Abstract

Herein, charged microbeads handled with optical tweezers are used as a sensitive probe for simultaneous measurements of electrophoretic and dielectrophoretic forces. We first determine the electric charge carried by a single bead by keeping it in a predictable uniform electric field produced by two parallel planar electrodes, then, we examine same bead’s response in proximity to a tip electrode. In this case, besides electric forces, the bead simultaneously experiences non-negligible dielectrophoretic forces produced by the strong electric field gradient. The stochastic and deterministic motions of the trapped bead are theoretically and experimentally analysed in terms of the autocorrelation function. By fitting the experimental data, we are able to extract simultaneously the spatial distribution of electrophoretic and dielectrophoretic forces around the tip. Our approach can be used for determining actual, total force components in the presence of high-curvature electrodes or metal scanning probe tips.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Proper measurement of pure dielectrophoresis force acting on a RBC using optical tweezers

Mehrzad Sasanpour, Ali Azadbakht, Parisa Mollaei, and S. Nader S. Reihani
Biomed. Opt. Express 10(11) 5639-5649 (2019)

Quantitative measurements of absolute dielectrophoretic forces using optical tweezers

Yoochan Hong, Jin-Woo Pyo, Sang Hyun Baek, Sang Woo Lee, Dae Sung Yoon, Kwangsoo No, and Beop-Min Kim
Opt. Lett. 35(14) 2493-2495 (2010)

Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment

Chaoyang Ti, Gawain M Thomas, Yundong Ren, Rui Zhang, Qi Wen, and Yuxiang Liu
Biomed. Opt. Express 6(7) 2325-2336 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22, 869–871 (1951).
    [Crossref]
  2. H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29, 1182–1188 (1958).
    [Crossref]
  3. T. Kodama, T. Osaki, R. Kawano, K. Kamiya, N. Miki, and S. Takeuchi, “Round-tip dielectrophoresis-based tweezers for single micro-object manipulation,” Biosens. Bioelectron. 47, 206–212 (2013).
    [Crossref] [PubMed]
  4. P. Cheng, M. J. Barrett, P. M. Oliver, D. Cetin, and D. Vezenov, “Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format,” Lab Chip 11, 4248–4259 (2011).
    [Crossref] [PubMed]
  5. C. H. Kua, Y. C. Lam, I. Rodriguez, C. Yang, and K. Youcef-Toumi, “Cell motion model for moving dielectrophoresis,” Anal. Chem. 80, 5454–5461 (2008).
    [Crossref] [PubMed]
  6. R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4, 022811 (2010).
    [Crossref]
  7. T. Schnelle, T. Mller, S. Fiedler, S. Shirley, K. Ludwig, A. Herrmann, G. Fuhr, B. Wagner, and U. Zimmermann, “Trapping of viruses in high-frequency electric field cages,” Naturwissenschaften 83, 172–176 (1996).
    [Crossref] [PubMed]
  8. T. Hunt and R. Westervelt, “Dielectrophoresis tweezers for single cell manipulation,” Biomed. Microdevices 8, 227–230 (2006).
    [Crossref] [PubMed]
  9. D. S. Gray, J. L. Tan, J. Voldman, and C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosens. Bioelectron. 19, 1765–1774 (2004).
    [Crossref] [PubMed]
  10. C. Iliescu, G. Tresset, and G. Xu, “Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes,” Appl. Phys. Lett. 90, 234104 (2007).
    [Crossref]
  11. N. Demierre, T. Braschler, P. Linderholm, U. Seger, H. van Lintel, and P. Renaud, “Characterization and optimization of liquid electrodes for lateral dielectrophoresis,” Lab Chip 7, 355–365 (2007).
    [Crossref] [PubMed]
  12. K. Lee, S. G. Kwon, S. H. Kim, and Y. K. Kwak, “Dielectrophoretic tweezers using sharp probe electrode,” Sens. Actuat. A: Phys. 136, 154–160 (2007).
    [Crossref]
  13. A. Ashkin, J. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref] [PubMed]
  14. G. Fuhr, T. Schnelle, T. Müller, H. Hitzler, S. Monajembashi, and K.-O. Greulich, “Force measurements of optical tweezers in electro-optical cages,” Appl. Phys. A 67, 385–390 (1998).
    [Crossref]
  15. T. Schnelle, T. Mller, R. Hagedorn, A. Voigt, and G. Fuhr, “Single micro electrode dielectrophoretic tweezers for manipulation of suspended cells and particles,” Biochim. Biophys. Acta 1428, 99–105 (1999).
    [Crossref] [PubMed]
  16. E. Papagiakoumou, D. Pietreanu, M. I. Makropoulou, E. Kovacs, and A. A. Serafetinides, “Evaluation of trapping efficiency of optical tweezers by dielectrophoresis,” J. Biomed. Opt. 11, 014035 (2006).
    [Crossref] [PubMed]
  17. M. E. Arsenault, Y. Sun, H. H. Bau, and Y. E. Goldman, “Using electrical and optical tweezers to facilitate studies of molecular motors,” Phys. Chem. Chem. Phys. 11, 4834–4839 (2009).
    [Crossref] [PubMed]
  18. M.-T. Wei, J. Junio, and H. D. Ou-Yang, “Direct measurements of the frequency-dependent dielectrophoresis force,” Biomicrofluidics 3, 12003 (2009).
    [Crossref]
  19. Y. Hong, J.-W. Pyo, S. H. Baek, S. W. Lee, D. S. Yoon, K. No, and B.-M. Kim, “Quantitative measurements of absolute dielectrophoretic forces using optical tweezers,” Opt. Lett. 35, 2493–2495 (2010).
    [Crossref] [PubMed]
  20. X. Zhu, H. Yi, and Z. Ni, “Frequency-dependent behaviors of individual microscopic particles in an optically induced dielectrophoresis device,” Biomicrofluidics 4, 013202 (2010).
    [Crossref]
  21. R. Galneder, V. Kahl, A. Arbuzova, M. Rebecchi, J. O. Rädler, and S. McLaughlin, “Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology,” Biophys. J. 80, 2298–2309 (2001).
    [Crossref] [PubMed]
  22. G. S. Roberts, T. A. Wood, W. J. Frith, and P. Bartlett, “Direct measurement of the effective charge in nonpolar suspensions by optical tracking of single particles,” J. Chem. Phys. 126, 194503 (2007).
    [Crossref]
  23. I. Semenov, O. Otto, G. Stober, P. Papadopoulos, U. F. Keyser, and F. Kremer, “Single colloid electrophoresis,” J. Colloid. Interf. Sci. 337, 260–264 (2009).
    [Crossref]
  24. F. Beunis, F. Strubbe, K. Neyts, and D. Petrov, “Beyond Millikan: The Dynamics of Charging Events on Individual Colloidal Particles,” Phys. Rev. Lett. 108, 016101 (2012).
    [Crossref] [PubMed]
  25. G. Pesce, V. Lisbino, G. Rusciano, and A. Sasso, “Optical manipulation of charged microparticles in polar fluids,” Electrophoresis 34, 3141–4149 (2013).
    [Crossref]
  26. G. Pesce, G. Rusciano, A. Sasso, R. Isticato, T. Sirec, and E. Ricca, “Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers,” Colloid Surface B 116, 568–575 (2014).
    [Crossref]
  27. G. Pesce, B. Mandracchia, E. Orabona, G. Rusciano, L. De Stefano, and A. Sasso, “Mapping electric fields generated by microelectrodes using optically trapped charged microspheres,” Lab Chip 11, 4113–4116 (2011).
    [Crossref] [PubMed]
  28. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23, 7–9 (1998).
    [Crossref]
  29. K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instr. 75, 594–612 (2004).
    [Crossref]
  30. A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun. 230, 357–368 (2004).
    [Crossref]
  31. G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
    [Crossref] [PubMed]

