Abstract

We demonstrate a record-high extinction-ratio of 50.4 dB in a 2 × 2 silicon Mach-Zehnder switch equipped with a variable splitter as the front 3-dB splitter. The variable splitter is adjusted to compensate for the splitting-ratio mismatch between the front and rear 3-dB splitters. The high extinction ratio does not rely on waveguide crossings and meets a strong demand in applications to multiport circuit switches. Large fabrication tolerance will make the high extinction ratio compatible with a volume production with standard complementary metal-oxide semiconductor fabrication facilities.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mach–Zehnder interferometer switch with a high extinction ratio over a wide wavelength range

Takayuki Mizuno, Hiroshi Takahashi, Tsutomu Kitoh, Manabu Oguma, Toshimi Kominato, and Tomohiro Shibata
Opt. Lett. 30(3) 251-253 (2005)

Compact 2 × 2 polarization-diversity Si-wire switch

Sang-Hun Kim, Ken Tanizawa, Yuya Shoji, Guangwei Cong, Keijiro Suzuki, Kazuhiro Ikeda, Hiroshi Ishikawa, Shu Namiki, and Hitoshi Kawashima
Opt. Express 22(24) 29818-29826 (2014)

Broadband 2 × 2 lithium niobate electro-optic switch based on a Mach–Zehnder interferometer with counter-tapered directional couplers

Hangli Wang, Xuepeng Li, Mengruo Zhang, and Kaixin Chen
Appl. Opt. 56(29) 8164-8168 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2006), paper Tu.4.4.3.
    [Crossref]
  2. T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8 × 8 strictly nonblocking thermooptic matrix switch,” J. Lightwave Technol. 17(7), 1192–1199 (1999).
    [Crossref]
  3. S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2011), paper OTuM2.
    [Crossref]
  4. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
    [Crossref] [PubMed]
  5. L. Chen and Y.-K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
    [Crossref] [PubMed]
  6. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
    [Crossref] [PubMed]
  7. M. Okuno, K. Kato, R. Nagase, A. Himeno, Y. Ohmori, and M. Kawachi, “Silica-based 8 × 8 optical matrix switch integrating new switching units with large fabrication tolerance,” J. Lightwave Technol. 17(5), 771–781 (1999).
    [Crossref]
  8. S.-H. Kim, G. Cong, H. Kawashima, T. Hasama, and H. Ishikawa, “Tilted MMI crossings based on silicon wire waveguide,” Opt. Express 22(3), 2545–2552 (2014).
    [Crossref] [PubMed]
  9. K. Suzuki, G. Cong, K. Tanizawa, S.-H. Kim, S. Namiki, and H. Kawashima, “50-dB extinction-ratio in 2×2 silicon optical switch with variable splitter,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM4G.2.
  10. M. Kawauchi, N. Takado, and K. Jinguji, “Waveguide type optical interferometer,” Patent abstract of Japan, 62–183406, 1987.
  11. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16 × 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol. 19(3), 371–379 (2001).
    [Crossref]
  12. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
    [Crossref]
  13. P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, and J. Martí, “Highly efficient crossing structure for silicon-on-insulator waveguides,” Opt. Lett. 34(18), 2760–2762 (2009).
    [Crossref] [PubMed]
  14. Z. Yi, Y. Shuyu, A. J. Lim, L. Guo-Qiang, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photon. Technol. Lett. 25(5), 422–425 (2013).
    [Crossref]
  15. S.-H. Kim, K. Tanizawa, Y. Shoji, G. Cong, K. Suzuki, K. Ikeda, H. Ishikawa, S. Namiki, and H. Kawashima, “Compact 2 × 2 polarization-diversity Si-wire switch,” Opt. Express 22(24), 29818–29826 (2014).
    [Crossref] [PubMed]
  16. K. Suzuki, H. C. Nguyen, T. Tamanuki, F. Shinobu, Y. Saito, Y. Sakai, and T. Baba, “Slow-light-based variable symbol-rate silicon photonics DQPSK receiver,” Opt. Express 20(4), 4796–4804 (2012).
    [Crossref] [PubMed]
  17. J. Van Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–24029 (2009).
    [Crossref] [PubMed]

2014 (3)

2013 (1)

Z. Yi, Y. Shuyu, A. J. Lim, L. Guo-Qiang, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photon. Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

2012 (2)

2010 (2)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
[Crossref] [PubMed]

2009 (2)

2001 (1)

1999 (2)

Assefa, S.

Baba, T.

Baehr-Jones, T.

Z. Yi, Y. Shuyu, A. J. Lim, L. Guo-Qiang, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photon. Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

Baets, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Brimont, A.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Chen, L.

Chen, Y.-K.

Chiba, T.

Cong, G.

Cuesta, F.

De Vos, K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Galán, J. V.

Galland, C.

Z. Yi, Y. Shuyu, A. J. Lim, L. Guo-Qiang, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photon. Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

Goh, T.

Green, W. M.

Griol, A.

Guo-Qiang, L.

Z. Yi, Y. Shuyu, A. J. Lim, L. Guo-Qiang, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photon. Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

Håkansson, A.

