Abstract

In this work, we demonstrate an improved method to simulate the characteristics of multijunction solar cell by introducing a bias-dependent luminescent coupling efficiency. The standard two-diode equivalent-circuit model with constant luminescent coupling efficiency has limited accuracy because it does not include the recombination current from photogenerated carriers. Therefore, we propose an alternative analytical method with bias-dependent luminescent coupling efficiency to model multijunction cell behavior. We show that there is a noticeable difference in the J-V characteristics and cell performance generated by simulations with a constant vs. bias-dependent coupling efficiency. The results indicate that introducing a bias-dependent coupling efficiency produces more accurate modeling of multijunction cell behavior under real operating conditions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency response of the external quantum efficiency in multijunction solar cells

Nicolás Márquez Peraca, D. Taner Bilir, and Behrang H. Hamadani
Opt. Express 25(16) A709-A721 (2017)

Impact of nanometer air gaps on photon recycling in mechanically stacked multi-junction solar cells

Takeshi Tayagaki, Kikuo Makita, Ryuji Oshima, Hidenori Mizuno, and Takeyoshi Sugaya
Opt. Express 27(4) A1-A10 (2019)

Optical coupling from InGaAs subcell to InGaP subcell in InGaP/InGaAs/Ge multi-junction solar cells

G. W. Shu, J. Y. Lin, H. T. Jian, J. L. Shen, S. C. Wang, C. L. Chou, W. C. Chou, C. H. Wu, C. H. Chiu, and H. C. Kuo
Opt. Express 21(S1) A123-A130 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Friedman, J. F. Geisz, and M. A. Steiner, “The analysis of multijunction solar cell current - voltage characteristics in the presence of luminescent coupling,” IEEE J. Photovoltaics 3(4), 1429–1436 (2013).
    [Crossref]
  2. J. Jia, F. Suarez, T. Bilir, V. Sabnis, and J. Harris, “3-D modeling of luminescent coupling effects in multijunction concentrator solar cells,” in Proceeding of CPV 10, (American Institute of Physics, Albuquerque, 2014).
    [Crossref]
  3. D. Derkacs, D. T. Bilir, and V. A. Sabnis, “Luminescent coupling in GaAs/GaInNAsSb multijunction solar cells,” IEEE J. Photovoltaics 3(1), 520–527 (2013).
    [Crossref]
  4. S. H. Lim, J. J. Li, E. H. Steenbergen, and Y. H. Zhang, “Luminescence coupling effects on multijunction solar cell external quantum efficiency measurement,” Prog. Photovolt. Res. Appl. 21(3), 344–350 (2013).
    [Crossref]
  5. M. A. Steiner and J. F. Geisz, “Non-linear luminescent coupling in series-connected multijunction solar cells,” Appl. Phys. Lett. 100(25), 251106 (2012).
    [Crossref]
  6. K. C. Fong, K. R. McIntosh, and A. W. Blakers, “Accurate series resistance measurement of solar cells,” Prog. Photovolt. Res. Appl. 21, 490–499 (2013).
  7. G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436 (1992).
    [Crossref]
  8. S. Tiwari and S. L. Wright, “Material properties of p-type GaAs at large dopings,” Appl. Phys. Lett. 56(6), 563 (1990).
    [Crossref]
  9. C. J. Hwang, “Doping dependence of hole lifetime in n-type GaAs,” J. Appl. Phys. 42(11), 4408 (1971).
    [Crossref]
  10. J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003), Chap. 4.

2013 (4)

D. J. Friedman, J. F. Geisz, and M. A. Steiner, “The analysis of multijunction solar cell current - voltage characteristics in the presence of luminescent coupling,” IEEE J. Photovoltaics 3(4), 1429–1436 (2013).
[Crossref]

D. Derkacs, D. T. Bilir, and V. A. Sabnis, “Luminescent coupling in GaAs/GaInNAsSb multijunction solar cells,” IEEE J. Photovoltaics 3(1), 520–527 (2013).
[Crossref]

S. H. Lim, J. J. Li, E. H. Steenbergen, and Y. H. Zhang, “Luminescence coupling effects on multijunction solar cell external quantum efficiency measurement,” Prog. Photovolt. Res. Appl. 21(3), 344–350 (2013).
[Crossref]

K. C. Fong, K. R. McIntosh, and A. W. Blakers, “Accurate series resistance measurement of solar cells,” Prog. Photovolt. Res. Appl. 21, 490–499 (2013).

