Abstract

The present work theoretically analyzes the performance of the near-field thermophotovoltaic (TPV) energy conversion device for low temperature applications (Tsource ∼ 500 K). In the proposed TPV system, doped Si is employed as the source because its optical property can be readily tuned by changing the doping concentration, and InSb is selected as a TPV cell because of its low bandgap energy (0.17 eV). In order to enhance the near-field thermal radiation between the source and the TPV cell, monolayer of graphene is coated on the cell side so that surface plasmon can play a critical role in heat transfer. It is found that monolayer of graphene can significantly enhance the power throughput by 30 times and the conversion efficiency by 6.1 times compared to the case without graphene layer. The resulting maximum conversion efficiency is 19.4% at 10-nm vacuum gap width.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems

Ognjen Ilic, Marinko Jablan, John D. Joannopoulos, Ivan Celanovic, and Marin Soljačić
Opt. Express 20(S3) A366-A384 (2012)

Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap

Seokmin Jin, Mikyung Lim, Seung S. Lee, and Bong Jae Lee
Opt. Express 24(6) A635-A649 (2016)

Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems

Yi Xiang Yeng, Walker R. Chan, Veronika Rinnerbauer, John D. Joannopoulos, Marin Soljačić, and Ivan Celanovic
Opt. Express 21(S6) A1035-A1051 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Park and Z. M. Zhang, “Fundamentals and applications of near-field radiative energy transfer,” Frontiers Heat Mass Transfer 4, 013001 (2013).
    [Crossref]
  2. M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE T. Energy Conver. 17, 130–142 (2002).
    [Crossref]
  3. J. L. Pan, H. K. H. Choy, and C. G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE T. Electron Dev. 47, 241–249 (2000).
    [Crossref]
  4. A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
    [Crossref]
  5. M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
    [Crossref]
  6. K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008).
    [Crossref]
  7. M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE T. Energy Conver. 26, 686–698 (2011).
    [Crossref]
  8. D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
    [Crossref]
  9. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6, 209–222 (2002).
    [Crossref]
  10. T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
    [Crossref]
  11. C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21, 14988–15013 (2013).
    [Crossref] [PubMed]
  12. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
    [Crossref] [PubMed]
  13. R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports 3, 1383 (2013).
    [Crossref] [PubMed]
  14. V. B. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
    [Crossref]
  15. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref] [PubMed]
  16. P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10, 4285–4294 (2010).
    [Crossref]
  17. F. Rana, “Graphene optoelectronics: Plasmons get tuned up,” Nat. Nanotechnol. 6, 611–612 (2011).
    [Crossref] [PubMed]
  18. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
    [Crossref] [PubMed]
  19. B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys.-Condens. Mat. 22, 462201 (2010).
    [Crossref]
  20. V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near- field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85, 155418 (2012).
    [Crossref]
  21. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
    [Crossref]
  22. A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B 83, 241407 (2011).
    [Crossref]
  23. M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21, 22173–22185 (2013).
    [Crossref] [PubMed]
  24. S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
    [Crossref]
  25. G. W. Gobeli and H. Y. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613–620 (1960).
    [Crossref]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  27. B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanosc. Microsc. Therm. 12, 238–250 (2008).
    [Crossref]
  28. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
    [Crossref]
  29. T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
    [Crossref]
  30. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  31. M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).
  32. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer (John Wiley & Sons Singapore Pte. Ltd, 2013).
  33. R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49, 4454–4468 (2006).
    [Crossref]
  34. D. A. Neamen and B. Pevzner, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, 2003).
  35. J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
    [Crossref]
  36. D. Frank and B. S. Wherrett, “Influence of surface recombination on optically bistable semiconductor devices,” J. Opt. Soc. Am. B 4, 25–29 (1987).
    [Crossref]
  37. I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
    [Crossref]

2014 (2)

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]

V. B. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
[Crossref]

2013 (5)

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports 3, 1383 (2013).
[Crossref] [PubMed]

K. Park and Z. M. Zhang, “Fundamentals and applications of near-field radiative energy transfer,” Frontiers Heat Mass Transfer 4, 013001 (2013).
[Crossref]

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]

C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21, 14988–15013 (2013).
[Crossref] [PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21, 22173–22185 (2013).
[Crossref] [PubMed]

2012 (4)

