Abstract

Microgroove lens with 500-800 µm in depth is proposed on the glass substrate of thin-film solar cell. The objective is to improve photovoltaic characteristics under weak-light illumination. First, the micro-optical characteristics were theoretically studied in connection with micro-lens structure; then a diamond micro-grinding was employed to fabricate microgroove lens; finally, indoor conversion efficiency and outdoor electrical generation were measured. It is shown that the 800-µm-depth microgroove lens is able to absorb and scatter the inclined light to solar cell for improving weak-light conversion efficiency. It enhances the electricity generation by 118% and 185% in cloudy and overcast days, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array

Nobuhiko Hayashi, Daijiro Inoue, Mitsuhiro Matsumoto, Akio Matsushita, Hiroshi Higuchi, Youichirou Aya, and Tohru Nakagawa
Opt. Express 23(11) A594-A603 (2015)

High efficiency, broadband solar cell architectures based on arrays of volumetrically distributed narrowband photovoltaic fibers

Brendan O’Connor, Denis Nothern, Kevin P. Pipe, and Max Shtein
Opt. Express 18(S3) A432-A443 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Bozzola, P. Kowalczewski, and L. C. Andreani, “Towards high efficiency thin-film crystalline silicon solar cells: the roles of light trapping and non-radiative recombinations,” J. Appl. Phys. 115(9), 094501 (2014).
    [Crossref]
  2. P. Seungil, Y. J. Hyung, J. K. Myeong, H. P. Jong, and K. Keunjoo, “Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film,” Appl. Phys. Lett. 104, 73–902 (2014).
  3. J. Li, J. C. Liu, and C. J. Gao, “Improved efficiency of organic solar cells with modified hole-extraction layers,” J. Polym. Sci. Pol. Phys. 50(2), 125–128 (2012).
    [Crossref]
  4. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
    [Crossref]
  5. M. R. Khan, X. F. Wang, P. Bermel, and M. A. Alam, “Enhanced light trapping in solar cells with a meta-mirror following generalized Snell’s law,” Opt. Express 22(S3), A973–A985 (2014).
    [PubMed]
  6. N. N. Bennett, S. B. F. Lal, and P. W. Thomas, “Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells,” Opt. Express 22(S6), A1422–A1430 (2014).
    [Crossref]
  7. D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2), A95–A107 (2011).
    [Crossref] [PubMed]
  8. X. Wang, M. R. Khan, M. Lundstrom, and P. Bermel, “Performance-limiting factors for GaAs-based single nanowire photovoltaics,” Opt. Express 22(S2), A344–A358 (2014).
    [Crossref] [PubMed]
  9. X. R. Zhang, Q. P. Huang, J. G. Hu, R. J. Knize, and Y. Y. Lu, “Hybrid tandem solar cell enhanced by a metallic hole-array as the intermediate electrode,” Opt. Express 22(S6), A1400–A1411 (2014).
    [Crossref]
  10. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
    [Crossref]
  11. Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn.J. Appl. Phys. Part 2-Lett. 39(Part 2, No. 7B), L735–L737 (2000).
    [Crossref]
  12. J. D. Myers, W. R. Cao, V. Cassidy, S. H. Eom, R. J. Zhou, L. Q. Yang, W. You, and J. G. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energ. Environ. Sci. 5(5), 6900–6904 (2012).
    [Crossref]
  13. J. Escarre, K. Soderstrom, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F. J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
    [Crossref]
  14. K. Tvingstedt, S. Dal Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express 16(26), 21608–21615 (2008).
    [Crossref] [PubMed]
  15. M. Nam, K. Kim, J. Lee, K. K. Lee, and S. S. Yang, “Concentrating microlens array mounted on an InGaP/GaAs/Ge solar cell for photovoltaic performance enhancement,” Sol. Energy 91, 374–380 (2013).
    [Crossref]
  16. C. Cho and J. Y. Lee, “Multi-scale and angular analysis of ray-optical light trapping schemes in thin-film solar cells: Micro lens array, V-shaped configuration, and double parabolic trapper,” Opt. Express 21(S2Suppl 2), A276–A284 (2013).
    [Crossref] [PubMed]
  17. X. Z. Xie, M. F. Hu, W. F. Chen, X. Wei, W. Hu, X. Y. Gao, X. R. Yuan, and M. H. Hong, “Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation,” J. Laser Micro Nanoen. 8(3), 259–265 (2013).
    [Crossref]
  18. M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl. 22(3), 356–361 (2014).
    [Crossref]
  19. K. Huang, Q. K. Wang, X. M. Yan, K. X. Hu, M. Y. Yu, and X. Q. Shen, “Demonstration of enhanced absorption in thin film Si solar cells with periodic microhemisphere hole arrays,” Opt. Commun. 315, 79–82 (2014).
    [Crossref]
  20. N. H. Reich, W. G. J. H. M. VanSark, E. A. Alsema, R. W. Lof, R. W. Schropp, W. C. Sinke, and W. C. Turkenburg, “Crystalline silicon cell performance at low light intensities,” Sol. Energy Mater. Sol. Cells 93(9), 1471–1481 (2009).
    [Crossref]
  21. J. Xie, Y. W. Zhuo, and T. W. Tan, “Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel,” Precis. Eng. 35(1), 173–182 (2011).
    [Crossref]
  22. J. Xie, H. F. Xie, M. J. Luo, T. W. Tan, and P. Li, “Dry electro-contact discharge mutual-wear truing of micro diamond wheel V-tip for precision micro-grinding,” Int. J. Mach. Tools Manuf. 60, 44–51 (2012).
    [Crossref]
  23. K. Feron, S. Ulum, N. P. Holmes, A. L. D. Kilcoyne, W. J. Belcher, X. Zhou, C. J. Fell, and P. C. Dastoor, “Modelling transport in nanoparticle organic solar cells using Monte Carlo methods,” Appl. Phys. Lett. 103(19), 193306 (2013).
    [Crossref]
  24. Z. Y. Liu, K. Wang, X. B. Luo, and S. Liu, “Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing,” Opt. Express 18(9), 9398–9412 (2010).
    [Crossref] [PubMed]
  25. B. Pelleg and A. K. Fontecchio, “Modeling light propagation through Bragg reflection gratings with an adapted Monte Carlo method,” J. Lightwave Technol. 32(12), 2228–2232 (2014).
    [Crossref]
  26. K. Wang, S. Liu, F. Chen, Z. Y. Liu, and X. B. Luo, “Effect of manufacturing defects on optical performance of discontinuous freeform lenses,” Opt. Express 17(7), 5457–5465 (2009).
    [Crossref] [PubMed]