2012 (1)

M. A. Steiner and J. F. Geisz, “Non-linear luminescent coupling in series-connected multijunction solar cells,” Appl. Phys. Lett. 100(25), 251106 (2012).
[Crossref]

1992 (1)

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436 (1992).
[Crossref]

1990 (1)

S. Tiwari and S. L. Wright, “Material properties of p-type GaAs at large dopings,” Appl. Phys. Lett. 56(6), 563 (1990).
[Crossref]

1971 (1)

C. J. Hwang, “Doping dependence of hole lifetime in n-type GaAs,” J. Appl. Phys. 42(11), 4408 (1971).
[Crossref]

Ahrenkiel, R. K.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436 (1992).
[Crossref]

Bilir, D. T.

D. Derkacs, D. T. Bilir, and V. A. Sabnis, “Luminescent coupling in GaAs/GaInNAsSb multijunction solar cells,” IEEE J. Photovoltaics 3(1), 520–527 (2013).
[Crossref]

Blakers, A. W.

K. C. Fong, K. R. McIntosh, and A. W. Blakers, “Accurate series resistance measurement of solar cells,” Prog. Photovolt. Res. Appl. 21, 490–499 (2013).

Derkacs, D.

D. Derkacs, D. T. Bilir, and V. A. Sabnis, “Luminescent coupling in GaAs/GaInNAsSb multijunction solar cells,” IEEE J. Photovoltaics 3(1), 520–527 (2013).
[Crossref]

Fong, K. C.

K. C. Fong, K. R. McIntosh, and A. W. Blakers, “Accurate series resistance measurement of solar cells,” Prog. Photovolt. Res. Appl. 21, 490–499 (2013).

Friedman, D. J.

D. J. Friedman, J. F. Geisz, and M. A. Steiner, “The analysis of multijunction solar cell current - voltage characteristics in the presence of luminescent coupling,” IEEE J. Photovoltaics 3(4), 1429–1436 (2013).
[Crossref]

Geisz, J. F.

D. J. Friedman, J. F. Geisz, and M. A. Steiner, “The analysis of multijunction solar cell current - voltage characteristics in the presence of luminescent coupling,” IEEE J. Photovoltaics 3(4), 1429–1436 (2013).
[Crossref]

M. A. Steiner and J. F. Geisz, “Non-linear luminescent coupling in series-connected multijunction solar cells,” Appl. Phys. Lett. 100(25), 251106 (2012).
[Crossref]

Hwang, C. J.

C. J. Hwang, “Doping dependence of hole lifetime in n-type GaAs,” J. Appl. Phys. 42(11), 4408 (1971).
[Crossref]

Keyes, B. M.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436 (1992).
[Crossref]

Levi, D. H.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436 (1992).
[Crossref]

Li, J. J.

S. H. Lim, J. J. Li, E. H. Steenbergen, and Y. H. Zhang, “Luminescence coupling effects on multijunction solar cell external quantum efficiency measurement,” Prog. Photovolt. Res. Appl. 21(3), 344–350 (2013).
[Crossref]

Lim, S. H.

S. H. Lim, J. J. Li, E. H. Steenbergen, and Y. H. Zhang, “Luminescence coupling effects on multijunction solar cell external quantum efficiency measurement,” Prog. Photovolt. Res. Appl. 21(3), 344–350 (2013).
[Crossref]

Lundstrom, M. S.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436 (1992).
[Crossref]

Lush, G. B.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436 (1992).
[Crossref]

MacMillan, H. F.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436 (1992).
[Crossref]

McIntosh, K. R.

K. C. Fong, K. R. McIntosh, and A. W. Blakers, “Accurate series resistance measurement of solar cells,” Prog. Photovolt. Res. Appl. 21, 490–499 (2013).

Melloch, M. R.

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436 (1992).
[Crossref]

Sabnis, V. A.

D. Derkacs, D. T. Bilir, and V. A. Sabnis, “Luminescent coupling in GaAs/GaInNAsSb multijunction solar cells,” IEEE J. Photovoltaics 3(1), 520–527 (2013).
[Crossref]

Steenbergen, E. H.