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref] [PubMed]

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near- field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85, 155418 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref] [PubMed]

2011 (3)

F. Rana, “Graphene optoelectronics: Plasmons get tuned up,” Nat. Nanotechnol. 6, 611–612 (2011).
[Crossref] [PubMed]

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE T. Energy Conver. 26, 686–698 (2011).
[Crossref]

A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B 83, 241407 (2011).
[Crossref]

2010 (3)

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[Crossref]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10, 4285–4294 (2010).
[Crossref]

B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys.-Condens. Mat. 22, 462201 (2010).
[Crossref]

2008 (4)

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008).
[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanosc. Microsc. Therm. 12, 238–250 (2008).
[Crossref]

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref] [PubMed]

2006 (3)

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49, 4454–4468 (2006).
[Crossref]

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]

2003 (1)

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

2002 (2)

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE T. Energy Conver. 17, 130–142 (2002).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6, 209–222 (2002).
[Crossref]

2000 (1)

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE T. Electron Dev. 47, 241–249 (2000).
[Crossref]

1987 (1)

1971 (1)

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

1960 (1)

G. W. Gobeli and H. Y. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613–620 (1960).
[Crossref]

Abedin, M. N.

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]

Ahn, K. J.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]

Avouris, P.

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10, 4285–4294 (2010).
[Crossref]

Bae, S.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]

Baek, I. H.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]

Basu, S.

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008).
[Crossref]

Ben-Abdallah, P.

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports 3, 1383 (2013).
[Crossref] [PubMed]

Bergman, T. L.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer (John Wiley & Sons Singapore Pte. Ltd, 2013).

Bright, T. J.

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]

Buljan, H.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

Carminati, R.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6, 209–222 (2002).
[Crossref]

Celanovic, I.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref] [PubMed]

Chen, G.

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

Chevrier, J.

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near- field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85, 155418 (2012).
[Crossref]

Choy, H. K. H.

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE T. Electron Dev. 47, 241–249 (2000).
[Crossref]

Cravalho, E. G.

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE T. Energy Conver. 17, 130–142 (2002).
[Crossref]

DeWitt, D. P.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer (John Wiley & Sons Singapore Pte. Ltd, 2013).

Elsayed-Ali, H. E.

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

Fan, H. Y.

G. W. Gobeli and H. Y. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613–620 (1960).
[Crossref]

Fonstad, C. G.

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE T. Electron Dev. 47, 241–249 (2000).
[Crossref]

Francoeur, M.

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE T. Energy Conver. 26, 686–698 (2011).
[Crossref]

Frank, D.

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref] [PubMed]

Geim, A. K.

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref] [PubMed]

Gobeli, G. W.

G. W. Gobeli and H. Y. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613–620 (1960).
[Crossref]

González-Cuevas, J. A.

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]

Green, M. A.

M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).

Greffet, J.-J.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6, 209–222 (2002).
[Crossref]

Hong, B. H.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]

Ilic, O.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

Incropera, F. P.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer (John Wiley & Sons Singapore Pte. Ltd, 2013).

Jablan, M.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref] [PubMed]

Jeong, Y. U.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]

Joannopoulos, J. D.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

Joulain, K.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6, 209–222 (2002).
[Crossref]

Kang, B. J.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]

King, W. P.

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008).
[Crossref]

Laroche, M.

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

Lavine, A. S.

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer (John Wiley & Sons Singapore Pte. Ltd, 2013).

Lee, B. J.

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21, 22173–22185 (2013).
[Crossref] [PubMed]

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanosc. Microsc. Therm. 12, 238–250 (2008).
[Crossref]

Lee, K.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]

Lee, S. S.

Lim, M.

Maslovski, S.

Ménézo, C.

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49, 4454–4468 (2006).
[Crossref]

Mengüç, M. P.

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE T. Energy Conver. 26, 686–698 (2011).
[Crossref]

Messina, R.

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports 3, 1383 (2013).
[Crossref] [PubMed]

Mulet, J.-P.

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6, 209–222 (2002).
[Crossref]

Muresan, C.

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49, 4454–4468 (2006).
[Crossref]

Narayanaswamy, A.

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

Neamen, D. A.

D. A. Neamen and B. Pevzner, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, 2003).

Nefedov, I.

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref] [PubMed]

Palasantzas, G.