Hasama, T.

Hattori, K.

Himeno, A.

Hochberg, M.

Z. Yi, Y. Shuyu, A. J. Lim, L. Guo-Qiang, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photon. Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

Igarashi, Y.

Ikeda, K.

Ishikawa, H.

Kato, K.

Kawachi, M.

Kawashima, H.

Kim, S.-H.

Kintaka, K.

Lim, A. J.

Z. Yi, Y. Shuyu, A. J. Lim, L. Guo-Qiang, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photon. Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

Martí, J.

Masahara, M.

Matsukawa, T.

Nagase, R.

Namiki, S.

Nguyen, H. C.

Ohmori, Y.

Ohno, M.

Okuno, M.

Saito, Y.

Sakai, Y.

Sanchis, P.

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Shinobu, F.

Shoji, Y.

Shuyu, Y.

Z. Yi, Y. Shuyu, A. J. Lim, L. Guo-Qiang, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photon. Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

Suda, S.

Suzuki, K.

Tadokoro, H.

Takahashi, H.

Tamanuki, T.

Tanizawa, K.

Van Campenhout, J.

Van Thourhout, D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Villalba, P.

Vlasov, Y. A.

Yanagihara, M.

Yasu, M.

Yi, Z.

Z. Yi, Y. Shuyu, A. J. Lim, L. Guo-Qiang, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photon. Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Yi, Y. Shuyu, A. J. Lim, L. Guo-Qiang, C. Galland, T. Baehr-Jones, and M. Hochberg, “A CMOS-compatible, low-loss, and low-crosstalk silicon waveguide crossing,” IEEE Photon. Technol. Lett. 25(5), 422–425 (2013).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (7)

J. Van Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–24029 (2009).
[Crossref] [PubMed]

Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
[Crossref] [PubMed]

K. Suzuki, H. C. Nguyen, T. Tamanuki, F. Shinobu, Y. Saito, Y. Sakai, and T. Baba, “Slow-light-based variable symbol-rate silicon photonics DQPSK receiver,” Opt. Express 20(4), 4796–4804 (2012).
[Crossref] [PubMed]

L. Chen and Y.-K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
[Crossref] [PubMed]

S.-H. Kim, G. Cong, H. Kawashima, T. Hasama, and H. Ishikawa, “Tilted MMI crossings based on silicon wire waveguide,” Opt. Express 22(3), 2545–2552 (2014).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

S.-H. Kim, K. Tanizawa, Y. Shoji, G. Cong, K. Suzuki, K. Ikeda, H. Ishikawa, S. Namiki, and H. Kawashima, “Compact 2 × 2 polarization-diversity Si-wire switch,” Opt. Express 22(24), 29818–29826 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (4)

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2006), paper Tu.4.4.3.
[Crossref]

S. Nakamura, S. Takahashi, M. Sakauchi, T. Hino, M. Yu, and G. Lo, “Wavelength selective switching with one-chip silicon photonic circuit including 8 × 8 matrix switch,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2011), paper OTuM2.
[Crossref]

K. Suzuki, G. Cong, K. Tanizawa, S.-H. Kim, S. Namiki, and H. Kawashima, “50-dB extinction-ratio in 2×2 silicon optical switch with variable splitter,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM4G.2.

M. Kawauchi, N. Takado, and K. Jinguji, “Waveguide type optical interferometer,” Patent abstract of Japan, 62–183406, 1987.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Structure of conventional 2 × 2 Mach-Zehnder switch. DC: directional coupler. PS: phase shifter. θ1 and θ2 are products of the coupling coefficients and coupling length. ϕ is the phase shift.
Fig. 2
Fig. 2 Structure of proposed switch. PS: phase shifter. DC: directional coupler.
Fig. 3
Fig. 3 (a) Calculated bar-port output characteristics against power applied to PS2. (b) Calculated contour plot of bar-port output power against power applied to both phase shifters.
Fig. 4
Fig. 4 (top) Calculated bar-port transmission spectra of conventional Mach-Zehnder switch (grey line) and proposed switch (dark line). (bottom) Applied power for cross state in proposed switch. The applied power for the cross state in the conventional switch is zero. The splitting ratios of the two couplers are: (a) 60:40, (b) 50:50, and (c) 40:60.
Fig. 5
Fig. 5 (a) Microscopic image of fabricated 2 × 2 switch. The heater is 5-μm wide, 0.1-μm thick, and 50-μm long. The heater resistance is ~60 Ω. (b) Scanning electron microscope image of directional coupler.
Fig. 6
Fig. 6 Experimental setup for measuring bar-port output characteristics. Pol. ER: polarization extinction-ratio. SMSR: sub-mode suppression-ratio. PBS: polarization beam-splitter.
Fig. 7
Fig. 7 Bar-port output characteristics of (a) conventional Mach-Zehnder switch and (b) proposed switch.
Fig. 8
Fig. 8 (Top) Bar-port transmission spectra of proposed switch. (Bottom) Electric powers applied to phase shifters for cross state. Designed coupler splitting ratio: (a) 60:40, (b) 50:50, and (c) 40:60.

Metrics