S. H. Lim, J. J. Li, E. H. Steenbergen, and Y. H. Zhang, “Luminescence coupling effects on multijunction solar cell external quantum efficiency measurement,” Prog. Photovolt. Res. Appl. 21(3), 344–350 (2013).
[Crossref]

Steiner, M. A.

D. J. Friedman, J. F. Geisz, and M. A. Steiner, “The analysis of multijunction solar cell current - voltage characteristics in the presence of luminescent coupling,” IEEE J. Photovoltaics 3(4), 1429–1436 (2013).
[Crossref]

M. A. Steiner and J. F. Geisz, “Non-linear luminescent coupling in series-connected multijunction solar cells,” Appl. Phys. Lett. 100(25), 251106 (2012).
[Crossref]

Tiwari, S.

S. Tiwari and S. L. Wright, “Material properties of p-type GaAs at large dopings,” Appl. Phys. Lett. 56(6), 563 (1990).
[Crossref]

Wright, S. L.

S. Tiwari and S. L. Wright, “Material properties of p-type GaAs at large dopings,” Appl. Phys. Lett. 56(6), 563 (1990).
[Crossref]

Zhang, Y. H.

S. H. Lim, J. J. Li, E. H. Steenbergen, and Y. H. Zhang, “Luminescence coupling effects on multijunction solar cell external quantum efficiency measurement,” Prog. Photovolt. Res. Appl. 21(3), 344–350 (2013).
[Crossref]

Appl. Phys. Lett. (2)

M. A. Steiner and J. F. Geisz, “Non-linear luminescent coupling in series-connected multijunction solar cells,” Appl. Phys. Lett. 100(25), 251106 (2012).
[Crossref]

S. Tiwari and S. L. Wright, “Material properties of p-type GaAs at large dopings,” Appl. Phys. Lett. 56(6), 563 (1990).
[Crossref]

IEEE J. Photovoltaics (2)

D. J. Friedman, J. F. Geisz, and M. A. Steiner, “The analysis of multijunction solar cell current - voltage characteristics in the presence of luminescent coupling,” IEEE J. Photovoltaics 3(4), 1429–1436 (2013).
[Crossref]

D. Derkacs, D. T. Bilir, and V. A. Sabnis, “Luminescent coupling in GaAs/GaInNAsSb multijunction solar cells,” IEEE J. Photovoltaics 3(1), 520–527 (2013).
[Crossref]

J. Appl. Phys. (2)

C. J. Hwang, “Doping dependence of hole lifetime in n-type GaAs,” J. Appl. Phys. 42(11), 4408 (1971).
[Crossref]

G. B. Lush, H. F. MacMillan, B. M. Keyes, D. H. Levi, M. R. Melloch, R. K. Ahrenkiel, and M. S. Lundstrom, “A study of minority carrier lifetime versus doping concentration in n-type GaAs grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 72(4), 1436 (1992).
[Crossref]

Prog. Photovolt. Res. Appl. (2)

K. C. Fong, K. R. McIntosh, and A. W. Blakers, “Accurate series resistance measurement of solar cells,” Prog. Photovolt. Res. Appl. 21, 490–499 (2013).

S. H. Lim, J. J. Li, E. H. Steenbergen, and Y. H. Zhang, “Luminescence coupling effects on multijunction solar cell external quantum efficiency measurement,” Prog. Photovolt. Res. Appl. 21(3), 344–350 (2013).
[Crossref]

Other (2)

J. Jia, F. Suarez, T. Bilir, V. Sabnis, and J. Harris, “3-D modeling of luminescent coupling effects in multijunction concentrator solar cells,” in Proceeding of CPV 10, (American Institute of Physics, Albuquerque, 2014).
[Crossref]