2014 (9)

A. Bozzola, P. Kowalczewski, and L. C. Andreani, “Towards high efficiency thin-film crystalline silicon solar cells: the roles of light trapping and non-radiative recombinations,” J. Appl. Phys. 115(9), 094501 (2014).
[Crossref]

P. Seungil, Y. J. Hyung, J. K. Myeong, H. P. Jong, and K. Keunjoo, “Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film,” Appl. Phys. Lett. 104, 73–902 (2014).

X. Wang, M. R. Khan, M. Lundstrom, and P. Bermel, “Performance-limiting factors for GaAs-based single nanowire photovoltaics,” Opt. Express 22(S2), A344–A358 (2014).
[Crossref] [PubMed]

X. R. Zhang, Q. P. Huang, J. G. Hu, R. J. Knize, and Y. Y. Lu, “Hybrid tandem solar cell enhanced by a metallic hole-array as the intermediate electrode,” Opt. Express 22(S6), A1400–A1411 (2014).
[Crossref]

M. R. Khan, X. F. Wang, P. Bermel, and M. A. Alam, “Enhanced light trapping in solar cells with a meta-mirror following generalized Snell’s law,” Opt. Express 22(S3), A973–A985 (2014).
[PubMed]

N. N. Bennett, S. B. F. Lal, and P. W. Thomas, “Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells,” Opt. Express 22(S6), A1422–A1430 (2014).
[Crossref]

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl. 22(3), 356–361 (2014).
[Crossref]

K. Huang, Q. K. Wang, X. M. Yan, K. X. Hu, M. Y. Yu, and X. Q. Shen, “Demonstration of enhanced absorption in thin film Si solar cells with periodic microhemisphere hole arrays,” Opt. Commun. 315, 79–82 (2014).
[Crossref]

B. Pelleg and A. K. Fontecchio, “Modeling light propagation through Bragg reflection gratings with an adapted Monte Carlo method,” J. Lightwave Technol. 32(12), 2228–2232 (2014).
[Crossref]

2013 (4)

K. Feron, S. Ulum, N. P. Holmes, A. L. D. Kilcoyne, W. J. Belcher, X. Zhou, C. J. Fell, and P. C. Dastoor, “Modelling transport in nanoparticle organic solar cells using Monte Carlo methods,” Appl. Phys. Lett. 103(19), 193306 (2013).
[Crossref]

M. Nam, K. Kim, J. Lee, K. K. Lee, and S. S. Yang, “Concentrating microlens array mounted on an InGaP/GaAs/Ge solar cell for photovoltaic performance enhancement,” Sol. Energy 91, 374–380 (2013).
[Crossref]

C. Cho and J. Y. Lee, “Multi-scale and angular analysis of ray-optical light trapping schemes in thin-film solar cells: Micro lens array, V-shaped configuration, and double parabolic trapper,” Opt. Express 21(S2Suppl 2), A276–A284 (2013).
[Crossref] [PubMed]

X. Z. Xie, M. F. Hu, W. F. Chen, X. Wei, W. Hu, X. Y. Gao, X. R. Yuan, and M. H. Hong, “Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation,” J. Laser Micro Nanoen. 8(3), 259–265 (2013).
[Crossref]

2012 (4)

J. D. Myers, W. R. Cao, V. Cassidy, S. H. Eom, R. J. Zhou, L. Q. Yang, W. You, and J. G. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energ. Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

