Sci. Technol. 6, 979–993, (2005).
[Crossref]
S. Bohic, A. Simionovici, X. Biquard, G. Martinez-Criado, and J. Susini, “Synchrotron X-ray microfluorescence and microspectroscopy: Application and perspectives in materials science,” Oil Gas Sci. Technol. 6, 979–993, (2005).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
D. Bourassa, S. C. Gleber, S. Vogt, H. Yi, F. Will, H. Richter, C. H. Shin, and C. J. Fahrni, “3D imaging of transition metals in the zebrafish embryo by X-ray fluorescence microtomography,” Metallomics 9, 1648–1655, (2007).
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
A. J. Brown, B. Sutter, and S. Dunagan, “The MARTE VNIR imaging spectrometer experiment: design and analysis,” Astrobiology 8, 1001–1011, (2008).
[Crossref]
[PubMed]
A. J. Brown, “Spectral curve fitting for automatic hyperspectral data analysis,” IEEE Geosci Remote S 44, 1601 (2006).
X. R. Wang, A. J. Brown, and B. Upcroft, “Applying incremental EM to Bayesian classifiers in the learning of hyperspectral remote sensing data,” Information Fusion Proc. 1, 606–613, (2005).
B. Golosio, A. Simionovici, A. Somogyi, L. Lemelle, M. Chukalina, and A. Brunetti, “Internal elemental micro-analysis combining x-ray fluorescence, Compton and transmission tomography,” J. Appl. Phys. 94, 145 (2003).
[Crossref]
B. A. Dowd, G. H. Campbell, R. B. Marr, V. Nagarkar, S. Tipnis, L. Axe, and D. P. Siddons, “Developments in synchrotron x-ray computed microtomography at the National Synchrotron Light Source,” Proc. SPIE 3772, 224–236, (1999).
[Crossref]
J. H. Chang, J. M. M. Anderson, and J. R. Votaw, “Regularized image reconstruction algorithms for positron emission tomography,” IEEE T. Med. Imaging 23, 1165–1175, (2004).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
B. Golosio, A. Simionovici, A. Somogyi, L. Lemelle, M. Chukalina, and A. Brunetti, “Internal elemental micro-analysis combining x-ray fluorescence, Compton and transmission tomography,” J. Appl. Phys. 94, 145 (2003).
[Crossref]
H. Suhonen, F. Xu, L. Helfen, C. Ferrero, P. Vladimirov, and P. Cloetens, “X-ray phase contrast and fluorescence nanotomography for material studies,” Int. J. Mater. Res. 103, 179–183, (2012).
[Crossref]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen, “TomoPy: a framework for the analysis of synchrotron tomographic data,” J. Synchrotron Radiat. 21, 1185–1193, (2014).
[Crossref]
E. X. Miqueles and A. R. De Pierro, “Iterative reconstruction in X-ray fluorescence tomography based on Radon inversion,” IEEE T. Med. Imaging 30, 438–450, (2011).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
E. Lombi, M. D. Jonge, E. Donner, C. G. Ryan, and D. Paterson, “Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors,” Anal. Bioanal. Chem. 400, 1637–1644, (2011).
[Crossref]
[PubMed]
B. A. Dowd, G. H. Campbell, R. B. Marr, V. Nagarkar, S. Tipnis, L. Axe, and D. P. Siddons, “Developments in synchrotron x-ray computed microtomography at the National Synchrotron Light Source,” Proc. SPIE 3772, 224–236, (1999).
[Crossref]
A. J. Brown, B. Sutter, and S. Dunagan, “The MARTE VNIR imaging spectrometer experiment: design and analysis,” Astrobiology 8, 1001–1011, (2008).
[Crossref]
[PubMed]
S. Kim, T. Punshon, A. Lanzirotti, L. Li, J. Alonso, J. Ecker, J. Kaplan, and M. Guerinot, “Localization of iron in arabidopsis seed requires the vacuolar membrane transporter VIT1,” Science 314, 1295–1298, (2006).
[Crossref]
[PubMed]
D. Bourassa, S. C. Gleber, S. Vogt, H. Yi, F. Will, H. Richter, C. H. Shin, and C. J. Fahrni, “3D imaging of transition metals in the zebrafish embryo by X-ray fluorescence microtomography,” Metallomics 9, 1648–1655, (2007).