V. B. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Pan, J. L.

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE T. Electron Dev. 47, 241–249 (2000).
[Crossref]

Park, K.

K. Park and Z. M. Zhang, “Fundamentals and applications of near-field radiative energy transfer,” Frontiers Heat Mass Transfer 4, 013001 (2013).
[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008).
[Crossref]

Peres, N. M. R.

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]

Persson, B. N. J.

A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B 83, 241407 (2011).
[Crossref]

B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys.-Condens. Mat. 22, 462201 (2010).
[Crossref]

Pevzner, B.

D. A. Neamen and B. Pevzner, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, 2003).

Polder, D.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref] [PubMed]

Rana, F.

F. Rana, “Graphene optoelectronics: Plasmons get tuned up,” Nat. Nanotechnol. 6, 611–612 (2011).
[Crossref] [PubMed]

Refaat, T. F.

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]

Robin, L.

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49, 4454–4468 (2006).
[Crossref]

Rotermund, F.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref] [PubMed]

Simovski, C.

Soljacic, M.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

Stauber, T.

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]

Svetovoy, V. B.

V. B. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
[Crossref]

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near- field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85, 155418 (2012).
[Crossref]

Tretyakov, S.

Ueba, H.

B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys.-Condens. Mat. 22, 462201 (2010).
[Crossref]

Vaillon, R.

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE T. Energy Conver. 26, 686–698 (2011).
[Crossref]

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49, 4454–4468 (2006).
[Crossref]

Van Hove, M.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

van Zwol, P. J.

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near- field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85, 155418 (2012).
[Crossref]

Volokitin, A. I.

A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B 83, 241407 (2011).
[Crossref]

Wang, L. P.

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]

Whale, M. D.

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE T. Energy Conver. 17, 130–142 (2002).
[Crossref]

Wherrett, B. S.

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref] [PubMed]

Yeom, D. -I.

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]

Zhang, Z. M.

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]

K. Park and Z. M. Zhang, “Fundamentals and applications of near-field radiative energy transfer,” Frontiers Heat Mass Transfer 4, 013001 (2013).
[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[Crossref]

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanosc. Microsc. Therm. 12, 238–250 (2008).
[Crossref]

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008).
[Crossref]

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

ACS Nano (1)

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]

I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]

Frontiers Heat Mass Transfer (1)

K. Park and Z. M. Zhang, “Fundamentals and applications of near-field radiative energy transfer,” Frontiers Heat Mass Transfer 4, 013001 (2013).
[Crossref]

IEEE T. Electron Dev. (1)

J. L. Pan, H. K. H. Choy, and C. G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE T. Electron Dev. 47, 241–249 (2000).
[Crossref]

IEEE T. Energy Conver. (2)

M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE T. Energy Conver. 26, 686–698 (2011).
[Crossref]

M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE T. Energy Conver. 17, 130–142 (2002).
[Crossref]

Int. J. Heat Mass Transfer (1)

R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49, 4454–4468 (2006).
[Crossref]

J. Appl. Phys. (1)

M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]

J. Heat Transfer (2)

T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Conf. Ser. (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

J. Phys.-Condens. Mat. (1)

B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys.-Condens. Mat. 22, 462201 (2010).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008).
[Crossref]

Microscale Therm. Eng. (1)

J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6, 209–222 (2002).
[Crossref]

Nano Lett. (1)

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10, 4285–4294 (2010).
[Crossref]

Nanosc. Microsc. Therm. (1)

B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanosc. Microsc. Therm. 12, 238–250 (2008).
[Crossref]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Rana, “Graphene optoelectronics: Plasmons get tuned up,” Nat. Nanotechnol. 6, 611–612 (2011).
[Crossref] [PubMed]

Opt. Eng. (1)

J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]

Opt. Express (3)

Phys. Rev. (1)

G. W. Gobeli and H. Y. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613–620 (1960).
[Crossref]

Phys. Rev. Appl. (1)

V. B. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
[Crossref]

Phys. Rev. B (5)

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near- field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85, 155418 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]

A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B 83, 241407 (2011).
[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]

Scientific Reports (1)

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports 3, 1383 (2013).
[Crossref] [PubMed]

Other (5)

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).