J. Escarre, K. Soderstrom, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F. J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

J. Li, J. C. Liu, and C. J. Gao, “Improved efficiency of organic solar cells with modified hole-extraction layers,” J. Polym. Sci. Pol. Phys. 50(2), 125–128 (2012).
[Crossref]

J. Xie, H. F. Xie, M. J. Luo, T. W. Tan, and P. Li, “Dry electro-contact discharge mutual-wear truing of micro diamond wheel V-tip for precision micro-grinding,” Int. J. Mach. Tools Manuf. 60, 44–51 (2012).
[Crossref]

2011 (2)

J. Xie, Y. W. Zhuo, and T. W. Tan, “Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel,” Precis. Eng. 35(1), 173–182 (2011).
[Crossref]

D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2), A95–A107 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

K. Wang, S. Liu, F. Chen, Z. Y. Liu, and X. B. Luo, “Effect of manufacturing defects on optical performance of discontinuous freeform lenses,” Opt. Express 17(7), 5457–5465 (2009).
[Crossref] [PubMed]

N. H. Reich, W. G. J. H. M. VanSark, E. A. Alsema, R. W. Lof, R. W. Schropp, W. C. Sinke, and W. C. Turkenburg, “Crystalline silicon cell performance at low light intensities,” Sol. Energy Mater. Sol. Cells 93(9), 1471–1481 (2009).
[Crossref]

2008 (1)

2007 (1)

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[Crossref]

2000 (1)

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn.J. Appl. Phys. Part 2-Lett. 39(Part 2, No. 7B), L735–L737 (2000).
[Crossref]

1961 (1)

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

Alam, M. A.

Alsema, E. A.

N. H. Reich, W. G. J. H. M. VanSark, E. A. Alsema, R. W. Lof, R. W. Schropp, W. C. Sinke, and W. C. Turkenburg, “Crystalline silicon cell performance at low light intensities,” Sol. Energy Mater. Sol. Cells 93(9), 1471–1481 (2009).
[Crossref]

Andreani, L. C.

A. Bozzola, P. Kowalczewski, and L. C. Andreani, “Towards high efficiency thin-film crystalline silicon solar cells: the roles of light trapping and non-radiative recombinations,” J. Appl. Phys. 115(9), 094501 (2014).
[Crossref]

Ballif, C.

J. Escarre, K. Soderstrom, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F. J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Battaglia, C.

J. Escarre, K. Soderstrom, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F. J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Belcher, W. J.

K. Feron, S. Ulum, N. P. Holmes, A. L. D. Kilcoyne, W. J. Belcher, X. Zhou, C. J. Fell, and P. C. Dastoor, “Modelling transport in nanoparticle organic solar cells using Monte Carlo methods,” Appl. Phys. Lett. 103(19), 193306 (2013).
[Crossref]

Bennett, N. N.

Bermel, P.

Bhatia, C. S.

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl. 22(3), 356–361 (2014).
[Crossref]

Bozzola, A.

A. Bozzola, P. Kowalczewski, and L. C. Andreani, “Towards high efficiency thin-film crystalline silicon solar cells: the roles of light trapping and non-radiative recombinations,” J. Appl. Phys. 115(9), 094501 (2014).
[Crossref]

Bugnon, G.

J. Escarre, K. Soderstrom, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F. J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Cao, W. R.

J. D. Myers, W. R. Cao, V. Cassidy, S. H. Eom, R. J. Zhou, L. Q. Yang, W. You, and J. G. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energ. Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Cassidy, V.

J. D. Myers, W. R. Cao, V. Cassidy, S. H. Eom, R. J. Zhou, L. Q. Yang, W. You, and J. G. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energ. Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Chen, F.

Chen, W. F.

X. Z. Xie, M. F. Hu, W. F. Chen, X. Wei, W. Hu, X. Y. Gao, X. R. Yuan, and M. H. Hong, “Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation,” J. Laser Micro Nanoen. 8(3), 259–265 (2013).
[Crossref]

Cho, C.

Dal Zilio, S.

Danner, A. J.

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl. 22(3), 356–361 (2014).
[Crossref]

Dastoor, P. C.

K. Feron, S. Ulum, N. P. Holmes, A. L. D. Kilcoyne, W. J. Belcher, X. Zhou, C. J. Fell, and P. C. Dastoor, “Modelling transport in nanoparticle organic solar cells using Monte Carlo methods,” Appl. Phys. Lett. 103(19), 193306 (2013).
[Crossref]

Despeisse, M.

J. Escarre, K. Soderstrom, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F. J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Dewan, R.

Ding, L.

J. Escarre, K. Soderstrom, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F. J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Eom, S. H.

J. D. Myers, W. R. Cao, V. Cassidy, S. H. Eom, R. J. Zhou, L. Q. Yang, W. You, and J. G. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energ. Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Escarre, J.

J. Escarre, K. Soderstrom, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F. J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Fell, C. J.