J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Two-diode equivalent circuit model of a two-junction solar cell. The components are as follows: photocurrent from external illumination ( J ext ), luminescent coupling current ( J LC ), recombination current with ideality factor n = 1 and n = 2 ( J 1 and J 2 ), parallel resistance ( R p ), and series resistance due to the tunnel junction ( R s ).
Fig. 2
Fig. 2 J-V characteristics of an example two-junction cell. The cell is shown to be limited second junction current. The red solid line and blue dashed line are the J-V curves of the first and second junction subcells respectively. The black dot-dashed line and black dotted are the J-V curve for the two-junction cell with and without luminescent coupling effects respectively. The two-junction tandem cell has a higher current output than the second junction, indicating the presence of luminescent coupling current.
Fig. 3
Fig. 3 Simulation results of different recombination currents in a GaAs single-junction cell. The red dashed line and solid-circle line are the SRH recombination current densities from photogenerated carriers and electrically injected carriers, respectively. The blue dot-dashed line and dotted line are the radiative recombination current densities from photogenerated carriers and electrically injected carriers, respectively. The total recombination current density is shown as the black solid line. The Jsc is 13.8mA/c m 2 , and Voc is 0.97V .
Fig. 4
Fig. 4 Simulation results of J rad / J rec,total at different bias voltages under different illumination intensities. The solid, dashed, dot-dashed and dotted lines represent the results when the illumination is 1, 10, 100 and 1000 suns, respectively. The circles mark the voltages at the maximum power points and the squares mark the open-circuit voltages.
Fig. 5
Fig. 5 Simulation results of the rates of radiative recombination (black solid: short-circuit condition; green dot-dashed: open-circuit condition) and SRH recombination (blue dashed: short-circuit condition; red dotted: open-circuit condition). Note the 0-0.5 μm region is the emitter and the 0.5-3 μm region is the base.
Fig. 6
Fig. 6 Simulation results of the J rad / J rec,total ratio at different illumination intensities and different voltages. The black circle, blue square and red triangle symbols each represent the ratio under short-circuit, maximum-power and open-circuit conditions.
Fig. 7
Fig. 7 Simulation results of a two-junction cell. The J-V curves of the first junction subcell (blue dashed), the second junction subcell (red dotted), two-junction cell with constant coupling efficiency (green dot-dashed) and two-junction cell with bias-dependent coupling efficiency (brown solid) are shown. The luminescent coupling efficiencies of the two cases are equal to 0.88 in the short-circuit condition.
Fig. 8
Fig. 8 Change of the coupling efficiency with applied voltage for the two-junction cell under different photocurrent mismatch conditions. The blue solid, red dashed and green dotted lines represent photocurrent mismatch of 0, 0.2 and 1 mA/cm2, respectively,
Fig. 9
Fig. 9 Relative difference in the simulated maximum output power by the two methods versus the photocurrent mismatch.

Tables (1)

Tables Icon

Table 1 Key simulation performance of the first, second junction subcell and two-junction cell

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

J i ( V i )= J 01,i [exp( e V i k B T )1]+ J 02,i [exp( e V i 2 k B T )1] J L,i ext
J LC = η i1,i J 01,i1 [exp( e V i1 k B T )1]
V 2J,no LC (J)= V 1 (J)+ V 2 (J)
J 2 ( V 2 )= J 2,no LC ( V 2 )+ J LC
V 2,LC (J)= V 2 (J J LC )
J LC ( V 1 )=η( V 1 ) J rec,1 =η( V 1 )( J sc,1 J),J< J sc,1
V 2J ( J )= V 1 ( J )+ V 2 ( Jη( V 1 )( J sc,1 J ) )
J LC ( V 1 )= α 2 γ 1,2 J rad,1 ( V 1 )
η( V 1 )= α 2 γ 1,2 J rad ( V 1 ) J rec,J1 ( V 1 )
J rad = J rad,light + J rad,bias
J rec,1 = J rad, light + J rad,bias + J SRH, light + J SRH,bias
J rad J rec,1 | sc J rad,light J rad,light + J SRH,light = 1 1+ J SRH,light J rad,light
J rad J rec,1 | sc J rad,bias J rad,bias + J SRH,bias = 1 1+ J SRH,bias J rad,bias
R rad =B( np n i 2 )
R net SRH = np n i 2 τ p ( n+ n i exp( E trap kT ) )+ τ n ( p+ n i exp( E trap kT ) )
R SRH R rad | emitter < R SRH R rad | base
J SRH,light J rad,light | sc < J SRH,bias J rad,bias | oc
J rad J rec,J1 | sc < J rad J rec,J1 | oc

Metrics