T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]
V. B. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
[Crossref]
R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports 3, 1383 (2013).
[Crossref]
[PubMed]
K. Park and Z. M. Zhang, “Fundamentals and applications of near-field radiative energy transfer,” Frontiers Heat Mass Transfer 4, 013001 (2013).
[Crossref]
I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]
C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21, 14988–15013 (2013).
[Crossref]
[PubMed]
M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21, 22173–22185 (2013).
[Crossref]
[PubMed]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]
[PubMed]
V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near- field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85, 155418 (2012).
[Crossref]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]
W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]
[PubMed]
F. Rana, “Graphene optoelectronics: Plasmons get tuned up,” Nat. Nanotechnol. 6, 611–612 (2011).
[Crossref]
[PubMed]
M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE T. Energy Conver. 26, 686–698 (2011).
[Crossref]
A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B 83, 241407 (2011).
[Crossref]
S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[Crossref]
P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10, 4285–4294 (2010).
[Crossref]
B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys.-Condens. Mat. 22, 462201 (2010).
[Crossref]
K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008).
[Crossref]
B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanosc. Microsc. Therm. 12, 238–250 (2008).
[Crossref]
L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]
T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]
A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]
[PubMed]
M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]
R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49, 4454–4468 (2006).
[Crossref]
J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]
A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]
M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE T. Energy Conver. 17, 130–142 (2002).
[Crossref]
J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6, 209–222 (2002).
[Crossref]
J. L. Pan, H. K. H. Choy, and C. G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE T. Electron Dev. 47, 241–249 (2000).
[Crossref]
D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]
G. W. Gobeli and H. Y. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613–620 (1960).
[Crossref]
J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]
I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]
P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10, 4285–4294 (2010).
[Crossref]
I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]
I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]
S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[Crossref]
K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008).
[Crossref]
R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports 3, 1383 (2013).
[Crossref]
[PubMed]
F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer (John Wiley & Sons Singapore Pte. Ltd, 2013).
T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]
M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]
J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6, 209–222 (2002).
[Crossref]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]
[PubMed]
A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]
V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near- field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85, 155418 (2012).
[Crossref]
J. L. Pan, H. K. H. Choy, and C. G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE T. Electron Dev. 47, 241–249 (2000).
[Crossref]
M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE T. Energy Conver. 17, 130–142 (2002).
[Crossref]
F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer (John Wiley & Sons Singapore Pte. Ltd, 2013).
J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]
L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]
G. W. Gobeli and H. Y. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613–620 (1960).
[Crossref]
J. L. Pan, H. K. H. Choy, and C. G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE T. Electron Dev. 47, 241–249 (2000).
[Crossref]
M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE T. Energy Conver. 26, 686–698 (2011).
[Crossref]
W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]
[PubMed]
T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]
A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]
[PubMed]
G. W. Gobeli and H. Y. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613–620 (1960).
[Crossref]
J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]
M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).
M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]
J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6, 209–222 (2002).
[Crossref]
I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]
[PubMed]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]
F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer (John Wiley & Sons Singapore Pte. Ltd, 2013).
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]
[PubMed]
I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]
[PubMed]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]
J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6, 209–222 (2002).
[Crossref]
I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]
K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008).
[Crossref]
M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]
F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer (John Wiley & Sons Singapore Pte. Ltd, 2013).
M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21, 22173–22185 (2013).
[Crossref]
[PubMed]
S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[Crossref]
B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanosc. Microsc. Therm. 12, 238–250 (2008).
[Crossref]
I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]
R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49, 4454–4468 (2006).
[Crossref]
M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE T. Energy Conver. 26, 686–698 (2011).
[Crossref]
R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports 3, 1383 (2013).
[Crossref]
[PubMed]
J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6, 209–222 (2002).
[Crossref]
R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49, 4454–4468 (2006).
[Crossref]
A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]
D. A. Neamen and B. Pevzner, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, 2003).
A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]
[PubMed]
V. B. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
[Crossref]
E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
J. L. Pan, H. K. H. Choy, and C. G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE T. Electron Dev. 47, 241–249 (2000).
[Crossref]
K. Park and Z. M. Zhang, “Fundamentals and applications of near-field radiative energy transfer,” Frontiers Heat Mass Transfer 4, 013001 (2013).
[Crossref]
K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008).
[Crossref]
T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]
A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B 83, 241407 (2011).
[Crossref]
B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys.-Condens. Mat. 22, 462201 (2010).
[Crossref]
D. A. Neamen and B. Pevzner, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, 2003).
D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]
W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]
[PubMed]
F. Rana, “Graphene optoelectronics: Plasmons get tuned up,” Nat. Nanotechnol. 6, 611–612 (2011).
[Crossref]
[PubMed]
J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]
R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49, 4454–4468 (2006).