K. Feron, S. Ulum, N. P. Holmes, A. L. D. Kilcoyne, W. J. Belcher, X. Zhou, C. J. Fell, and P. C. Dastoor, “Modelling transport in nanoparticle organic solar cells using Monte Carlo methods,” Appl. Phys. Lett. 103(19), 193306 (2013).
[Crossref]

Feron, K.

K. Feron, S. Ulum, N. P. Holmes, A. L. D. Kilcoyne, W. J. Belcher, X. Zhou, C. J. Fell, and P. C. Dastoor, “Modelling transport in nanoparticle organic solar cells using Monte Carlo methods,” Appl. Phys. Lett. 103(19), 193306 (2013).
[Crossref]

Fontecchio, A. K.

Gao, C. J.

J. Li, J. C. Liu, and C. J. Gao, “Improved efficiency of organic solar cells with modified hole-extraction layers,” J. Polym. Sci. Pol. Phys. 50(2), 125–128 (2012).
[Crossref]

Gao, X. Y.

X. Z. Xie, M. F. Hu, W. F. Chen, X. Wei, W. Hu, X. Y. Gao, X. R. Yuan, and M. H. Hong, “Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation,” J. Laser Micro Nanoen. 8(3), 259–265 (2013).
[Crossref]

Haase, C.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[Crossref]

Hane, K.

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn.J. Appl. Phys. Part 2-Lett. 39(Part 2, No. 7B), L735–L737 (2000).
[Crossref]

Haug, F. J.

J. Escarre, K. Soderstrom, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F. J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Holmes, N. P.

K. Feron, S. Ulum, N. P. Holmes, A. L. D. Kilcoyne, W. J. Belcher, X. Zhou, C. J. Fell, and P. C. Dastoor, “Modelling transport in nanoparticle organic solar cells using Monte Carlo methods,” Appl. Phys. Lett. 103(19), 193306 (2013).
[Crossref]

Hong, M. H.

X. Z. Xie, M. F. Hu, W. F. Chen, X. Wei, W. Hu, X. Y. Gao, X. R. Yuan, and M. H. Hong, “Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation,” J. Laser Micro Nanoen. 8(3), 259–265 (2013).
[Crossref]

Hu, J. G.

Hu, K. X.

K. Huang, Q. K. Wang, X. M. Yan, K. X. Hu, M. Y. Yu, and X. Q. Shen, “Demonstration of enhanced absorption in thin film Si solar cells with periodic microhemisphere hole arrays,” Opt. Commun. 315, 79–82 (2014).
[Crossref]

Hu, M. F.

X. Z. Xie, M. F. Hu, W. F. Chen, X. Wei, W. Hu, X. Y. Gao, X. R. Yuan, and M. H. Hong, “Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation,” J. Laser Micro Nanoen. 8(3), 259–265 (2013).
[Crossref]

Hu, W.

X. Z. Xie, M. F. Hu, W. F. Chen, X. Wei, W. Hu, X. Y. Gao, X. R. Yuan, and M. H. Hong, “Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation,” J. Laser Micro Nanoen. 8(3), 259–265 (2013).
[Crossref]

Huang, K.

K. Huang, Q. K. Wang, X. M. Yan, K. X. Hu, M. Y. Yu, and X. Q. Shen, “Demonstration of enhanced absorption in thin film Si solar cells with periodic microhemisphere hole arrays,” Opt. Commun. 315, 79–82 (2014).
[Crossref]

Huang, Q. P.

Hyung, Y. J.

P. Seungil, Y. J. Hyung, J. K. Myeong, H. P. Jong, and K. Keunjoo, “Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film,” Appl. Phys. Lett. 104, 73–902 (2014).

Inganäs, O.

Jong, H. P.

P. Seungil, Y. J. Hyung, J. K. Myeong, H. P. Jong, and K. Keunjoo, “Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film,” Appl. Phys. Lett. 104, 73–902 (2014).

Kanamori, Y.

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn.J. Appl. Phys. Part 2-Lett. 39(Part 2, No. 7B), L735–L737 (2000).
[Crossref]

Keunjoo, K.

P. Seungil, Y. J. Hyung, J. K. Myeong, H. P. Jong, and K. Keunjoo, “Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film,” Appl. Phys. Lett. 104, 73–902 (2014).

Khan, M. R.

Kikuta, H.

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn.J. Appl. Phys. Part 2-Lett. 39(Part 2, No. 7B), L735–L737 (2000).
[Crossref]

Kilcoyne, A. L. D.

K. Feron, S. Ulum, N. P. Holmes, A. L. D. Kilcoyne, W. J. Belcher, X. Zhou, C. J. Fell, and P. C. Dastoor, “Modelling transport in nanoparticle organic solar cells using Monte Carlo methods,” Appl. Phys. Lett. 103(19), 193306 (2013).
[Crossref]

Kim, K.

M. Nam, K. Kim, J. Lee, K. K. Lee, and S. S. Yang, “Concentrating microlens array mounted on an InGaP/GaAs/Ge solar cell for photovoltaic performance enhancement,” Sol. Energy 91, 374–380 (2013).
[Crossref]

Knipp, D.

