Abstract

To obtain realistic results in lighting simulation software, realistic models of light sources are needed. A near-field model of a light source is accurate, and can be obtained by a near-field goniophotometer. This type of goniophotometer is conventionally equipped with a V(λ)-filter. However, the advent of new light sources with spatial- or angular color variations necessitates the inclusion of spectral information about the source. We demonstrate a method to include spectral information of a light source in ray tracing. We measured the relative angular variation of the spectrum of an OLED using a spectroradiometer mounted on a near-field goniophotometer. Principal component analysis (PCA) is exploited to reduce the amount of data that needs to be stored. Also a photometric ray file of the OLED was obtained. To construct a set of monochromatic ray files, the luminous flux in the original ray file is redistributed over a set of wavelengths and stored in separate ray files. The redistribution depends on the angle of emission and the spectral irradiance measured in that direction. These ray files are then inserted in ray tracing software TracePro. Using the OLED as a test source, the absolute spectral irradiance is calculated at an arbitrary position. The result is validated using a spectroradiometer to obtain the absolute spectral irradiance at that particular point. A good agreement between the simulated and measured absolute spectral irradiance is found. Furthermore, a set of tristimulus ray files is constructed and used in ray tracing software to generate a u′v′-color coordinate distribution on a surface. These values are in agreement with the color coordinate distribution found using the spectral ray files. Whenever spectral or color information is desired at a task area, the proposed method allows for a fast and efficient way to improve the accuracy of simulations using ray tracing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of tailored filter sets to create rayfiles including spatial and angular resolved spectral information

Ingo Rotscholl, Klaus Trampert, Udo Krüger, Martin Perner, Franz Schmidt, and Cornelius Neumann
Opt. Express 23(23) 29543-29554 (2015)

Simulating the spatial luminance distribution of planar light sources by sampling of ray files

Jan Audenaert, Guy Durinck, Frédéric Bernard Leloup, Geert Deconinck, and Peter Hanselaer
Opt. Express 21(20) 24099-24111 (2013)

Practical limitations of near-field goniophotometer measurements imposed by a dynamic range mismatch

Jan Audenaert, Paula C. Acuña R., Peter Hanselaer, and Frédéric B. Leloup
Opt. Express 23(3) 2240-2251 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Andersen, “Validation of the performance of a new bidirectional video-goniophotometer,” Light. Res. Technol. 38, 295–311 (2006).
    [Crossref]
  2. I. Ashdown and R. F. Rykowski, “Making near-field photometry practical,” in IESNA Conference Proceedings, (Seattle, 1997), pp. 368–389.
  3. I. Ashdown and M. Salsbury, “A near-field goniospectroradiometer for LED measurements,” in International Optical Design Conference, G. G. Gregory, J. M. Howard, and R. J. Koshel, eds., (2007), pp. 634215–634226.
  4. I. Ashdown, “Near-field photometry: a new approach,” J. Illum. Eng. Soc. 22, 163–180 (1993).
    [Crossref]
  5. A. Bergen, “A practical method of comparing luminous intensity distributions,” Light. Res. Technol. 44, 27–36, (2012).
    [Crossref]
  6. M. Chander, T. Chakraverty, and K. Joshi, “Goniophotometric calibration of tubular light sources in vertical and horizontal geometry,” Light. Res. Technol. 23, 89–90 (1991).
    [Crossref]
  7. C. Gentile, M. Rastello, G. Rossi, and P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
    [Crossref]
  8. Illuminating Engineering Society of North America (IESNA), “LM-70-00: IESNA Approved guide to near-field photometry,” Technical Report (2005).
  9. P. Y. Ngai, “On near-field photometry,” J. Opt. Soc. Am. B 21(2), 129–136 (1987).
  10. A. Field, “Exploratory factor analysis,” in Discovering Statistics Using SPSS, D. B. Wright, ed. (SAGE Publications, 2005), pp. 619–680.
  11. M. López, K. Bredemeier, N. Rohrbeck, C. Véron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, 141–145 (2012).
    [Crossref]
  12. K. Bredemeier, “Ray data of LEDs and arc lamps,” in Proceedings of ISAL 2005 Symposium, (2005), pp.1030–1037.
  13. A. J. Knulst, R. Mooijweer, F. W. Jansen, L. P. Stassen, and J. Dankelman, “Indicating shortcomings in surgical lighting systems,” Minim. Invasive Ther. Allied Technol. 20(5), 267–275 (2010).
    [Crossref] [PubMed]
  14. R. F. Rykowski, “Spectral ray tracing from near field goniophotometer measurements,” Light. Eng. 19(1), 23–29 (2011).
  15. J. Muschaweck, “What’s in a ray set: moving towards a unified ray set format,” Proc. SPIE 8170, 81700 (2011).
    [Crossref]
  16. B. Geelen, N. Tack, and A. Lambrechts, “A snapshot multispectral imager with integrated tiled filters and optical duplication,” Proc. SPIE 8613, 861314 (2013).
    [Crossref]
  17. H.-W. Chang, Y. H. Kim, J. Lee, S. Hofmann, B. Lüssem, L. Müller-Meskamp, M. C. Gather, K. Leo, and C.-C. Wu, “Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers,” Org. Electron. 15, 1028–1034 (2014).
    [Crossref]
  18. W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
    [Crossref] [PubMed]
  19. B. Kránicz, Zs. Sávoli, and B. Hanák, “Optimisation of the spectral content of LED sources and spectral reconstruction using large sample database and principal component analysis,” in Proceedings of Lux Europa, (2013), pp.1–6.
  20. IES, “Ray File Format for the Description of the Emission Property of Light Sources,” TM-25-13 (2013).