C. J. Fahrni, “Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals,” Curr. Opin. Chem. Biol. 11, 121–127, (2007).
[Crossref]
[PubMed]
H. Suhonen, F. Xu, L. Helfen, C. Ferrero, P. Vladimirov, and P. Cloetens, “X-ray phase contrast and fluorescence nanotomography for material studies,” Int. J. Mater. Res. 103, 179–183, (2012).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
D. Bourassa, S. C. Gleber, S. Vogt, H. Yi, F. Will, H. Richter, C. H. Shin, and C. J. Fahrni, “3D imaging of transition metals in the zebrafish embryo by X-ray fluorescence microtomography,” Metallomics 9, 1648–1655, (2007).
B. Golosio, A. Simionovici, A. Somogyi, L. Lemelle, M. Chukalina, and A. Brunetti, “Internal elemental micro-analysis combining x-ray fluorescence, Compton and transmission tomography,” J. Appl. Phys. 94, 145 (2003).
[Crossref]
P. J. Green, “On the use of the EM algorithm for penalized likelihood estimation,” J. R. Stat. Soc. 52, 443–452, (1990).
S. Kim, T. Punshon, A. Lanzirotti, L. Li, J. Alonso, J. Ecker, J. Kaplan, and M. Guerinot, “Localization of iron in arabidopsis seed requires the vacuolar membrane transporter VIT1,” Science 314, 1295–1298, (2006).
[Crossref]
[PubMed]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen, “TomoPy: a framework for the analysis of synchrotron tomographic data,” J. Synchrotron Radiat. 21, 1185–1193, (2014).
[Crossref]
P. C. Hansen, “Discrete Inverse Problems: Insight and Algorithms,” : (SIAM, Philadelphia, PA2010).
H. Suhonen, F. Xu, L. Helfen, C. Ferrero, P. Vladimirov, and P. Cloetens, “X-ray phase contrast and fluorescence nanotomography for material studies,” Int. J. Mater. Res. 103, 179–183, (2012).
[Crossref]
E. Levitan and G. T. Herman, “A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography,” IEEE T. Med. Imaging 6, 185–192, (1987).
[Crossref]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen, “TomoPy: a framework for the analysis of synchrotron tomographic data,” J. Synchrotron Radiat. 21, 1185–1193, (2014).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
E. Lombi, M. D. Jonge, E. Donner, C. G. Ryan, and D. Paterson, “Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors,” Anal. Bioanal. Chem. 400, 1637–1644, (2011).
[Crossref]
[PubMed]
M. D. Jonge and S. Vogt, “Hard X-ray fluorescence tomography – an emerging tool for structural visualization,” Curr. Opin. Struc. Biol. 20, 606–614, (2010).
[Crossref]
J. Kaipo and E. Somersalo, “Statistical and Computational Inverse Problems,” : (Springer, New York, NY2004).
A. C. Kak and M. Slaney, “Principles of Computerized Tomographic Imaging,” : (SIAM, Philadelphia, PA2001).
S. Kim, T. Punshon, A. Lanzirotti, L. Li, J. Alonso, J. Ecker, J. Kaplan, and M. Guerinot, “Localization of iron in arabidopsis seed requires the vacuolar membrane transporter VIT1,” Science 314, 1295–1298, (2006).
[Crossref]
[PubMed]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
S. Kim, T. Punshon, A. Lanzirotti, L. Li, J. Alonso, J. Ecker, J. Kaplan, and M. Guerinot, “Localization of iron in arabidopsis seed requires the vacuolar membrane transporter VIT1,” Science 314, 1295–1298, (2006).
[Crossref]
[PubMed]
P. J. La Riviere, P. A. Vargas, M. Newville, and S. Sutton, “Reduced-scan schemes for X-ray fluorescence computed tomography,” IEEE Trans. Nucl. Sci. 54, 1535–1542, (2007).
[Crossref]
P. J. La Riviere and P. A. Vargas, “Monotonic penalized-likelihood image reconstruction for x-ray fluorescence computed tomography,” IEEE T. Med. Imaging 25, 1117–1129, (2006).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
T. Paunesku, S. Vogt, J. Maser, B. Lai, and G. Woloschak, “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell Biochem. 99, 1489–1502, (2006).
[Crossref]
[PubMed]
K. Lange, “Convergence of EM image reconstruction algorithms with Gibbs smoothing,” IEEE T. Med. Imaging 9, 439–446, (1990).
[Crossref]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
S. Kim, T. Punshon, A. Lanzirotti, L. Li, J. Alonso, J. Ecker, J. Kaplan, and M. Guerinot, “Localization of iron in arabidopsis seed requires the vacuolar membrane transporter VIT1,” Science 314, 1295–1298, (2006).