F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer (John Wiley & Sons Singapore Pte. Ltd, 2013).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

D. A. Neamen and B. Pevzner, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of a graphene-assisted Si-InSb thermophotovoltaic device in three-dimensional view.
Fig. 2
Fig. 2 Spectral radiative heat flux between the doped-Si source and the InSb cell: (a) d = 10 nm and NSi = 1 × 1020 cm−3; (b) d = 10 nm and NSi = 5 × 1020 cm−3; (c) d = 10 nm and NSi = 1 × 1021 cm−3; and (d) d = 50 nm and NSi = 1 × 1020 cm−3. In the figure, λg indicates the wavelength corresponding to the bandgap energy of InSb.
Fig. 3
Fig. 3 Contour of Sβ,λ (β, λ) in logarithmic scale: (a)–(c) d = 10 nm and NSi = 1 × 1020 cm−3; (d)–(f) d = 10 nm and NSi = 5 × 1020 cm−3; and (g)–(i) d = 50 nm and NSi = 1 × 1020 cm−3. For simplicity, the parallel wavevector component β is normalized by bandgap wavelength (λg = 7.29 μm). Surface plasmon dispersion curves are also overlaid.
Fig. 4
Fig. 4 Spectral photocurrent density generated in the InSb cell: (a) d = 10 nm and NSi = 1 × 1020 cm−3; (b) d = 10 nm and NSi = 5 × 1020 cm−3; (c) d = 10 nm and NSi = 1 × 1021 cm−3; (d) d = 50 nm and NSi = 1 × 1020 cm−3.
Fig. 5
Fig. 5 Effect of the vacuum gap width on the TPV performance: (a) power throughput; and (b) conversion efficiency.
Fig. 6
Fig. 6 Quantum efficiency, ηq: (a) d = 10 nm and NSi = 1 × 1020 cm−3; (b) d = 10 nm and NSi = 5 × 1020 cm−3; (c) d = 10 nm and NSi = 1 × 1021 cm−3; (d) d = 50 nm and NSi = 1 × 1020 cm−3.
Fig. 7
Fig. 7 Effect of the thickness of p-region on the TPV performance: (a) power throughput; (b) conversion efficiency; and (c) photocurrent density.

Tables (1)

Tables Icon

Table 1 The enhancement factor compared to the case without graphene layer in terms of the conversion efficiency (EFη) or the power throughput (EFP).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

q ω , net = 0 S β , ω ( β , ω ) d β = [ Θ ( ω , T 1 ) 4 π 2 Θ ( ω , T 2 ) 4 π 2 ] 0 β d β ( k 1 z ) × [ ( k 2 z k 2 * k 2 ) ( k 1 z k 1 z * + β 2 k 1 k 1 * k 1 z k 1 z * ) T 12 p T 12 p * + ( k 2 z * ) ( 1 k 1 z k 1 z * ) T 12 s T 12 s * ]
T 12 s , p = t 10 s , p t 02 s , p e i k 0 z d 1 r 01 s , p r 02 s , p e i 2 k 0 z d
Q ( z ) = q net e 2 ( k 2 z ) z = 0 d λ Q λ ( z , λ ) = 0 d λ 0 S β , λ ( β , λ ) e 2 ( k 2 z ) z d β
D e , h d 2 { n e , h ( z , λ ) n e , h 0 } d z 2 n e , h ( z , λ ) n e , h 0 τ e , h + g ˙ ( z , λ ) = 0
g ˙ ( z , λ ) = d Q λ d z λ h c 0 = λ h c 0 0 2 ( k 2 z ) S β , λ ( β , λ ) e 2 ( k 2 z ) z d β
n e , h ( z , λ ) n e , h 0 = A e , h exp ( z D e , h τ e , h ) + B e , h exp ( z D e , h τ e , h ) + λ h c 0 0 2 τ e , h ( k 2 z ) S β , λ ( β , λ ) e 2 ( k 2 z ) z 1 4 D e , h τ e , h ( k 2 z ) 2 d β
J e ( λ ) = e D e d n e ( z , λ ) d z | z = a and J h ( λ ) = e D h d n h ( z , λ ) d z | z = b
| J dp ( λ ) | = e Q λ ( a , λ ) Q λ ( b , λ ) h c 0 / λ
P E = V max × | J max | = V max × [ | J ph | | J s | × { exp ( e V max k B T ) 1 ]

Metrics