2014 (2)

G. Pesce, G. Rusciano, A. Sasso, R. Isticato, T. Sirec, and E. Ricca, “Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers,” Colloid Surface B 116, 568–575 (2014).
[Crossref]

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

2013 (2)

G. Pesce, V. Lisbino, G. Rusciano, and A. Sasso, “Optical manipulation of charged microparticles in polar fluids,” Electrophoresis 34, 3141–4149 (2013).
[Crossref]

T. Kodama, T. Osaki, R. Kawano, K. Kamiya, N. Miki, and S. Takeuchi, “Round-tip dielectrophoresis-based tweezers for single micro-object manipulation,” Biosens. Bioelectron. 47, 206–212 (2013).
[Crossref] [PubMed]

2012 (1)

F. Beunis, F. Strubbe, K. Neyts, and D. Petrov, “Beyond Millikan: The Dynamics of Charging Events on Individual Colloidal Particles,” Phys. Rev. Lett. 108, 016101 (2012).
[Crossref] [PubMed]

2011 (2)

G. Pesce, B. Mandracchia, E. Orabona, G. Rusciano, L. De Stefano, and A. Sasso, “Mapping electric fields generated by microelectrodes using optically trapped charged microspheres,” Lab Chip 11, 4113–4116 (2011).
[Crossref] [PubMed]

P. Cheng, M. J. Barrett, P. M. Oliver, D. Cetin, and D. Vezenov, “Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format,” Lab Chip 11, 4248–4259 (2011).
[Crossref] [PubMed]

2010 (3)

R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4, 022811 (2010).
[Crossref]

Y. Hong, J.-W. Pyo, S. H. Baek, S. W. Lee, D. S. Yoon, K. No, and B.-M. Kim, “Quantitative measurements of absolute dielectrophoretic forces using optical tweezers,” Opt. Lett. 35, 2493–2495 (2010).
[Crossref] [PubMed]

X. Zhu, H. Yi, and Z. Ni, “Frequency-dependent behaviors of individual microscopic particles in an optically induced dielectrophoresis device,” Biomicrofluidics 4, 013202 (2010).
[Crossref]

2009 (3)

I. Semenov, O. Otto, G. Stober, P. Papadopoulos, U. F. Keyser, and F. Kremer, “Single colloid electrophoresis,” J. Colloid. Interf. Sci. 337, 260–264 (2009).
[Crossref]

M. E. Arsenault, Y. Sun, H. H. Bau, and Y. E. Goldman, “Using electrical and optical tweezers to facilitate studies of molecular motors,” Phys. Chem. Chem. Phys. 11, 4834–4839 (2009).
[Crossref] [PubMed]

M.-T. Wei, J. Junio, and H. D. Ou-Yang, “Direct measurements of the frequency-dependent dielectrophoresis force,” Biomicrofluidics 3, 12003 (2009).
[Crossref]

2008 (1)

C. H. Kua, Y. C. Lam, I. Rodriguez, C. Yang, and K. Youcef-Toumi, “Cell motion model for moving dielectrophoresis,” Anal. Chem. 80, 5454–5461 (2008).
[Crossref] [PubMed]

2007 (4)

C. Iliescu, G. Tresset, and G. Xu, “Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes,” Appl. Phys. Lett. 90, 234104 (2007).
[Crossref]

N. Demierre, T. Braschler, P. Linderholm, U. Seger, H. van Lintel, and P. Renaud, “Characterization and optimization of liquid electrodes for lateral dielectrophoresis,” Lab Chip 7, 355–365 (2007).
[Crossref] [PubMed]

K. Lee, S. G. Kwon, S. H. Kim, and Y. K. Kwak, “Dielectrophoretic tweezers using sharp probe electrode,” Sens. Actuat. A: Phys. 136, 154–160 (2007).
[Crossref]

G. S. Roberts, T. A. Wood, W. J. Frith, and P. Bartlett, “Direct measurement of the effective charge in nonpolar suspensions by optical tracking of single particles,” J. Chem. Phys. 126, 194503 (2007).
[Crossref]

2006 (2)

E. Papagiakoumou, D. Pietreanu, M. I. Makropoulou, E. Kovacs, and A. A. Serafetinides, “Evaluation of trapping efficiency of optical tweezers by dielectrophoresis,” J. Biomed. Opt. 11, 014035 (2006).
[Crossref] [PubMed]

T. Hunt and R. Westervelt, “Dielectrophoresis tweezers for single cell manipulation,” Biomed. Microdevices 8, 227–230 (2006).
[Crossref] [PubMed]

2004 (3)

D. S. Gray, J. L. Tan, J. Voldman, and C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosens. Bioelectron. 19, 1765–1774 (2004).
[Crossref] [PubMed]

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instr. 75, 594–612 (2004).
[Crossref]

A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun. 230, 357–368 (2004).
[Crossref]

2001 (1)

R. Galneder, V. Kahl, A. Arbuzova, M. Rebecchi, J. O. Rädler, and S. McLaughlin, “Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology,” Biophys. J. 80, 2298–2309 (2001).
[Crossref] [PubMed]