[Crossref]
[PubMed]
J. Qi and R. M. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Phys. Med. Biol. 51, R541 (2006).
[Crossref]
[PubMed]
B. Golosio, A. Simionovici, A. Somogyi, L. Lemelle, M. Chukalina, and A. Brunetti, “Internal elemental micro-analysis combining x-ray fluorescence, Compton and transmission tomography,” J. Appl. Phys. 94, 145 (2003).
[Crossref]
E. Levitan and G. T. Herman, “A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography,” IEEE T. Med. Imaging 6, 185–192, (1987).
[Crossref]
S. Kim, T. Punshon, A. Lanzirotti, L. Li, J. Alonso, J. Ecker, J. Kaplan, and M. Guerinot, “Localization of iron in arabidopsis seed requires the vacuolar membrane transporter VIT1,” Science 314, 1295–1298, (2006).
[Crossref]
[PubMed]
E. Lombi, M. D. Jonge, E. Donner, C. G. Ryan, and D. Paterson, “Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors,” Anal. Bioanal. Chem. 400, 1637–1644, (2011).
[Crossref]
[PubMed]
E. Lombi and J. Susini, “Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives,” Plant Soil 320, 1–35, (2009).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
B. A. Dowd, G. H. Campbell, R. B. Marr, V. Nagarkar, S. Tipnis, L. Axe, and D. P. Siddons, “Developments in synchrotron x-ray computed microtomography at the National Synchrotron Light Source,” Proc. SPIE 3772, 224–236, (1999).
[Crossref]
S. Bohic, A. Simionovici, X. Biquard, G. Martinez-Criado, and J. Susini, “Synchrotron X-ray microfluorescence and microspectroscopy: Application and perspectives in materials science,” Oil Gas Sci. Technol. 6, 979–993, (2005).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
T. Paunesku, S. Vogt, J. Maser, B. Lai, and G. Woloschak, “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell Biochem. 99, 1489–1502, (2006).
[Crossref]
[PubMed]
E. X. Miqueles and A. R. De Pierro, “Iterative reconstruction in X-ray fluorescence tomography based on Radon inversion,” IEEE T. Med. Imaging 30, 438–450, (2011).
[Crossref]
J. Moussouris, “Gibbs and Markov random systems with constraints,” J. Stat. Phys. 10, 11–33, (2014).
[Crossref]
B. A. Dowd, G. H. Campbell, R. B. Marr, V. Nagarkar, S. Tipnis, L. Axe, and D. P. Siddons, “Developments in synchrotron x-ray computed microtomography at the National Synchrotron Light Source,” Proc. SPIE 3772, 224–236, (1999).
[Crossref]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
P. J. La Riviere, P. A. Vargas, M. Newville, and S. Sutton, “Reduced-scan schemes for X-ray fluorescence computed tomography,” IEEE Trans. Nucl. Sci. 54, 1535–1542, (2007).
[Crossref]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
E. Lombi, M. D. Jonge, E. Donner, C. G. Ryan, and D. Paterson, “Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors,” Anal. Bioanal. Chem. 400, 1637–1644, (2011).
[Crossref]
[PubMed]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
T. Paunesku, S. Vogt, J. Maser, B. Lai, and G. Woloschak, “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell Biochem. 99, 1489–1502, (2006).
[Crossref]
[PubMed]
S. Kim, T. Punshon, A. Lanzirotti, L. Li, J. Alonso, J. Ecker, J. Kaplan, and M. Guerinot, “Localization of iron in arabidopsis seed requires the vacuolar membrane transporter VIT1,” Science 314, 1295–1298, (2006).
[Crossref]
[PubMed]
J. Qi and R. M. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Phys. Med. Biol. 51, R541 (2006).
[Crossref]
[PubMed]
D. Bourassa, S. C. Gleber, S. Vogt, H. Yi, F. Will, H. Richter, C. H. Shin, and C. J. Fahrni, “3D imaging of transition metals in the zebrafish embryo by X-ray fluorescence microtomography,” Metallomics 9, 1648–1655, (2007).
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
P. L. Riviere, P. Vargas, M. Rivers, and S. R. Sutton, “Penalized-likelihood image reconstruction for X-ray fluorescence computed tomography,” Opt. Eng. 45, 077005 (2006).