Knize, R. J.

Kowalczewski, P.

A. Bozzola, P. Kowalczewski, and L. C. Andreani, “Towards high efficiency thin-film crystalline silicon solar cells: the roles of light trapping and non-radiative recombinations,” J. Appl. Phys. 115(9), 094501 (2014).
[Crossref]

Lal, S. B. F.

Lee, J.

M. Nam, K. Kim, J. Lee, K. K. Lee, and S. S. Yang, “Concentrating microlens array mounted on an InGaP/GaAs/Ge solar cell for photovoltaic performance enhancement,” Sol. Energy 91, 374–380 (2013).
[Crossref]

Lee, J. Y.

Lee, K. K.

M. Nam, K. Kim, J. Lee, K. K. Lee, and S. S. Yang, “Concentrating microlens array mounted on an InGaP/GaAs/Ge solar cell for photovoltaic performance enhancement,” Sol. Energy 91, 374–380 (2013).
[Crossref]

Li, J.

J. Li, J. C. Liu, and C. J. Gao, “Improved efficiency of organic solar cells with modified hole-extraction layers,” J. Polym. Sci. Pol. Phys. 50(2), 125–128 (2012).
[Crossref]

Li, P.

J. Xie, H. F. Xie, M. J. Luo, T. W. Tan, and P. Li, “Dry electro-contact discharge mutual-wear truing of micro diamond wheel V-tip for precision micro-grinding,” Int. J. Mach. Tools Manuf. 60, 44–51 (2012).
[Crossref]

Liu, J. C.

J. Li, J. C. Liu, and C. J. Gao, “Improved efficiency of organic solar cells with modified hole-extraction layers,” J. Polym. Sci. Pol. Phys. 50(2), 125–128 (2012).
[Crossref]

Liu, S.

Liu, Z. Y.

Lof, R. W.

N. H. Reich, W. G. J. H. M. VanSark, E. A. Alsema, R. W. Lof, R. W. Schropp, W. C. Sinke, and W. C. Turkenburg, “Crystalline silicon cell performance at low light intensities,” Sol. Energy Mater. Sol. Cells 93(9), 1471–1481 (2009).
[Crossref]

Lu, Y. Y.

Lundstrom, M.

Luo, M. J.

J. Xie, H. F. Xie, M. J. Luo, T. W. Tan, and P. Li, “Dry electro-contact discharge mutual-wear truing of micro diamond wheel V-tip for precision micro-grinding,” Int. J. Mach. Tools Manuf. 60, 44–51 (2012).
[Crossref]

Luo, X. B.

Madzharov, D.

Meillaud, F.

J. Escarre, K. Soderstrom, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F. J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Myeong, J. K.

P. Seungil, Y. J. Hyung, J. K. Myeong, H. P. Jong, and K. Keunjoo, “Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film,” Appl. Phys. Lett. 104, 73–902 (2014).

Myers, J. D.

J. D. Myers, W. R. Cao, V. Cassidy, S. H. Eom, R. J. Zhou, L. Q. Yang, W. You, and J. G. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energ. Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Nam, M.

M. Nam, K. Kim, J. Lee, K. K. Lee, and S. S. Yang, “Concentrating microlens array mounted on an InGaP/GaAs/Ge solar cell for photovoltaic performance enhancement,” Sol. Energy 91, 374–380 (2013).
[Crossref]

Nicolay, S.

J. Escarre, K. Soderstrom, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F. J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Pelleg, B.

Queisser, H. J.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

Reich, N. H.

N. H. Reich, W. G. J. H. M. VanSark, E. A. Alsema, R. W. Lof, R. W. Schropp, W. C. Sinke, and W. C. Turkenburg, “Crystalline silicon cell performance at low light intensities,” Sol. Energy Mater. Sol. Cells 93(9), 1471–1481 (2009).
[Crossref]

Sakhuja, M.

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl. 22(3), 356–361 (2014).
[Crossref]

Schropp, R. W.

N. H. Reich, W. G. J. H. M. VanSark, E. A. Alsema, R. W. Lof, R. W. Schropp, W. C. Sinke, and W. C. Turkenburg, “Crystalline silicon cell performance at low light intensities,” Sol. Energy Mater. Sol. Cells 93(9), 1471–1481 (2009).
[Crossref]

Seungil, P.

P. Seungil, Y. J. Hyung, J. K. Myeong, H. P. Jong, and K. Keunjoo, “Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film,” Appl. Phys. Lett. 104, 73–902 (2014).

Shen, X. Q.

K. Huang, Q. K. Wang, X. M. Yan, K. X. Hu, M. Y. Yu, and X. Q. Shen, “Demonstration of enhanced absorption in thin film Si solar cells with periodic microhemisphere hole arrays,” Opt. Commun. 315, 79–82 (2014).
[Crossref]

Shockley, W.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

Sinke, W. C.