1999 (1)

T. Schnelle, T. Mller, R. Hagedorn, A. Voigt, and G. Fuhr, “Single micro electrode dielectrophoretic tweezers for manipulation of suspended cells and particles,” Biochim. Biophys. Acta 1428, 99–105 (1999).
[Crossref] [PubMed]

1998 (2)

G. Fuhr, T. Schnelle, T. Müller, H. Hitzler, S. Monajembashi, and K.-O. Greulich, “Force measurements of optical tweezers in electro-optical cages,” Appl. Phys. A 67, 385–390 (1998).
[Crossref]

F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23, 7–9 (1998).
[Crossref]

1996 (1)

T. Schnelle, T. Mller, S. Fiedler, S. Shirley, K. Ludwig, A. Herrmann, G. Fuhr, B. Wagner, and U. Zimmermann, “Trapping of viruses in high-frequency electric field cages,” Naturwissenschaften 83, 172–176 (1996).
[Crossref] [PubMed]

1986 (1)

1958 (1)

H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29, 1182–1188 (1958).
[Crossref]

1951 (1)

H. A. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22, 869–871 (1951).
[Crossref]

Arbuzova, A.

R. Galneder, V. Kahl, A. Arbuzova, M. Rebecchi, J. O. Rädler, and S. McLaughlin, “Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology,” Biophys. J. 80, 2298–2309 (2001).
[Crossref] [PubMed]

Arsenault, M. E.

M. E. Arsenault, Y. Sun, H. H. Bau, and Y. E. Goldman, “Using electrical and optical tweezers to facilitate studies of molecular motors,” Phys. Chem. Chem. Phys. 11, 4834–4839 (2009).
[Crossref] [PubMed]

Ashkin, A.

Baek, S. H.

Bailo, E.

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

Barrett, M. J.

P. Cheng, M. J. Barrett, P. M. Oliver, D. Cetin, and D. Vezenov, “Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format,” Lab Chip 11, 4248–4259 (2011).
[Crossref] [PubMed]

Bartlett, P.

G. S. Roberts, T. A. Wood, W. J. Frith, and P. Bartlett, “Direct measurement of the effective charge in nonpolar suspensions by optical tracking of single particles,” J. Chem. Phys. 126, 194503 (2007).
[Crossref]

Bau, H. H.

M. E. Arsenault, Y. Sun, H. H. Bau, and Y. E. Goldman, “Using electrical and optical tweezers to facilitate studies of molecular motors,” Phys. Chem. Chem. Phys. 11, 4834–4839 (2009).
[Crossref] [PubMed]

Berg-Sorensen, K.

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instr. 75, 594–612 (2004).
[Crossref]

Beunis, F.

F. Beunis, F. Strubbe, K. Neyts, and D. Petrov, “Beyond Millikan: The Dynamics of Charging Events on Individual Colloidal Particles,” Phys. Rev. Lett. 108, 016101 (2012).
[Crossref] [PubMed]

Bjorkholm, J. E.

Braschler, T.

N. Demierre, T. Braschler, P. Linderholm, U. Seger, H. van Lintel, and P. Renaud, “Characterization and optimization of liquid electrodes for lateral dielectrophoresis,” Lab Chip 7, 355–365 (2007).
[Crossref] [PubMed]

Buosciolo, A.

A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun. 230, 357–368 (2004).
[Crossref]

Cetin, D.

P. Cheng, M. J. Barrett, P. M. Oliver, D. Cetin, and D. Vezenov, “Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format,” Lab Chip 11, 4248–4259 (2011).
[Crossref] [PubMed]

Chen, C. S.

D. S. Gray, J. L. Tan, J. Voldman, and C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosens. Bioelectron. 19, 1765–1774 (2004).
[Crossref] [PubMed]

Cheng, P.

P. Cheng, M. J. Barrett, P. M. Oliver, D. Cetin, and D. Vezenov, “Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format,” Lab Chip 11, 4248–4259 (2011).
[Crossref] [PubMed]

Chu, S.

De Stefano, L.

G. Pesce, B. Mandracchia, E. Orabona, G. Rusciano, L. De Stefano, and A. Sasso, “Mapping electric fields generated by microelectrodes using optically trapped charged microspheres,” Lab Chip 11, 4113–4116 (2011).
[Crossref] [PubMed]

Demierre, N.

N. Demierre, T. Braschler, P. Linderholm, U. Seger, H. van Lintel, and P. Renaud, “Characterization and optimization of liquid electrodes for lateral dielectrophoresis,” Lab Chip 7, 355–365 (2007).
[Crossref] [PubMed]

Dziedzic, J.

Fiedler, S.

T. Schnelle, T. Mller, S. Fiedler, S. Shirley, K. Ludwig, A. Herrmann, G. Fuhr, B. Wagner, and U. Zimmermann, “Trapping of viruses in high-frequency electric field cages,” Naturwissenschaften 83, 172–176 (1996).
[Crossref] [PubMed]

Flyvbjerg, H.

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instr. 75, 594–612 (2004).
[Crossref]

Frith, W. J.

G. S. Roberts, T. A. Wood, W. J. Frith, and P. Bartlett, “Direct measurement of the effective charge in nonpolar suspensions by optical tracking of single particles,” J. Chem. Phys. 126, 194503 (2007).
[Crossref]

Fuhr, G.

T. Schnelle, T. Mller, R. Hagedorn, A. Voigt, and G. Fuhr, “Single micro electrode dielectrophoretic tweezers for manipulation of suspended cells and particles,” Biochim. Biophys. Acta 1428, 99–105 (1999).
[Crossref] [PubMed]

G. Fuhr, T. Schnelle, T. Müller, H. Hitzler, S. Monajembashi, and K.-O. Greulich, “Force measurements of optical tweezers in electro-optical cages,” Appl. Phys. A 67, 385–390 (1998).
[Crossref]

T. Schnelle, T. Mller, S. Fiedler, S. Shirley, K. Ludwig, A. Herrmann, G. Fuhr, B. Wagner, and U. Zimmermann, “Trapping of viruses in high-frequency electric field cages,” Naturwissenschaften 83, 172–176 (1996).
[Crossref] [PubMed]

Galneder, R.

R. Galneder, V. Kahl, A. Arbuzova, M. Rebecchi, J. O. Rädler, and S. McLaughlin, “Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology,” Biophys. J. 80, 2298–2309 (2001).
[Crossref] [PubMed]

Gittes, F.