[Crossref]
P. L. Riviere, P. Vargas, M. Rivers, and S. R. Sutton, “Penalized-likelihood image reconstruction for X-ray fluorescence computed tomography,” Opt. Eng. 45, 077005 (2006).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
G-F. Rust and J. Weigelt, “X-Ray Fluorescent Computer Tomography with Synchrotron Radiation,” IEEE T. Nucl. Sci. 45, 75–88, (1998).
[Crossref]
E. Lombi, M. D. Jonge, E. Donner, C. G. Ryan, and D. Paterson, “Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors,” Anal. Bioanal. Chem. 400, 1637–1644, (2011).
[Crossref]
[PubMed]
C. G. Schoer, “Reconstructing X-ray fluorescence microtomograms,” Appl. Phys. Lett. 79, 1912 (2001).
[Crossref]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
D. Bourassa, S. C. Gleber, S. Vogt, H. Yi, F. Will, H. Richter, C. H. Shin, and C. J. Fahrni, “3D imaging of transition metals in the zebrafish embryo by X-ray fluorescence microtomography,” Metallomics 9, 1648–1655, (2007).
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
B. A. Dowd, G. H. Campbell, R. B. Marr, V. Nagarkar, S. Tipnis, L. Axe, and D. P. Siddons, “Developments in synchrotron x-ray computed microtomography at the National Synchrotron Light Source,” Proc. SPIE 3772, 224–236, (1999).
[Crossref]
S. Bohic, A. Simionovici, X. Biquard, G. Martinez-Criado, and J. Susini, “Synchrotron X-ray microfluorescence and microspectroscopy: Application and perspectives in materials science,” Oil Gas Sci. Technol. 6, 979–993, (2005).
[Crossref]
B. Golosio, A. Simionovici, A. Somogyi, L. Lemelle, M. Chukalina, and A. Brunetti, “Internal elemental micro-analysis combining x-ray fluorescence, Compton and transmission tomography,” J. Appl. Phys. 94, 145 (2003).
[Crossref]
A. C. Kak and M. Slaney, “Principles of Computerized Tomographic Imaging,” : (SIAM, Philadelphia, PA2001).
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
J. Kaipo and E. Somersalo, “Statistical and Computational Inverse Problems,” : (Springer, New York, NY2004).
B. Golosio, A. Simionovici, A. Somogyi, L. Lemelle, M. Chukalina, and A. Brunetti, “Internal elemental micro-analysis combining x-ray fluorescence, Compton and transmission tomography,” J. Appl. Phys. 94, 145 (2003).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
H. Suhonen, F. Xu, L. Helfen, C. Ferrero, P. Vladimirov, and P. Cloetens, “X-ray phase contrast and fluorescence nanotomography for material studies,” Int. J. Mater. Res. 103, 179–183, (2012).
[Crossref]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
E. Lombi and J. Susini, “Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives,” Plant Soil 320, 1–35, (2009).
[Crossref]
S. Bohic, A. Simionovici, X. Biquard, G. Martinez-Criado, and J. Susini, “Synchrotron X-ray microfluorescence and microspectroscopy: Application and perspectives in materials science,” Oil Gas Sci. Technol. 6, 979–993, (2005).
[Crossref]
A. J. Brown, B. Sutter, and S. Dunagan, “The MARTE VNIR imaging spectrometer experiment: design and analysis,” Astrobiology 8, 1001–1011, (2008).
[Crossref]
[PubMed]
P. J. La Riviere, P. A. Vargas, M. Newville, and S. Sutton, “Reduced-scan schemes for X-ray fluorescence computed tomography,” IEEE Trans. Nucl. Sci. 54, 1535–1542, (2007).
[Crossref]
P. L. Riviere, P. Vargas, M. Rivers, and S. R. Sutton, “Penalized-likelihood image reconstruction for X-ray fluorescence computed tomography,” Opt. Eng. 45, 077005 (2006).
[Crossref]
B. A. Dowd, G. H. Campbell, R. B. Marr, V. Nagarkar, S. Tipnis, L. Axe, and D. P. Siddons, “Developments in synchrotron x-ray computed microtomography at the National Synchrotron Light Source,” Proc. SPIE 3772, 224–236, (1999).
[Crossref]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
X. R. Wang, A. J. Brown, and B. Upcroft, “Applying incremental EM to Bayesian classifiers in the learning of hyperspectral remote sensing data,” Information Fusion Proc. 1, 606–613, (2005).
P. L. Riviere, P. Vargas, M. Rivers, and S. R. Sutton, “Penalized-likelihood image reconstruction for X-ray fluorescence computed tomography,” Opt. Eng. 45, 077005 (2006).