N. H. Reich, W. G. J. H. M. VanSark, E. A. Alsema, R. W. Lof, R. W. Schropp, W. C. Sinke, and W. C. Turkenburg, “Crystalline silicon cell performance at low light intensities,” Sol. Energy Mater. Sol. Cells 93(9), 1471–1481 (2009).
[Crossref]

Soderstrom, K.

J. Escarre, K. Soderstrom, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F. J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Son, J.

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl. 22(3), 356–361 (2014).
[Crossref]

Stiebig, H.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[Crossref]

Tan, T. W.

J. Xie, H. F. Xie, M. J. Luo, T. W. Tan, and P. Li, “Dry electro-contact discharge mutual-wear truing of micro diamond wheel V-tip for precision micro-grinding,” Int. J. Mach. Tools Manuf. 60, 44–51 (2012).
[Crossref]

J. Xie, Y. W. Zhuo, and T. W. Tan, “Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel,” Precis. Eng. 35(1), 173–182 (2011).
[Crossref]

Thomas, P. W.

Tormen, M.

Turkenburg, W. C.

N. H. Reich, W. G. J. H. M. VanSark, E. A. Alsema, R. W. Lof, R. W. Schropp, W. C. Sinke, and W. C. Turkenburg, “Crystalline silicon cell performance at low light intensities,” Sol. Energy Mater. Sol. Cells 93(9), 1471–1481 (2009).
[Crossref]

Tvingstedt, K.

Ulum, S.

K. Feron, S. Ulum, N. P. Holmes, A. L. D. Kilcoyne, W. J. Belcher, X. Zhou, C. J. Fell, and P. C. Dastoor, “Modelling transport in nanoparticle organic solar cells using Monte Carlo methods,” Appl. Phys. Lett. 103(19), 193306 (2013).
[Crossref]

VanSark, W. G. J. H. M.

N. H. Reich, W. G. J. H. M. VanSark, E. A. Alsema, R. W. Lof, R. W. Schropp, W. C. Sinke, and W. C. Turkenburg, “Crystalline silicon cell performance at low light intensities,” Sol. Energy Mater. Sol. Cells 93(9), 1471–1481 (2009).
[Crossref]

Verma, L. K.

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl. 22(3), 356–361 (2014).
[Crossref]

Wang, K.

Wang, Q. K.

K. Huang, Q. K. Wang, X. M. Yan, K. X. Hu, M. Y. Yu, and X. Q. Shen, “Demonstration of enhanced absorption in thin film Si solar cells with periodic microhemisphere hole arrays,” Opt. Commun. 315, 79–82 (2014).
[Crossref]

Wang, X.

Wang, X. F.

Wei, X.

X. Z. Xie, M. F. Hu, W. F. Chen, X. Wei, W. Hu, X. Y. Gao, X. R. Yuan, and M. H. Hong, “Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation,” J. Laser Micro Nanoen. 8(3), 259–265 (2013).
[Crossref]

Xie, H. F.

J. Xie, H. F. Xie, M. J. Luo, T. W. Tan, and P. Li, “Dry electro-contact discharge mutual-wear truing of micro diamond wheel V-tip for precision micro-grinding,” Int. J. Mach. Tools Manuf. 60, 44–51 (2012).
[Crossref]

Xie, J.

J. Xie, H. F. Xie, M. J. Luo, T. W. Tan, and P. Li, “Dry electro-contact discharge mutual-wear truing of micro diamond wheel V-tip for precision micro-grinding,” Int. J. Mach. Tools Manuf. 60, 44–51 (2012).
[Crossref]

J. Xie, Y. W. Zhuo, and T. W. Tan, “Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel,” Precis. Eng. 35(1), 173–182 (2011).
[Crossref]

Xie, X. Z.

X. Z. Xie, M. F. Hu, W. F. Chen, X. Wei, W. Hu, X. Y. Gao, X. R. Yuan, and M. H. Hong, “Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation,” J. Laser Micro Nanoen. 8(3), 259–265 (2013).
[Crossref]

Xue, J. G.

J. D. Myers, W. R. Cao, V. Cassidy, S. H. Eom, R. J. Zhou, L. Q. Yang, W. You, and J. G. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energ. Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Yan, X. M.

K. Huang, Q. K. Wang, X. M. Yan, K. X. Hu, M. Y. Yu, and X. Q. Shen, “Demonstration of enhanced absorption in thin film Si solar cells with periodic microhemisphere hole arrays,” Opt. Commun. 315, 79–82 (2014).
[Crossref]

Yang, H.

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl. 22(3), 356–361 (2014).
[Crossref]

Yang, L. Q.

J. D. Myers, W. R. Cao, V. Cassidy, S. H. Eom, R. J. Zhou, L. Q. Yang, W. You, and J. G. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energ. Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Yang, S. S.

M. Nam, K. Kim, J. Lee, K. K. Lee, and S. S. Yang, “Concentrating microlens array mounted on an InGaP/GaAs/Ge solar cell for photovoltaic performance enhancement,” Sol. Energy 91, 374–380 (2013).
[Crossref]

You, W.