Goldman, Y. E.

M. E. Arsenault, Y. Sun, H. H. Bau, and Y. E. Goldman, “Using electrical and optical tweezers to facilitate studies of molecular motors,” Phys. Chem. Chem. Phys. 11, 4834–4839 (2009).
[Crossref] [PubMed]

Gray, D. S.

D. S. Gray, J. L. Tan, J. Voldman, and C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosens. Bioelectron. 19, 1765–1774 (2004).
[Crossref] [PubMed]

Greulich, K.-O.

G. Fuhr, T. Schnelle, T. Müller, H. Hitzler, S. Monajembashi, and K.-O. Greulich, “Force measurements of optical tweezers in electro-optical cages,” Appl. Phys. A 67, 385–390 (1998).
[Crossref]

Hagedorn, R.

T. Schnelle, T. Mller, R. Hagedorn, A. Voigt, and G. Fuhr, “Single micro electrode dielectrophoretic tweezers for manipulation of suspended cells and particles,” Biochim. Biophys. Acta 1428, 99–105 (1999).
[Crossref] [PubMed]

Herrmann, A.

T. Schnelle, T. Mller, S. Fiedler, S. Shirley, K. Ludwig, A. Herrmann, G. Fuhr, B. Wagner, and U. Zimmermann, “Trapping of viruses in high-frequency electric field cages,” Naturwissenschaften 83, 172–176 (1996).
[Crossref] [PubMed]

Hitzler, H.

G. Fuhr, T. Schnelle, T. Müller, H. Hitzler, S. Monajembashi, and K.-O. Greulich, “Force measurements of optical tweezers in electro-optical cages,” Appl. Phys. A 67, 385–390 (1998).
[Crossref]

Hong, Y.

Hunt, T.

T. Hunt and R. Westervelt, “Dielectrophoresis tweezers for single cell manipulation,” Biomed. Microdevices 8, 227–230 (2006).
[Crossref] [PubMed]

Iliescu, C.

C. Iliescu, G. Tresset, and G. Xu, “Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes,” Appl. Phys. Lett. 90, 234104 (2007).
[Crossref]

Isticato, R.

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

G. Pesce, G. Rusciano, A. Sasso, R. Isticato, T. Sirec, and E. Ricca, “Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers,” Colloid Surface B 116, 568–575 (2014).
[Crossref]

Junio, J.

M.-T. Wei, J. Junio, and H. D. Ou-Yang, “Direct measurements of the frequency-dependent dielectrophoresis force,” Biomicrofluidics 3, 12003 (2009).
[Crossref]

Kahl, V.

R. Galneder, V. Kahl, A. Arbuzova, M. Rebecchi, J. O. Rädler, and S. McLaughlin, “Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology,” Biophys. J. 80, 2298–2309 (2001).
[Crossref] [PubMed]

Kamiya, K.

T. Kodama, T. Osaki, R. Kawano, K. Kamiya, N. Miki, and S. Takeuchi, “Round-tip dielectrophoresis-based tweezers for single micro-object manipulation,” Biosens. Bioelectron. 47, 206–212 (2013).
[Crossref] [PubMed]

Kawano, R.

T. Kodama, T. Osaki, R. Kawano, K. Kamiya, N. Miki, and S. Takeuchi, “Round-tip dielectrophoresis-based tweezers for single micro-object manipulation,” Biosens. Bioelectron. 47, 206–212 (2013).
[Crossref] [PubMed]

Keyser, U. F.

I. Semenov, O. Otto, G. Stober, P. Papadopoulos, U. F. Keyser, and F. Kremer, “Single colloid electrophoresis,” J. Colloid. Interf. Sci. 337, 260–264 (2009).
[Crossref]

Kim, B.-M.

Kim, S. H.

K. Lee, S. G. Kwon, S. H. Kim, and Y. K. Kwak, “Dielectrophoretic tweezers using sharp probe electrode,” Sens. Actuat. A: Phys. 136, 154–160 (2007).
[Crossref]

Kodama, T.

T. Kodama, T. Osaki, R. Kawano, K. Kamiya, N. Miki, and S. Takeuchi, “Round-tip dielectrophoresis-based tweezers for single micro-object manipulation,” Biosens. Bioelectron. 47, 206–212 (2013).
[Crossref] [PubMed]

Kovacs, E.

E. Papagiakoumou, D. Pietreanu, M. I. Makropoulou, E. Kovacs, and A. A. Serafetinides, “Evaluation of trapping efficiency of optical tweezers by dielectrophoresis,” J. Biomed. Opt. 11, 014035 (2006).
[Crossref] [PubMed]

Kremer, F.

I. Semenov, O. Otto, G. Stober, P. Papadopoulos, U. F. Keyser, and F. Kremer, “Single colloid electrophoresis,” J. Colloid. Interf. Sci. 337, 260–264 (2009).
[Crossref]

Kua, C. H.

C. H. Kua, Y. C. Lam, I. Rodriguez, C. Yang, and K. Youcef-Toumi, “Cell motion model for moving dielectrophoresis,” Anal. Chem. 80, 5454–5461 (2008).
[Crossref] [PubMed]

Kwak, Y. K.

K. Lee, S. G. Kwon, S. H. Kim, and Y. K. Kwak, “Dielectrophoretic tweezers using sharp probe electrode,” Sens. Actuat. A: Phys. 136, 154–160 (2007).
[Crossref]

Kwon, S. G.

K. Lee, S. G. Kwon, S. H. Kim, and Y. K. Kwak, “Dielectrophoretic tweezers using sharp probe electrode,” Sens. Actuat. A: Phys. 136, 154–160 (2007).
[Crossref]

Lam, Y. C.

C. H. Kua, Y. C. Lam, I. Rodriguez, C. Yang, and K. Youcef-Toumi, “Cell motion model for moving dielectrophoresis,” Anal. Chem. 80, 5454–5461 (2008).
[Crossref] [PubMed]

Lee, K.

K. Lee, S. G. Kwon, S. H. Kim, and Y. K. Kwak, “Dielectrophoretic tweezers using sharp probe electrode,” Sens. Actuat. A: Phys. 136, 154–160 (2007).
[Crossref]

Lee, S. W.

Linderholm, P.

N. Demierre, T. Braschler, P. Linderholm, U. Seger, H. van Lintel, and P. Renaud, “Characterization and optimization of liquid electrodes for lateral dielectrophoresis,” Lab Chip 7, 355–365 (2007).
[Crossref] [PubMed]

Lisbino, V.