[Crossref]
I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]
W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]
[PubMed]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]
[PubMed]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]
T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]
V. B. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
[Crossref]
V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near- field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85, 155418 (2012).
[Crossref]
B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys.-Condens. Mat. 22, 462201 (2010).
[Crossref]
M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE T. Energy Conver. 26, 686–698 (2011).
[Crossref]
R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49, 4454–4468 (2006).
[Crossref]
D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]
V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near- field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85, 155418 (2012).
[Crossref]
A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B 83, 241407 (2011).
[Crossref]
T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]
M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE T. Energy Conver. 17, 130–142 (2002).
[Crossref]
W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]
[PubMed]
I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]
T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]
K. Park and Z. M. Zhang, “Fundamentals and applications of near-field radiative energy transfer,” Frontiers Heat Mass Transfer 4, 013001 (2013).
[Crossref]
S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[Crossref]
B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanosc. Microsc. Therm. 12, 238–250 (2008).
[Crossref]
K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008).
[Crossref]
Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]
[PubMed]
A. Narayanaswamy and G. Chen, “Surface modes for near field thermophotovoltaics,” Appl. Phys. Lett. 82, 3544–3546 (2003).
[Crossref]
I. H. Baek, K. J. Ahn, B. J. Kang, S. Bae, B. H. Hong, D. -I. Yeom, K. Lee, Y. U. Jeong, and F. Rotermund, “Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene,” Appl. Phys. Lett. 102, 191109 (2013).
[Crossref]
K. Park and Z. M. Zhang, “Fundamentals and applications of near-field radiative energy transfer,” Frontiers Heat Mass Transfer 4, 013001 (2013).
[Crossref]
J. L. Pan, H. K. H. Choy, and C. G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE T. Electron Dev. 47, 241–249 (2000).
[Crossref]
M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE T. Energy Conver. 26, 686–698 (2011).
[Crossref]
M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE T. Energy Conver. 17, 130–142 (2002).
[Crossref]
R. Vaillon, L. Robin, C. Muresan, and C. Ménézo, “Modeling of coupled spectral radiation, thermal and carrier transport in a silicon photovoltaic cell,” Int. J. Heat Mass Transfer 49, 4454–4468 (2006).
[Crossref]
M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100, 063704 (2006).
[Crossref]
T. J. Bright, L. P. Wang, and Z. M. Zhang, “Performance of near-field thermophotovoltaic cells enhanced with a backside reflector,” J. Heat Transfer 136, 062701 (2014).
[Crossref]
S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[Crossref]
L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]
B. N. J. Persson and H. Ueba, “Heat transfer between graphene and amorphous SiO2,” J. Phys.-Condens. Mat. 22, 462201 (2010).
[Crossref]
K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transfer 109, 305–316 (2008).
[Crossref]
J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Therm. Eng. 6, 209–222 (2002).
[Crossref]
P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10, 4285–4294 (2010).
[Crossref]
B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanosc. Microsc. Therm. 12, 238–250 (2008).
[Crossref]
A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]
[PubMed]
F. Rana, “Graphene optoelectronics: Plasmons get tuned up,” Nat. Nanotechnol. 6, 611–612 (2011).
[Crossref]
[PubMed]
J. A. González-Cuevas, T. F. Refaat, M. N. Abedin, and H. E. Elsayed-Ali, “Modeling of the temperature-dependent spectral response of In1−xGaxSb infrared photodetectors,” Opt. Eng. 45, 044001 (2006).
[Crossref]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20, A366–A384 (2012).
[Crossref]
[PubMed]
C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21, 14988–15013 (2013).
[Crossref]
[PubMed]
M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21, 22173–22185 (2013).
[Crossref]
[PubMed]
G. W. Gobeli and H. Y. Fan, “Infrared absorption and valence band in indium antimonide,” Phys. Rev. 119, 613–620 (1960).
[Crossref]
V. B. Svetovoy and G. Palasantzas, “Graphene-on-silicon near-field thermophotovoltaic cell,” Phys. Rev. Appl. 2, 034006 (2014).
[Crossref]
V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near- field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85, 155418 (2012).
[Crossref]
O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, ”Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85, 155422 (2012).
[Crossref]
A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B 83, 241407 (2011).
[Crossref]
D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 3303–3314 (1971).
[Crossref]
T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]
R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Scientific Reports 3, 1383 (2013).
[Crossref]
[PubMed]
Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).
F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer (John Wiley & Sons Singapore Pte. Ltd, 2013).
E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
D. A. Neamen and B. Pevzner, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, 2003).