2014 (1)

H.-W. Chang, Y. H. Kim, J. Lee, S. Hofmann, B. Lüssem, L. Müller-Meskamp, M. C. Gather, K. Leo, and C.-C. Wu, “Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers,” Org. Electron. 15, 1028–1034 (2014).
[Crossref]

2013 (2)

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

B. Geelen, N. Tack, and A. Lambrechts, “A snapshot multispectral imager with integrated tiled filters and optical duplication,” Proc. SPIE 8613, 861314 (2013).
[Crossref]

2012 (2)

A. Bergen, “A practical method of comparing luminous intensity distributions,” Light. Res. Technol. 44, 27–36, (2012).
[Crossref]

M. López, K. Bredemeier, N. Rohrbeck, C. Véron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, 141–145 (2012).
[Crossref]

2011 (2)

R. F. Rykowski, “Spectral ray tracing from near field goniophotometer measurements,” Light. Eng. 19(1), 23–29 (2011).

J. Muschaweck, “What’s in a ray set: moving towards a unified ray set format,” Proc. SPIE 8170, 81700 (2011).
[Crossref]

2010 (1)

A. J. Knulst, R. Mooijweer, F. W. Jansen, L. P. Stassen, and J. Dankelman, “Indicating shortcomings in surgical lighting systems,” Minim. Invasive Ther. Allied Technol. 20(5), 267–275 (2010).
[Crossref] [PubMed]

2006 (1)

M. Andersen, “Validation of the performance of a new bidirectional video-goniophotometer,” Light. Res. Technol. 38, 295–311 (2006).
[Crossref]

1993 (1)

I. Ashdown, “Near-field photometry: a new approach,” J. Illum. Eng. Soc. 22, 163–180 (1993).
[Crossref]

1991 (1)

M. Chander, T. Chakraverty, and K. Joshi, “Goniophotometric calibration of tubular light sources in vertical and horizontal geometry,” Light. Res. Technol. 23, 89–90 (1991).
[Crossref]

1988 (1)

C. Gentile, M. Rastello, G. Rossi, and P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
[Crossref]

1987 (1)

P. Y. Ngai, “On near-field photometry,” J. Opt. Soc. Am. B 21(2), 129–136 (1987).

Andersen, M.

M. Andersen, “Validation of the performance of a new bidirectional video-goniophotometer,” Light. Res. Technol. 38, 295–311 (2006).
[Crossref]

Ashdown, I.

I. Ashdown, “Near-field photometry: a new approach,” J. Illum. Eng. Soc. 22, 163–180 (1993).
[Crossref]

I. Ashdown and R. F. Rykowski, “Making near-field photometry practical,” in IESNA Conference Proceedings, (Seattle, 1997), pp. 368–389.

I. Ashdown and M. Salsbury, “A near-field goniospectroradiometer for LED measurements,” in International Optical Design Conference, G. G. Gregory, J. M. Howard, and R. J. Koshel, eds., (2007), pp. 634215–634226.

Bergen, A.

A. Bergen, “A practical method of comparing luminous intensity distributions,” Light. Res. Technol. 44, 27–36, (2012).
[Crossref]

Bredemeier, K.

M. López, K. Bredemeier, N. Rohrbeck, C. Véron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, 141–145 (2012).
[Crossref]

K. Bredemeier, “Ray data of LEDs and arc lamps,” in Proceedings of ISAL 2005 Symposium, (2005), pp.1030–1037.

Chakraverty, T.

M. Chander, T. Chakraverty, and K. Joshi, “Goniophotometric calibration of tubular light sources in vertical and horizontal geometry,” Light. Res. Technol. 23, 89–90 (1991).
[Crossref]

Chander, M.

M. Chander, T. Chakraverty, and K. Joshi, “Goniophotometric calibration of tubular light sources in vertical and horizontal geometry,” Light. Res. Technol. 23, 89–90 (1991).
[Crossref]

Chang, H.-W.

H.-W. Chang, Y. H. Kim, J. Lee, S. Hofmann, B. Lüssem, L. Müller-Meskamp, M. C. Gather, K. Leo, and C.-C. Wu, “Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers,” Org. Electron. 15, 1028–1034 (2014).
[Crossref]

Christoforo, M. G.