G. Pesce, V. Lisbino, G. Rusciano, and A. Sasso, “Optical manipulation of charged microparticles in polar fluids,” Electrophoresis 34, 3141–4149 (2013).
[Crossref]

Ludwig, K.

T. Schnelle, T. Mller, S. Fiedler, S. Shirley, K. Ludwig, A. Herrmann, G. Fuhr, B. Wagner, and U. Zimmermann, “Trapping of viruses in high-frequency electric field cages,” Naturwissenschaften 83, 172–176 (1996).
[Crossref] [PubMed]

Makropoulou, M. I.

E. Papagiakoumou, D. Pietreanu, M. I. Makropoulou, E. Kovacs, and A. A. Serafetinides, “Evaluation of trapping efficiency of optical tweezers by dielectrophoresis,” J. Biomed. Opt. 11, 014035 (2006).
[Crossref] [PubMed]

Mandracchia, B.

G. Pesce, B. Mandracchia, E. Orabona, G. Rusciano, L. De Stefano, and A. Sasso, “Mapping electric fields generated by microelectrodes using optically trapped charged microspheres,” Lab Chip 11, 4113–4116 (2011).
[Crossref] [PubMed]

McLaughlin, S.

R. Galneder, V. Kahl, A. Arbuzova, M. Rebecchi, J. O. Rädler, and S. McLaughlin, “Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology,” Biophys. J. 80, 2298–2309 (2001).
[Crossref] [PubMed]

Miki, N.

T. Kodama, T. Osaki, R. Kawano, K. Kamiya, N. Miki, and S. Takeuchi, “Round-tip dielectrophoresis-based tweezers for single micro-object manipulation,” Biosens. Bioelectron. 47, 206–212 (2013).
[Crossref] [PubMed]

Mller, T.

T. Schnelle, T. Mller, R. Hagedorn, A. Voigt, and G. Fuhr, “Single micro electrode dielectrophoretic tweezers for manipulation of suspended cells and particles,” Biochim. Biophys. Acta 1428, 99–105 (1999).
[Crossref] [PubMed]

T. Schnelle, T. Mller, S. Fiedler, S. Shirley, K. Ludwig, A. Herrmann, G. Fuhr, B. Wagner, and U. Zimmermann, “Trapping of viruses in high-frequency electric field cages,” Naturwissenschaften 83, 172–176 (1996).
[Crossref] [PubMed]

Monajembashi, S.

G. Fuhr, T. Schnelle, T. Müller, H. Hitzler, S. Monajembashi, and K.-O. Greulich, “Force measurements of optical tweezers in electro-optical cages,” Appl. Phys. A 67, 385–390 (1998).
[Crossref]

Müller, T.

G. Fuhr, T. Schnelle, T. Müller, H. Hitzler, S. Monajembashi, and K.-O. Greulich, “Force measurements of optical tweezers in electro-optical cages,” Appl. Phys. A 67, 385–390 (1998).
[Crossref]

Neyts, K.

F. Beunis, F. Strubbe, K. Neyts, and D. Petrov, “Beyond Millikan: The Dynamics of Charging Events on Individual Colloidal Particles,” Phys. Rev. Lett. 108, 016101 (2012).
[Crossref] [PubMed]

Ni, Z.

X. Zhu, H. Yi, and Z. Ni, “Frequency-dependent behaviors of individual microscopic particles in an optically induced dielectrophoresis device,” Biomicrofluidics 4, 013202 (2010).
[Crossref]

No, K.

Oliver, P. M.

P. Cheng, M. J. Barrett, P. M. Oliver, D. Cetin, and D. Vezenov, “Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format,” Lab Chip 11, 4248–4259 (2011).
[Crossref] [PubMed]

Orabona, E.

G. Pesce, B. Mandracchia, E. Orabona, G. Rusciano, L. De Stefano, and A. Sasso, “Mapping electric fields generated by microelectrodes using optically trapped charged microspheres,” Lab Chip 11, 4113–4116 (2011).
[Crossref] [PubMed]

Osaki, T.

T. Kodama, T. Osaki, R. Kawano, K. Kamiya, N. Miki, and S. Takeuchi, “Round-tip dielectrophoresis-based tweezers for single micro-object manipulation,” Biosens. Bioelectron. 47, 206–212 (2013).
[Crossref] [PubMed]

Otto, O.

I. Semenov, O. Otto, G. Stober, P. Papadopoulos, U. F. Keyser, and F. Kremer, “Single colloid electrophoresis,” J. Colloid. Interf. Sci. 337, 260–264 (2009).
[Crossref]

Ou-Yang, H. D.

M.-T. Wei, J. Junio, and H. D. Ou-Yang, “Direct measurements of the frequency-dependent dielectrophoresis force,” Biomicrofluidics 3, 12003 (2009).
[Crossref]

Papadopoulos, P.

I. Semenov, O. Otto, G. Stober, P. Papadopoulos, U. F. Keyser, and F. Kremer, “Single colloid electrophoresis,” J. Colloid. Interf. Sci. 337, 260–264 (2009).
[Crossref]

Papagiakoumou, E.

E. Papagiakoumou, D. Pietreanu, M. I. Makropoulou, E. Kovacs, and A. A. Serafetinides, “Evaluation of trapping efficiency of optical tweezers by dielectrophoresis,” J. Biomed. Opt. 11, 014035 (2006).
[Crossref] [PubMed]

Pesce, G.

G. Pesce, G. Rusciano, A. Sasso, R. Isticato, T. Sirec, and E. Ricca, “Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers,” Colloid Surface B 116, 568–575 (2014).
[Crossref]

G. Pesce, V. Lisbino, G. Rusciano, and A. Sasso, “Optical manipulation of charged microparticles in polar fluids,” Electrophoresis 34, 3141–4149 (2013).
[Crossref]

G. Pesce, B. Mandracchia, E. Orabona, G. Rusciano, L. De Stefano, and A. Sasso, “Mapping electric fields generated by microelectrodes using optically trapped charged microspheres,” Lab Chip 11, 4113–4116 (2011).
[Crossref] [PubMed]

A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun. 230, 357–368 (2004).
[Crossref]

Pethig, R.

R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4, 022811 (2010).
[Crossref]

Petrov, D.

F. Beunis, F. Strubbe, K. Neyts, and D. Petrov, “Beyond Millikan: The Dynamics of Charging Events on Individual Colloidal Particles,” Phys. Rev. Lett. 108, 016101 (2012).
[Crossref] [PubMed]

Pietreanu, D.

E. Papagiakoumou, D. Pietreanu, M. I. Makropoulou, E. Kovacs, and A. A. Serafetinides, “Evaluation of trapping efficiency of optical tweezers by dielectrophoresis,” J. Biomed. Opt. 11, 014035 (2006).
[Crossref] [PubMed]

Pohl, H. A.

H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29, 1182–1188 (1958).
[Crossref]

H. A. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22, 869–871 (1951).
[Crossref]

Pyo, J.-W.

Rädler, J. O.

R. Galneder, V. Kahl, A. Arbuzova, M. Rebecchi, J. O. Rädler, and S. McLaughlin, “Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology,” Biophys. J. 80, 2298–2309 (2001).
[Crossref] [PubMed]

Rebecchi, M.

R. Galneder, V. Kahl, A. Arbuzova, M. Rebecchi, J. O. Rädler, and S. McLaughlin, “Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology,” Biophys. J. 80, 2298–2309 (2001).
[Crossref] [PubMed]

Renaud, P.

N. Demierre, T. Braschler, P. Linderholm, U. Seger, H. van Lintel, and P. Renaud, “Characterization and optimization of liquid electrodes for lateral dielectrophoresis,” Lab Chip 7, 355–365 (2007).
[Crossref] [PubMed]

Ricca, E.

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

G. Pesce, G. Rusciano, A. Sasso, R. Isticato, T. Sirec, and E. Ricca, “Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers,” Colloid Surface B 116, 568–575 (2014).
[Crossref]

Roberts, G. S.

G. S. Roberts, T. A. Wood, W. J. Frith, and P. Bartlett, “Direct measurement of the effective charge in nonpolar suspensions by optical tracking of single particles,” J. Chem. Phys. 126, 194503 (2007).
[Crossref]

Rodriguez, I.

C. H. Kua, Y. C. Lam, I. Rodriguez, C. Yang, and K. Youcef-Toumi, “Cell motion model for moving dielectrophoresis,” Anal. Chem. 80, 5454–5461 (2008).
[Crossref] [PubMed]

Rusciano, G.

G. Pesce, G. Rusciano, A. Sasso, R. Isticato, T. Sirec, and E. Ricca, “Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers,” Colloid Surface B 116, 568–575 (2014).
[Crossref]

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

G. Pesce, V. Lisbino, G. Rusciano, and A. Sasso, “Optical manipulation of charged microparticles in polar fluids,” Electrophoresis 34, 3141–4149 (2013).
[Crossref]

G. Pesce, B. Mandracchia, E. Orabona, G. Rusciano, L. De Stefano, and A. Sasso, “Mapping electric fields generated by microelectrodes using optically trapped charged microspheres,” Lab Chip 11, 4113–4116 (2011).
[Crossref] [PubMed]

Sasso, A.

G. Pesce, G. Rusciano, A. Sasso, R. Isticato, T. Sirec, and E. Ricca, “Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers,” Colloid Surface B 116, 568–575 (2014).
[Crossref]

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

G. Pesce, V. Lisbino, G. Rusciano, and A. Sasso, “Optical manipulation of charged microparticles in polar fluids,” Electrophoresis 34, 3141–4149 (2013).
[Crossref]

G. Pesce, B. Mandracchia, E. Orabona, G. Rusciano, L. De Stefano, and A. Sasso, “Mapping electric fields generated by microelectrodes using optically trapped charged microspheres,” Lab Chip 11, 4113–4116 (2011).
[Crossref] [PubMed]

A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun. 230, 357–368 (2004).
[Crossref]

Schmidt, C. F.

Schnelle, T.

T. Schnelle, T. Mller, R. Hagedorn, A. Voigt, and G. Fuhr, “Single micro electrode dielectrophoretic tweezers for manipulation of suspended cells and particles,” Biochim. Biophys. Acta 1428, 99–105 (1999).
[Crossref] [PubMed]

G. Fuhr, T. Schnelle, T. Müller, H. Hitzler, S. Monajembashi, and K.-O. Greulich, “Force measurements of optical tweezers in electro-optical cages,” Appl. Phys. A 67, 385–390 (1998).
[Crossref]

T. Schnelle, T. Mller, S. Fiedler, S. Shirley, K. Ludwig, A. Herrmann, G. Fuhr, B. Wagner, and U. Zimmermann, “Trapping of viruses in high-frequency electric field cages,” Naturwissenschaften 83, 172–176 (1996).
[Crossref] [PubMed]

Seger, U.

N. Demierre, T. Braschler, P. Linderholm, U. Seger, H. van Lintel, and P. Renaud, “Characterization and optimization of liquid electrodes for lateral dielectrophoresis,” Lab Chip 7, 355–365 (2007).
[Crossref] [PubMed]

Semenov, I.

I. Semenov, O. Otto, G. Stober, P. Papadopoulos, U. F. Keyser, and F. Kremer, “Single colloid electrophoresis,” J. Colloid. Interf. Sci. 337, 260–264 (2009).
[Crossref]

Serafetinides, A. A.

E. Papagiakoumou, D. Pietreanu, M. I. Makropoulou, E. Kovacs, and A. A. Serafetinides, “Evaluation of trapping efficiency of optical tweezers by dielectrophoresis,” J. Biomed. Opt. 11, 014035 (2006).
[Crossref] [PubMed]

Shirley, S.

T. Schnelle, T. Mller, S. Fiedler, S. Shirley, K. Ludwig, A. Herrmann, G. Fuhr, B. Wagner, and U. Zimmermann, “Trapping of viruses in high-frequency electric field cages,” Naturwissenschaften 83, 172–176 (1996).
[Crossref] [PubMed]

Sirec, T.

G. Pesce, G. Rusciano, A. Sasso, R. Isticato, T. Sirec, and E. Ricca, “Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers,” Colloid Surface B 116, 568–575 (2014).
[Crossref]

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

Stober, G.

I. Semenov, O. Otto, G. Stober, P. Papadopoulos, U. F. Keyser, and F. Kremer, “Single colloid electrophoresis,” J. Colloid. Interf. Sci. 337, 260–264 (2009).
[Crossref]

Strubbe, F.

F. Beunis, F. Strubbe, K. Neyts, and D. Petrov, “Beyond Millikan: The Dynamics of Charging Events on Individual Colloidal Particles,” Phys. Rev. Lett. 108, 016101 (2012).
[Crossref] [PubMed]

Sun, Y.

M. E. Arsenault, Y. Sun, H. H. Bau, and Y. E. Goldman, “Using electrical and optical tweezers to facilitate studies of molecular motors,” Phys. Chem. Chem. Phys. 11, 4834–4839 (2009).
[Crossref] [PubMed]

Takeuchi, S.

T. Kodama, T. Osaki, R. Kawano, K. Kamiya, N. Miki, and S. Takeuchi, “Round-tip dielectrophoresis-based tweezers for single micro-object manipulation,” Biosens. Bioelectron. 47, 206–212 (2013).
[Crossref] [PubMed]

Tan, J. L.

D. S. Gray, J. L. Tan, J. Voldman, and C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosens. Bioelectron. 19, 1765–1774 (2004).
[Crossref] [PubMed]

Tresset, G.

C. Iliescu, G. Tresset, and G. Xu, “Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes,” Appl. Phys. Lett. 90, 234104 (2007).
[Crossref]

van Lintel, H.

N. Demierre, T. Braschler, P. Linderholm, U. Seger, H. van Lintel, and P. Renaud, “Characterization and optimization of liquid electrodes for lateral dielectrophoresis,” Lab Chip 7, 355–365 (2007).
[Crossref] [PubMed]

Vezenov, D.

P. Cheng, M. J. Barrett, P. M. Oliver, D. Cetin, and D. Vezenov, “Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format,” Lab Chip 11, 4248–4259 (2011).
[Crossref] [PubMed]

Voigt, A.

T. Schnelle, T. Mller, R. Hagedorn, A. Voigt, and G. Fuhr, “Single micro electrode dielectrophoretic tweezers for manipulation of suspended cells and particles,” Biochim. Biophys. Acta 1428, 99–105 (1999).
[Crossref] [PubMed]

Voldman, J.

D. S. Gray, J. L. Tan, J. Voldman, and C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosens. Bioelectron. 19, 1765–1774 (2004).
[Crossref] [PubMed]

Wagner, B.

T. Schnelle, T. Mller, S. Fiedler, S. Shirley, K. Ludwig, A. Herrmann, G. Fuhr, B. Wagner, and U. Zimmermann, “Trapping of viruses in high-frequency electric field cages,” Naturwissenschaften 83, 172–176 (1996).
[Crossref] [PubMed]

Wei, M.-T.

M.-T. Wei, J. Junio, and H. D. Ou-Yang, “Direct measurements of the frequency-dependent dielectrophoresis force,” Biomicrofluidics 3, 12003 (2009).
[Crossref]

Westervelt, R.

T. Hunt and R. Westervelt, “Dielectrophoresis tweezers for single cell manipulation,” Biomed. Microdevices 8, 227–230 (2006).
[Crossref] [PubMed]

Wood, T. A.

G. S. Roberts, T. A. Wood, W. J. Frith, and P. Bartlett, “Direct measurement of the effective charge in nonpolar suspensions by optical tracking of single particles,” J. Chem. Phys. 126, 194503 (2007).
[Crossref]

Xu, G.

C. Iliescu, G. Tresset, and G. Xu, “Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes,” Appl. Phys. Lett. 90, 234104 (2007).
[Crossref]

Yang, C.

C. H. Kua, Y. C. Lam, I. Rodriguez, C. Yang, and K. Youcef-Toumi, “Cell motion model for moving dielectrophoresis,” Anal. Chem. 80, 5454–5461 (2008).
[Crossref] [PubMed]

Yi, H.

X. Zhu, H. Yi, and Z. Ni, “Frequency-dependent behaviors of individual microscopic particles in an optically induced dielectrophoresis device,” Biomicrofluidics 4, 013202 (2010).
[Crossref]

Yoon, D. S.

Youcef-Toumi, K.

C. H. Kua, Y. C. Lam, I. Rodriguez, C. Yang, and K. Youcef-Toumi, “Cell motion model for moving dielectrophoresis,” Anal. Chem. 80, 5454–5461 (2008).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, H. Yi, and Z. Ni, “Frequency-dependent behaviors of individual microscopic particles in an optically induced dielectrophoresis device,” Biomicrofluidics 4, 013202 (2010).
[Crossref]

Zimmermann, U.

T. Schnelle, T. Mller, S. Fiedler, S. Shirley, K. Ludwig, A. Herrmann, G. Fuhr, B. Wagner, and U. Zimmermann, “Trapping of viruses in high-frequency electric field cages,” Naturwissenschaften 83, 172–176 (1996).
[Crossref] [PubMed]

Zito, G.

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

ACS Nano (1)

G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, and A. Sasso, “Nanoscale chemical imaging of bacillus subtilis spores by combining tip-enhanced raman scattering and advanced statistical tools,” ACS Nano 8, 12300–12309 (2014).
[Crossref] [PubMed]

Anal. Chem. (1)

C. H. Kua, Y. C. Lam, I. Rodriguez, C. Yang, and K. Youcef-Toumi, “Cell motion model for moving dielectrophoresis,” Anal. Chem. 80, 5454–5461 (2008).
[Crossref] [PubMed]

Appl. Phys. A (1)

G. Fuhr, T. Schnelle, T. Müller, H. Hitzler, S. Monajembashi, and K.-O. Greulich, “Force measurements of optical tweezers in electro-optical cages,” Appl. Phys. A 67, 385–390 (1998).
[Crossref]

Appl. Phys. Lett. (1)

C. Iliescu, G. Tresset, and G. Xu, “Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes,” Appl. Phys. Lett. 90, 234104 (2007).
[Crossref]

Biochim. Biophys. Acta (1)

T. Schnelle, T. Mller, R. Hagedorn, A. Voigt, and G. Fuhr, “Single micro electrode dielectrophoretic tweezers for manipulation of suspended cells and particles,” Biochim. Biophys. Acta 1428, 99–105 (1999).
[Crossref] [PubMed]

Biomed. Microdevices (1)

T. Hunt and R. Westervelt, “Dielectrophoresis tweezers for single cell manipulation,” Biomed. Microdevices 8, 227–230 (2006).
[Crossref] [PubMed]

Biomicrofluidics (3)

R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4, 022811 (2010).
[Crossref]

M.-T. Wei, J. Junio, and H. D. Ou-Yang, “Direct measurements of the frequency-dependent dielectrophoresis force,” Biomicrofluidics 3, 12003 (2009).
[Crossref]

X. Zhu, H. Yi, and Z. Ni, “Frequency-dependent behaviors of individual microscopic particles in an optically induced dielectrophoresis device,” Biomicrofluidics 4, 013202 (2010).
[Crossref]

Biophys. J. (1)

R. Galneder, V. Kahl, A. Arbuzova, M. Rebecchi, J. O. Rädler, and S. McLaughlin, “Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology,” Biophys. J. 80, 2298–2309 (2001).
[Crossref] [PubMed]

Biosens. Bioelectron. (2)

D. S. Gray, J. L. Tan, J. Voldman, and C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosens. Bioelectron. 19, 1765–1774 (2004).
[Crossref] [PubMed]

T. Kodama, T. Osaki, R. Kawano, K. Kamiya, N. Miki, and S. Takeuchi, “Round-tip dielectrophoresis-based tweezers for single micro-object manipulation,” Biosens. Bioelectron. 47, 206–212 (2013).
[Crossref] [PubMed]

Colloid Surface B (1)

G. Pesce, G. Rusciano, A. Sasso, R. Isticato, T. Sirec, and E. Ricca, “Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers,” Colloid Surface B 116, 568–575 (2014).
[Crossref]

Electrophoresis (1)

G. Pesce, V. Lisbino, G. Rusciano, and A. Sasso, “Optical manipulation of charged microparticles in polar fluids,” Electrophoresis 34, 3141–4149 (2013).
[Crossref]

J. Appl. Phys. (2)

H. A. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22, 869–871 (1951).
[Crossref]

H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29, 1182–1188 (1958).
[Crossref]

J. Biomed. Opt. (1)

E. Papagiakoumou, D. Pietreanu, M. I. Makropoulou, E. Kovacs, and A. A. Serafetinides, “Evaluation of trapping efficiency of optical tweezers by dielectrophoresis,” J. Biomed. Opt. 11, 014035 (2006).
[Crossref] [PubMed]

J. Chem. Phys. (1)

G. S. Roberts, T. A. Wood, W. J. Frith, and P. Bartlett, “Direct measurement of the effective charge in nonpolar suspensions by optical tracking of single particles,” J. Chem. Phys. 126, 194503 (2007).
[Crossref]

J. Colloid. Interf. Sci. (1)

I. Semenov, O. Otto, G. Stober, P. Papadopoulos, U. F. Keyser, and F. Kremer, “Single colloid electrophoresis,” J. Colloid. Interf. Sci. 337, 260–264 (2009).
[Crossref]

Lab Chip (3)

G. Pesce, B. Mandracchia, E. Orabona, G. Rusciano, L. De Stefano, and A. Sasso, “Mapping electric fields generated by microelectrodes using optically trapped charged microspheres,” Lab Chip 11, 4113–4116 (2011).
[Crossref] [PubMed]

N. Demierre, T. Braschler, P. Linderholm, U. Seger, H. van Lintel, and P. Renaud, “Characterization and optimization of liquid electrodes for lateral dielectrophoresis,” Lab Chip 7, 355–365 (2007).
[Crossref] [PubMed]

P. Cheng, M. J. Barrett, P. M. Oliver, D. Cetin, and D. Vezenov, “Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format,” Lab Chip 11, 4248–4259 (2011).
[Crossref] [PubMed]

Naturwissenschaften (1)

T. Schnelle, T. Mller, S. Fiedler, S. Shirley, K. Ludwig, A. Herrmann, G. Fuhr, B. Wagner, and U. Zimmermann, “Trapping of viruses in high-frequency electric field cages,” Naturwissenschaften 83, 172–176 (1996).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Buosciolo, G. Pesce, and A. Sasso, “New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers,” Opt. Commun. 230, 357–368 (2004).
[Crossref]

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

M. E. Arsenault, Y. Sun, H. H. Bau, and Y. E. Goldman, “Using electrical and optical tweezers to facilitate studies of molecular motors,” Phys. Chem. Chem. Phys. 11, 4834–4839 (2009).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

F. Beunis, F. Strubbe, K. Neyts, and D. Petrov, “Beyond Millikan: The Dynamics of Charging Events on Individual Colloidal Particles,” Phys. Rev. Lett. 108, 016101 (2012).
[Crossref] [PubMed]

Rev. Sci. Instr. (1)

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instr. 75, 594–612 (2004).
[Crossref]

Sens. Actuat. A: Phys. (1)

K. Lee, S. G. Kwon, S. H. Kim, and Y. K. Kwak, “Dielectrophoretic tweezers using sharp probe electrode,” Sens. Actuat. A: Phys. 136, 154–160 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Sketch of the optically trapped, charged microsphere between planar, ITO covered (parallel) electrodes. A second set of electrodes (a wire and a tip) was placed in the same cell. The two parallel electrodes are employed to determine the charge carried by the bead. Instead, the wire and tip electrodes are used to analyze the EP and DEP forces. (b) SEM image of the tip.
Fig. 2
Fig. 2 Experimental acfs (dots) and fitting to Eq. (3) (solid lines) measured (a) when the bead is trapped near the tip, and (b) far away from the tip. Error bars are smaller than the markers size, the fitting produced a value of the reduced χ2 of 0.34 (panel (a)) and 0.47 (panel (b)), indicating its goodness
Fig. 3
Fig. 3 Pattern of the electric (a) and dielectrophoretic (b) forces in a region around the tip. The scale for DEP forces are one fourth of that for EP force.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

m x ¨ = κ x γ x ˙ + QE + 2 π r 3 ε 0 ε m 𝒦 Re ( f m ) E 2 + 2 D ξ ( t ) ,
x ( t ) = x th + Q E 0 κ 1 + ( f m / f C ) 2 sin ( 2 π f m t ϕ EP ) + π r 3 ε m ε 0 𝒦 Re ( f m ) E 2 κ 1 cos ( 4 π f m t ϕ DEP ) 1 + ( 2 f m / f C ) 2 = = x th + A sin ( 2 π f m t ϕ EP ) + B 1 cos ( 4 π f m t ϕ DEP ) Δ ,
𝒞 ( τ ) = x ( t ) x ( t + τ ) = k B T κ e τ / τ C + A 2 2 cos ( 2 π f m τ ) + B 2 [ 1 + cos ( 4 π f m τ ) 2 Δ 2 ] .

Metrics