J. D. Myers, W. R. Cao, V. Cassidy, S. H. Eom, R. J. Zhou, L. Q. Yang, W. You, and J. G. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energ. Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Yu, M. Y.

K. Huang, Q. K. Wang, X. M. Yan, K. X. Hu, M. Y. Yu, and X. Q. Shen, “Demonstration of enhanced absorption in thin film Si solar cells with periodic microhemisphere hole arrays,” Opt. Commun. 315, 79–82 (2014).
[Crossref]

Yuan, X. R.

X. Z. Xie, M. F. Hu, W. F. Chen, X. Wei, W. Hu, X. Y. Gao, X. R. Yuan, and M. H. Hong, “Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation,” J. Laser Micro Nanoen. 8(3), 259–265 (2013).
[Crossref]

Zhang, X. R.

Zhou, R. J.

J. D. Myers, W. R. Cao, V. Cassidy, S. H. Eom, R. J. Zhou, L. Q. Yang, W. You, and J. G. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energ. Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Zhou, X.

K. Feron, S. Ulum, N. P. Holmes, A. L. D. Kilcoyne, W. J. Belcher, X. Zhou, C. J. Fell, and P. C. Dastoor, “Modelling transport in nanoparticle organic solar cells using Monte Carlo methods,” Appl. Phys. Lett. 103(19), 193306 (2013).
[Crossref]

Zhuo, Y. W.

J. Xie, Y. W. Zhuo, and T. W. Tan, “Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel,” Precis. Eng. 35(1), 173–182 (2011).
[Crossref]

Appl. Phys. Lett. (3)

P. Seungil, Y. J. Hyung, J. K. Myeong, H. P. Jong, and K. Keunjoo, “Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film,” Appl. Phys. Lett. 104, 73–902 (2014).

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[Crossref]

K. Feron, S. Ulum, N. P. Holmes, A. L. D. Kilcoyne, W. J. Belcher, X. Zhou, C. J. Fell, and P. C. Dastoor, “Modelling transport in nanoparticle organic solar cells using Monte Carlo methods,” Appl. Phys. Lett. 103(19), 193306 (2013).
[Crossref]

Energ. Environ. Sci. (1)

J. D. Myers, W. R. Cao, V. Cassidy, S. H. Eom, R. J. Zhou, L. Q. Yang, W. You, and J. G. Xue, “A universal optical approach to enhancing efficiency of organic-based photovoltaic devices,” Energ. Environ. Sci. 5(5), 6900–6904 (2012).
[Crossref]

Int. J. Mach. Tools Manuf. (1)

J. Xie, H. F. Xie, M. J. Luo, T. W. Tan, and P. Li, “Dry electro-contact discharge mutual-wear truing of micro diamond wheel V-tip for precision micro-grinding,” Int. J. Mach. Tools Manuf. 60, 44–51 (2012).
[Crossref]

J. Appl. Phys. (2)

A. Bozzola, P. Kowalczewski, and L. C. Andreani, “Towards high efficiency thin-film crystalline silicon solar cells: the roles of light trapping and non-radiative recombinations,” J. Appl. Phys. 115(9), 094501 (2014).
[Crossref]

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510 (1961).
[Crossref]

J. Laser Micro Nanoen. (1)

X. Z. Xie, M. F. Hu, W. F. Chen, X. Wei, W. Hu, X. Y. Gao, X. R. Yuan, and M. H. Hong, “Cavitation bubble dynamics during laser wet etching of transparent sapphire substrates by 1064 nm laser irradiation,” J. Laser Micro Nanoen. 8(3), 259–265 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Polym. Sci. Pol. Phys. (1)

J. Li, J. C. Liu, and C. J. Gao, “Improved efficiency of organic solar cells with modified hole-extraction layers,” J. Polym. Sci. Pol. Phys. 50(2), 125–128 (2012).
[Crossref]

Jpn.J. Appl. Phys. Part 2-Lett. (1)

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn.J. Appl. Phys. Part 2-Lett. 39(Part 2, No. 7B), L735–L737 (2000).
[Crossref]

Opt. Commun. (1)

K. Huang, Q. K. Wang, X. M. Yan, K. X. Hu, M. Y. Yu, and X. Q. Shen, “Demonstration of enhanced absorption in thin film Si solar cells with periodic microhemisphere hole arrays,” Opt. Commun. 315, 79–82 (2014).
[Crossref]

Opt. Express (9)

Z. Y. Liu, K. Wang, X. B. Luo, and S. Liu, “Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing,” Opt. Express 18(9), 9398–9412 (2010).
[Crossref] [PubMed]

N. N. Bennett, S. B. F. Lal, and P. W. Thomas, “Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells,” Opt. Express 22(S6), A1422–A1430 (2014).
[Crossref]

X. R. Zhang, Q. P. Huang, J. G. Hu, R. J. Knize, and Y. Y. Lu, “Hybrid tandem solar cell enhanced by a metallic hole-array as the intermediate electrode,” Opt. Express 22(S6), A1400–A1411 (2014).
[Crossref]

K. Wang, S. Liu, F. Chen, Z. Y. Liu, and X. B. Luo, “Effect of manufacturing defects on optical performance of discontinuous freeform lenses,” Opt. Express 17(7), 5457–5465 (2009).
[Crossref] [PubMed]

D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express 19(S2), A95–A107 (2011).
[Crossref] [PubMed]

K. Tvingstedt, S. Dal Zilio, O. Inganäs, and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Opt. Express 16(26), 21608–21615 (2008).
[Crossref] [PubMed]

C. Cho and J. Y. Lee, “Multi-scale and angular analysis of ray-optical light trapping schemes in thin-film solar cells: Micro lens array, V-shaped configuration, and double parabolic trapper,” Opt. Express 21(S2Suppl 2), A276–A284 (2013).
[Crossref] [PubMed]

X. Wang, M. R. Khan, M. Lundstrom, and P. Bermel, “Performance-limiting factors for GaAs-based single nanowire photovoltaics,” Opt. Express 22(S2), A344–A358 (2014).
[Crossref] [PubMed]

M. R. Khan, X. F. Wang, P. Bermel, and M. A. Alam, “Enhanced light trapping in solar cells with a meta-mirror following generalized Snell’s law,” Opt. Express 22(S3), A973–A985 (2014).
[PubMed]

Precis. Eng. (1)

J. Xie, Y. W. Zhuo, and T. W. Tan, “Experimental study on fabrication and evaluation of micro pyramid-structured silicon surface using a V-tip of diamond grinding wheel,” Precis. Eng. 35(1), 173–182 (2011).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl. 22(3), 356–361 (2014).
[Crossref]

Sol. Energy (1)

M. Nam, K. Kim, J. Lee, K. K. Lee, and S. S. Yang, “Concentrating microlens array mounted on an InGaP/GaAs/Ge solar cell for photovoltaic performance enhancement,” Sol. Energy 91, 374–380 (2013).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

N. H. Reich, W. G. J. H. M. VanSark, E. A. Alsema, R. W. Lof, R. W. Schropp, W. C. Sinke, and W. C. Turkenburg, “Crystalline silicon cell performance at low light intensities,” Sol. Energy Mater. Sol. Cells 93(9), 1471–1481 (2009).
[Crossref]

J. Escarre, K. Soderstrom, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F. J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solar cells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Supplementary Material (2)

» Media 1: MP4 (36722 KB)     
» Media 2: MP4 (26523 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Monte Carlo simulated light trajectories on the micro-hemisphere lens (left) and microgroove lens (right) solar cell.
Fig. 2
Fig. 2 The light flux γ and the light transmittance t of solar cell versus incident angle α. (a) The light flux γ and (b) the light transmittance t.
Fig. 3
Fig. 3 The light reflection and refraction inside microgroove structure. (a) Double internal total reflection and (b) one internal total reflection.
Fig. 4
Fig. 4 Fabrication of microgroove lens on the glass substrate. (a) Machining scheme and (b) machining scene.
Fig. 5
Fig. 5 Micrographics of microgroove lens (a) before and (b) after polishing.
Fig. 6
Fig. 6 The topography of TF microgroove lens solar cell. (a) The photo of microgroove lens solar cell, (b) the measured 3D microgroove lens surface and (c) the microgroove lens profile.
Fig. 7
Fig. 7 The experimental setups of testing the electricity generation ability: (a) outdoor charging and (b) discharging.
Fig. 8
Fig. 8 The simulation light efficiency of the glass substrate in different microgroove depth d. (a) Light efficiency ƞ versus visible light wavelength λ and (b) light efficiency ƞ versus incident angle α.
Fig. 9
Fig. 9 Effects of the solar cell before and after patterned with the microgroove lens. (a) I-V characteristics at different incident angle α and (b) LED glowing effects (See Media 1 and Media 2).
Fig. 10
Fig. 10 Conversion efficiency Ef as a function of incident angle α for microgroove lens solar cell at the light intensities of (a) 1000W/m2, (b) 750W/m2 and (c) 500W/m2.
Fig. 11
Fig. 11 The photovoltaic characters of solar cell versus the incident angle and groove depths at the light illumination intensity of 500W/m2.

Tables (3)

Tables Icon

Table 1 Form-truing conditions of SD600 wheel V-tip

Tables Icon

Table 2 Micro-grinding conditions

Tables Icon

Table 3 Electricity charge-discharge results

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

β= α+φ
β 1 =arcsin(( n air / n mat )sinβ),
β c =arcsin( n air / n mat ).
β 2 π/2βπ/4+ β 1 /2
β 2 β c β( β c + β 1 )/2
β 3 β c β( π/2 β c + β 1 )/2
{ β(π/2- acrsin( n air / n mat ))/2 β( acrsin( n air / n mat )+ acrsin(( n air / n mat )sinβ))/2 β(π/2-acrsin( n air / n mat )+ acrsin(( n air / n mat )sinβ))/2

Metrics