[Crossref]
P. J. La Riviere, P. A. Vargas, M. Newville, and S. Sutton, “Reduced-scan schemes for X-ray fluorescence computed tomography,” IEEE Trans. Nucl. Sci. 54, 1535–1542, (2007).
[Crossref]
P. J. La Riviere and P. A. Vargas, “Monotonic penalized-likelihood image reconstruction for x-ray fluorescence computed tomography,” IEEE T. Med. Imaging 25, 1117–1129, (2006).
[Crossref]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
H. Suhonen, F. Xu, L. Helfen, C. Ferrero, P. Vladimirov, and P. Cloetens, “X-ray phase contrast and fluorescence nanotomography for material studies,” Int. J. Mater. Res. 103, 179–183, (2012).
[Crossref]
F. De Carlo, D. Gürsoy, F. Marone, M. Rivers, D. Parkinson, F. Khan, N. Schwarz, D. Vine, S. Vogt, S. C. Gleber, S. Narayanan, M. Newville, A. Lanzirotti, Y. Sun, Y. Hong, and C. Jacobsen, “Scientific data exchange: a schema for HDF5-based storage of raw and analyzed data,” J. Synchrotron Radiat. 21, 1224–1230, (2014).
[Crossref]
[PubMed]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
M. D. Jonge and S. Vogt, “Hard X-ray fluorescence tomography – an emerging tool for structural visualization,” Curr. Opin. Struc. Biol. 20, 606–614, (2010).
[Crossref]
D. Bourassa, S. C. Gleber, S. Vogt, H. Yi, F. Will, H. Richter, C. H. Shin, and C. J. Fahrni, “3D imaging of transition metals in the zebrafish embryo by X-ray fluorescence microtomography,” Metallomics 9, 1648–1655, (2007).
T. Paunesku, S. Vogt, J. Maser, B. Lai, and G. Woloschak, “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell Biochem. 99, 1489–1502, (2006).
[Crossref]
[PubMed]
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
J. H. Chang, J. M. M. Anderson, and J. R. Votaw, “Regularized image reconstruction algorithms for positron emission tomography,” IEEE T. Med. Imaging 23, 1165–1175, (2004).
[Crossref]
X. R. Wang, A. J. Brown, and B. Upcroft, “Applying incremental EM to Bayesian classifiers in the learning of hyperspectral remote sensing data,” Information Fusion Proc. 1, 606–613, (2005).
G-F. Rust and J. Weigelt, “X-Ray Fluorescent Computer Tomography with Synchrotron Radiation,” IEEE T. Nucl. Sci. 45, 75–88, (1998).
[Crossref]
D. Bourassa, S. C. Gleber, S. Vogt, H. Yi, F. Will, H. Richter, C. H. Shin, and C. J. Fahrni, “3D imaging of transition metals in the zebrafish embryo by X-ray fluorescence microtomography,” Metallomics 9, 1648–1655, (2007).
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]
T. Paunesku, S. Vogt, J. Maser, B. Lai, and G. Woloschak, “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell Biochem. 99, 1489–1502, (2006).
[Crossref]
[PubMed]
D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen, “TomoPy: a framework for the analysis of synchrotron tomographic data,” J. Synchrotron Radiat. 21, 1185–1193, (2014).
[Crossref]
H. Suhonen, F. Xu, L. Helfen, C. Ferrero, P. Vladimirov, and P. Cloetens, “X-ray phase contrast and fluorescence nanotomography for material studies,” Int. J. Mater. Res. 103, 179–183, (2012).
[Crossref]
D. Bourassa, S. C. Gleber, S. Vogt, H. Yi, F. Will, H. Richter, C. H. Shin, and C. J. Fahrni, “3D imaging of transition metals in the zebrafish embryo by X-ray fluorescence microtomography,” Metallomics 9, 1648–1655, (2007).
S. Chen, J. Deng, Y. Yuan, C. Flachenecker, R. Mak, B. Hornberger, Q. Jin, D. Shu, B. Lai, J. Maser, C. Roehrig, T. Paunesku, S. C. Gleber, D. J. Vine, L. Finney, J. VonOsinski, M. Bolbat, I. Spink, Z. Chen, J. Steele, D. Trapp, J. Irwin, M. Feser, E. Snyder, K. Brister, C. Jacobsen, G. Woloschak, and S. Vogt, “The Bionanoprobe: Hard X-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synchrotron Radiat. 21, 66–75, (2014).
[Crossref]