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

Dankelman, J.

A. J. Knulst, R. Mooijweer, F. W. Jansen, L. P. Stassen, and J. Dankelman, “Indicating shortcomings in surgical lighting systems,” Minim. Invasive Ther. Allied Technol. 20(5), 267–275 (2010).
[Crossref] [PubMed]

Field, A.

A. Field, “Exploratory factor analysis,” in Discovering Statistics Using SPSS, D. B. Wright, ed. (SAGE Publications, 2005), pp. 619–680.

Gather, M. C.

H.-W. Chang, Y. H. Kim, J. Lee, S. Hofmann, B. Lüssem, L. Müller-Meskamp, M. C. Gather, K. Leo, and C.-C. Wu, “Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers,” Org. Electron. 15, 1028–1034 (2014).
[Crossref]

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

Gaynor, W.

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

Geelen, B.

B. Geelen, N. Tack, and A. Lambrechts, “A snapshot multispectral imager with integrated tiled filters and optical duplication,” Proc. SPIE 8613, 861314 (2013).
[Crossref]

Gentile, C.

C. Gentile, M. Rastello, G. Rossi, and P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
[Crossref]

Hanák, B.

B. Kránicz, Zs. Sávoli, and B. Hanák, “Optimisation of the spectral content of LED sources and spectral reconstruction using large sample database and principal component analysis,” in Proceedings of Lux Europa, (2013), pp.1–6.

Hofmann, S.

H.-W. Chang, Y. H. Kim, J. Lee, S. Hofmann, B. Lüssem, L. Müller-Meskamp, M. C. Gather, K. Leo, and C.-C. Wu, “Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers,” Org. Electron. 15, 1028–1034 (2014).
[Crossref]

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

Jansen, F. W.

A. J. Knulst, R. Mooijweer, F. W. Jansen, L. P. Stassen, and J. Dankelman, “Indicating shortcomings in surgical lighting systems,” Minim. Invasive Ther. Allied Technol. 20(5), 267–275 (2010).
[Crossref] [PubMed]

Joshi, K.

M. Chander, T. Chakraverty, and K. Joshi, “Goniophotometric calibration of tubular light sources in vertical and horizontal geometry,” Light. Res. Technol. 23, 89–90 (1991).
[Crossref]

Kim, Y. H.

H.-W. Chang, Y. H. Kim, J. Lee, S. Hofmann, B. Lüssem, L. Müller-Meskamp, M. C. Gather, K. Leo, and C.-C. Wu, “Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers,” Org. Electron. 15, 1028–1034 (2014).
[Crossref]

Knulst, A. J.

A. J. Knulst, R. Mooijweer, F. W. Jansen, L. P. Stassen, and J. Dankelman, “Indicating shortcomings in surgical lighting systems,” Minim. Invasive Ther. Allied Technol. 20(5), 267–275 (2010).
[Crossref] [PubMed]

Kránicz, B.

B. Kránicz, Zs. Sávoli, and B. Hanák, “Optimisation of the spectral content of LED sources and spectral reconstruction using large sample database and principal component analysis,” in Proceedings of Lux Europa, (2013), pp.1–6.

Lambrechts, A.

B. Geelen, N. Tack, and A. Lambrechts, “A snapshot multispectral imager with integrated tiled filters and optical duplication,” Proc. SPIE 8613, 861314 (2013).
[Crossref]

Lee, J.

H.-W. Chang, Y. H. Kim, J. Lee, S. Hofmann, B. Lüssem, L. Müller-Meskamp, M. C. Gather, K. Leo, and C.-C. Wu, “Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers,” Org. Electron. 15, 1028–1034 (2014).
[Crossref]

Leo, K.

H.-W. Chang, Y. H. Kim, J. Lee, S. Hofmann, B. Lüssem, L. Müller-Meskamp, M. C. Gather, K. Leo, and C.-C. Wu, “Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers,” Org. Electron. 15, 1028–1034 (2014).
[Crossref]

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

López, M.

M. López, K. Bredemeier, N. Rohrbeck, C. Véron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, 141–145 (2012).
[Crossref]

Lüssem, B.

H.-W. Chang, Y. H. Kim, J. Lee, S. Hofmann, B. Lüssem, L. Müller-Meskamp, M. C. Gather, K. Leo, and C.-C. Wu, “Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers,” Org. Electron. 15, 1028–1034 (2014).
[Crossref]

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

McGehee, M. D.

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

Mehra, S.

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

Mooijweer, R.

A. J. Knulst, R. Mooijweer, F. W. Jansen, L. P. Stassen, and J. Dankelman, “Indicating shortcomings in surgical lighting systems,” Minim. Invasive Ther. Allied Technol. 20(5), 267–275 (2010).
[Crossref] [PubMed]

Müller-Meskamp, L.

H.-W. