Abstract

We propose an optically controlled phased array antenna (PAA) based on differential true time delay constructed optical beamforming network (OBFN). Differential true time delay is realized by stack integrated micro-optical components. Optically-controlled angle steering of radio frequency (RF) beams are realized and demonstrated by this configuration. Experimental results demonstrate that OBFN based PAA can accomplish RF-independent broadband beam steering without beam squint effect and can achieve continuous angle steering. In addition, multi-beams for different steering angles are acquired synchronously.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A prototype high-speed optically-steered X-band phased array antenna

Pengfei Wu, Suning Tang, and Daniel E. Raible
Opt. Express 21(26) 32599-32604 (2013)

Continuously tunable true-time delay lines based on a one-dimensional grating waveguide for beam steering in phased array antennas

Gencheng Wang, Tingge Dai, Jianfei Jiang, Xiaoqing Guo, Bei Chen, Yuehai Wang, Hui Yu, Xiaoqing Jiang, and Jianyi Yang
Appl. Opt. 57(18) 4998-5003 (2018)

An optically controlled phased array antenna based on single sideband polarization modulation

Yamei Zhang, Huan Wu, Dan Zhu, and Shilong Pan
Opt. Express 22(4) 3761-3765 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Mailloux, Phased Array Antenna Handbook (Artech House, 1994).
  2. J. P. Yao, “A tutorial on microwave photonics,” IEEE Photon. Soc. News Lett. 26(2), 4–12 (2012).
  3. Y. S. Wu, X. Q. Lin, J. Zhang, Y. Jiang, F. Cheng, and Y. Fan, “Broadband and wide range tunable phase shifter based on composite right/left handed transmission line,” J. Electromagn. Waves Appl. 26(10), 1308–1314 (2012).
    [Crossref]
  4. L. V. T. Nguyen, “Optical RF phase shifter design employing optical phase manipulation and coherent detection – part i: concept proposal,” Int. J. Microw. Opt. Technol. 6(5), 301–309 (2011).
  5. Y. Chen and R. T. Chen, “K-band phased-array antenna system demonstration using substrate guided wave true-time delay,” Opt. Eng. 42, 100606 (2013).
  6. Z. Fu, R. Li, and R. T. Chen, “Compact broadband 5-bit photonic true-time-delay module for phased-array antennas,” Opt. Lett. 23(7), 522–524 (1998).
    [Crossref] [PubMed]
  7. B. M. Jung, J. D. Shin, and B. G. Kim, “Optical true time-delay for two-dimensional X-band phased array antennas,” IEEE Photon. Technol. Lett. 19(12), 877–879 (2007).
    [Crossref]
  8. X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
    [Crossref]
  9. K. Van Acoleyen and K. Komorowska, “Integrated optical beam steerers,” in Optical Fiber Communication Conference, Vol. 6 of 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper OTh1B.
  10. S. Granieri and M. Jaeger, “Optical true time-delay for two-dimensional phased array antennas using compact fiber grating prism,” Chin. Opt. Lett. 11(10), 3262–3272 (2003).
  11. H. Subbaraman, M. Y. Chen, and R. T. Chen, “Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna,” J. Lightwave Technol. 26(15), 2803–2809 (2008).
    [Crossref]
  12. M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple X-band phased array antenna transmissions,” IEEE Photon. Technol. Lett. 20(5), 375–377 (2008).
    [Crossref]
  13. Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42(13), 2273–2277 (2003).
    [Crossref] [PubMed]
  14. Y. O. Barmenkov, J. L. Cruz, A. Díez, and M. V. Andrés, “Electrically tunable photonic true-time-delay line,” Opt. Express 18(17), 17859–17864 (2010).
    [Crossref] [PubMed]
  15. R. T. Schermer, F. Bucholtz, and C. A. Villarruel, “Continuously-tunable microwave photonic true-time-delay based on a fiber-coupled beam deflector and diffraction grating,” Opt. Express 19(6), 5371–5378 (2011).
    [Crossref] [PubMed]
  16. P. Wu, S. Tang, and D. E. Raible, “A prototype high-speed optically-steered X-band phased array antenna,” Opt. Express 21(26), 32599–32604 (2013).
    [Crossref] [PubMed]
  17. S. Akiba, M. Oishi, and T. Nishikawa, “Photonic approach to Beam steering of phased array antenna” in Proceeding of the 2013 International Symposium on Electromagnetic Theory, (2013), pp. 448–451.
  18. W. Li, N. H. Zhu, L. X. Wang, J. S. Wang, J. G. Liu, Y. Liu, X. Q. Qi, L. Xie, W. Chen, X. Wang, and W. Han, “True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light,” Opt. Express 19(13), 12312–12324 (2011).
    [Crossref] [PubMed]
  19. L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34(18), 2757–2759 (2009).
    [Crossref] [PubMed]
  20. Y. Zhang, H. Wu, D. Zhu, and S. Pan, “An optically controlled phased array antenna based on single sideband polarization modulation,” Opt. Express 22(4), 3761–3765 (2014).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

P. Wu, S. Tang, and D. E. Raible, “A prototype high-speed optically-steered X-band phased array antenna,” Opt. Express 21(26), 32599–32604 (2013).
[Crossref] [PubMed]

Y. Chen and R. T. Chen, “K-band phased-array antenna system demonstration using substrate guided wave true-time delay,” Opt. Eng. 42, 100606 (2013).

2012 (2)

J. P. Yao, “A tutorial on microwave photonics,” IEEE Photon. Soc. News Lett. 26(2), 4–12 (2012).

Y. S. Wu, X. Q. Lin, J. Zhang, Y. Jiang, F. Cheng, and Y. Fan, “Broadband and wide range tunable phase shifter based on composite right/left handed transmission line,” J. Electromagn. Waves Appl. 26(10), 1308–1314 (2012).
[Crossref]

2011 (4)

L. V. T. Nguyen, “Optical RF phase shifter design employing optical phase manipulation and coherent detection – part i: concept proposal,” Int. J. Microw. Opt. Technol. 6(5), 301–309 (2011).

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

W. Li, N. H. Zhu, L. X. Wang, J. S. Wang, J. G. Liu, Y. Liu, X. Q. Qi, L. Xie, W. Chen, X. Wang, and W. Han, “True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light,” Opt. Express 19(13), 12312–12324 (2011).
[Crossref] [PubMed]

R. T. Schermer, F. Bucholtz, and C. A. Villarruel, “Continuously-tunable microwave photonic true-time-delay based on a fiber-coupled beam deflector and diffraction grating,” Opt. Express 19(6), 5371–5378 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2008 (2)

H. Subbaraman, M. Y. Chen, and R. T. Chen, “Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna,” J. Lightwave Technol. 26(15), 2803–2809 (2008).
[Crossref]

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple X-band phased array antenna transmissions,” IEEE Photon. Technol. Lett. 20(5), 375–377 (2008).
[Crossref]

2007 (1)

B. M. Jung, J. D. Shin, and B. G. Kim, “Optical true time-delay for two-dimensional X-band phased array antennas,” IEEE Photon. Technol. Lett. 19(12), 877–879 (2007).
[Crossref]

2003 (2)

Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42(13), 2273–2277 (2003).
[Crossref] [PubMed]

S. Granieri and M. Jaeger, “Optical true time-delay for two-dimensional phased array antennas using compact fiber grating prism,” Chin. Opt. Lett. 11(10), 3262–3272 (2003).

1998 (1)

Alkeskjold, T. T.

Andrés, M. V.

Barmenkov, Y. O.

Bjarklev, A.

Bucholtz, F.

Chen, M. Y.

H. Subbaraman, M. Y. Chen, and R. T. Chen, “Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna,” J. Lightwave Technol. 26(15), 2803–2809 (2008).
[Crossref]

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple X-band phased array antenna transmissions,” IEEE Photon. Technol. Lett. 20(5), 375–377 (2008).
[Crossref]

Chen, R. T.

Y. Chen and R. T. Chen, “K-band phased-array antenna system demonstration using substrate guided wave true-time delay,” Opt. Eng. 42, 100606 (2013).

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple X-band phased array antenna transmissions,” IEEE Photon. Technol. Lett. 20(5), 375–377 (2008).
[Crossref]

H. Subbaraman, M. Y. Chen, and R. T. Chen, “Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna,” J. Lightwave Technol. 26(15), 2803–2809 (2008).
[Crossref]

Z. Fu, R. Li, and R. T. Chen, “Compact broadband 5-bit photonic true-time-delay module for phased-array antennas,” Opt. Lett. 23(7), 522–524 (1998).
[Crossref] [PubMed]

Chen, W.

Chen, Y.

Y. Chen and R. T. Chen, “K-band phased-array antenna system demonstration using substrate guided wave true-time delay,” Opt. Eng. 42, 100606 (2013).

L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34(18), 2757–2759 (2009).
[Crossref] [PubMed]

Cheng, F.

Y. S. Wu, X. Q. Lin, J. Zhang, Y. Jiang, F. Cheng, and Y. Fan, “Broadband and wide range tunable phase shifter based on composite right/left handed transmission line,” J. Electromagn. Waves Appl. 26(10), 1308–1314 (2012).
[Crossref]

Cruz, J. L.

Díez, A.

Fan, Y.

Y. S. Wu, X. Q. Lin, J. Zhang, Y. Jiang, F. Cheng, and Y. Fan, “Broadband and wide range tunable phase shifter based on composite right/left handed transmission line,” J. Electromagn. Waves Appl. 26(10), 1308–1314 (2012).
[Crossref]

Fu, Z.

Granieri, S.

S. Granieri and M. Jaeger, “Optical true time-delay for two-dimensional phased array antennas using compact fiber grating prism,” Chin. Opt. Lett. 11(10), 3262–3272 (2003).

Han, W.

Huang, T. X. H.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Jaeger, M.

S. Granieri and M. Jaeger, “Optical true time-delay for two-dimensional phased array antennas using compact fiber grating prism,” Chin. Opt. Lett. 11(10), 3262–3272 (2003).

Jiang, Y.

Y. S. Wu, X. Q. Lin, J. Zhang, Y. Jiang, F. Cheng, and Y. Fan, “Broadband and wide range tunable phase shifter based on composite right/left handed transmission line,” J. Electromagn. Waves Appl. 26(10), 1308–1314 (2012).
[Crossref]

Jung, B. M.

B. M. Jung, J. D. Shin, and B. G. Kim, “Optical true time-delay for two-dimensional X-band phased array antennas,” IEEE Photon. Technol. Lett. 19(12), 877–879 (2007).
[Crossref]

Kim, B. G.

B. M. Jung, J. D. Shin, and B. G. Kim, “Optical true time-delay for two-dimensional X-band phased array antennas,” IEEE Photon. Technol. Lett. 19(12), 877–879 (2007).
[Crossref]

Li, R.

Li, W.

Lin, X. Q.

Y. S. Wu, X. Q. Lin, J. Zhang, Y. Jiang, F. Cheng, and Y. Fan, “Broadband and wide range tunable phase shifter based on composite right/left handed transmission line,” J. Electromagn. Waves Appl. 26(10), 1308–1314 (2012).
[Crossref]

Liu, J. G.

Liu, Y.

Minasian, R. A.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Nguyen, L. V. T.

L. V. T. Nguyen, “Optical RF phase shifter design employing optical phase manipulation and coherent detection – part i: concept proposal,” Int. J. Microw. Opt. Technol. 6(5), 301–309 (2011).

Pan, S.

Qi, X. Q.

Raible, D. E.

Schermer, R. T.

Shin, J. D.

B. M. Jung, J. D. Shin, and B. G. Kim, “Optical true time-delay for two-dimensional X-band phased array antennas,” IEEE Photon. Technol. Lett. 19(12), 877–879 (2007).
[Crossref]

Subbaraman, H.

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple X-band phased array antenna transmissions,” IEEE Photon. Technol. Lett. 20(5), 375–377 (2008).
[Crossref]

H. Subbaraman, M. Y. Chen, and R. T. Chen, “Photonic crystal fiber-based true-time-delay beamformer for multiple RF beam transmission and reception of an X-band phased-array antenna,” J. Lightwave Technol. 26(15), 2803–2809 (2008).
[Crossref]

Tang, S.

Villarruel, C. A.

Wang, J. S.

Wang, L. X.

Wang, X.

Wei, L.

Wu, H.

Wu, P.

Wu, Y. S.

Y. S. Wu, X. Q. Lin, J. Zhang, Y. Jiang, F. Cheng, and Y. Fan, “Broadband and wide range tunable phase shifter based on composite right/left handed transmission line,” J. Electromagn. Waves Appl. 26(10), 1308–1314 (2012).
[Crossref]

Xie, L.

Xue, W.

Yang, J.

Yao, J.

Yao, J. P.

J. P. Yao, “A tutorial on microwave photonics,” IEEE Photon. Soc. News Lett. 26(2), 4–12 (2012).

Yi, X.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Zhang, J.

Y. S. Wu, X. Q. Lin, J. Zhang, Y. Jiang, F. Cheng, and Y. Fan, “Broadband and wide range tunable phase shifter based on composite right/left handed transmission line,” J. Electromagn. Waves Appl. 26(10), 1308–1314 (2012).
[Crossref]

Zhang, Y.

Zhu, D.

Zhu, N. H.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

S. Granieri and M. Jaeger, “Optical true time-delay for two-dimensional phased array antennas using compact fiber grating prism,” Chin. Opt. Lett. 11(10), 3262–3272 (2003).

IEEE Photon. Soc. News Lett. (1)

J. P. Yao, “A tutorial on microwave photonics,” IEEE Photon. Soc. News Lett. 26(2), 4–12 (2012).

IEEE Photon. Technol. Lett. (3)

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple X-band phased array antenna transmissions,” IEEE Photon. Technol. Lett. 20(5), 375–377 (2008).
[Crossref]

B. M. Jung, J. D. Shin, and B. G. Kim, “Optical true time-delay for two-dimensional X-band phased array antennas,” IEEE Photon. Technol. Lett. 19(12), 877–879 (2007).
[Crossref]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photon. Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Int. J. Microw. Opt. Technol. (1)

L. V. T. Nguyen, “Optical RF phase shifter design employing optical phase manipulation and coherent detection – part i: concept proposal,” Int. J. Microw. Opt. Technol. 6(5), 301–309 (2011).

J. Electromagn. Waves Appl. (1)

Y. S. Wu, X. Q. Lin, J. Zhang, Y. Jiang, F. Cheng, and Y. Fan, “Broadband and wide range tunable phase shifter based on composite right/left handed transmission line,” J. Electromagn. Waves Appl. 26(10), 1308–1314 (2012).
[Crossref]

J. Lightwave Technol. (1)

Opt. Eng. (1)

Y. Chen and R. T. Chen, “K-band phased-array antenna system demonstration using substrate guided wave true-time delay,” Opt. Eng. 42, 100606 (2013).

Opt. Express (5)

Opt. Lett. (2)

Other (3)

R. J. Mailloux, Phased Array Antenna Handbook (Artech House, 1994).

K. Van Acoleyen and K. Komorowska, “Integrated optical beam steerers,” in Optical Fiber Communication Conference, Vol. 6 of 2013 OSA Technical Digest Series (Optical Society of America, 2013), paper OTh1B.

S. Akiba, M. Oishi, and T. Nishikawa, “Photonic approach to Beam steering of phased array antenna” in Proceeding of the 2013 International Symposium on Electromagnetic Theory, (2013), pp. 448–451.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of beamforming using phase shifters.
Fig. 2
Fig. 2 Schematic diagram of the optically steered PAA DFB: distributed feedback laser; EOM: electro-optic modulator; DWDM-M: dense wavelength division multiplexer-mux; DWDM-DE: dense wavelength division multiplexer-demux; EDFA: erbium-doped optical fiber amplifier; OTDT: optical time delay trimmer; ODTTD: optical differential true time delay.
Fig. 3
Fig. 3 Principle scheme of differential true time delay generation. (a) Propagation of one laser beam in the horizontal direction; (b) Propagation of the four laser beams in the vertical position reflected by the first PBS.
Fig. 4
Fig. 4 (a) Photograph of the proposed 4 × 4 ODTTD network module; (b) OBFN with the proposed ODTTD network module; (c) Experiment with the proposed PAA in an anechoic chamber.
Fig. 5
Fig. 5 Simulated and experimented multi-beam radiation patterns of the PAA based on the OBFN for (a) 3 and (b) 5 GHz RF signals when the steering angles of the four beams are −29°, −10°, 10°, and 29°.
Fig. 6
Fig. 6 Performance of one of the beams as the steering angle moves from −5° to −32° continuously.
Fig. 7
Fig. 7 3 dB bandwidth of two of four optically controlled steering beams with steering angles of (a) −9° and (b) 30° for 2, 4, 6 GHz RF signals.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ΔR=d·sinθ
Δϕ= 2π·ΔR /λ
θ= sin 1 λ·Δϕ d·2π
Δτ= ΔR c
θ= sin 1 ΔR d = sin 1 n eff ·ΔL d
τ={ 2·( d 1 d 2 ) /c For the 1st group beams 2·( d 1 d 2 ) /c For the 2rd group beams andτ={ 2·( d 1 d 2 ' ) /c For the 3rd group beams 2·( d 1 d 2 ' ) /c For the 4th group beams
θ={ sin 1 [ 2·( d 1 d 2 ) /d ] For the1st group beams sin 1 [ 2·( d 1 d 2 ) /d ] For the 2rd group beams andθ={ sin 1 [ 2·( d 1 d 2 ' ) /d ] For the 3rd group beams sin 1 [ 2·( d 1 d 2 ' ) /d ] For the 4th group beams
| δθ |={ 2·|δ d 1 δ d 2 | d·cosθ For the 1st and 2rd group beams 2·|δ d 1 δ d 2 '| d·cosθ For the 3rd and 4th group beams

Metrics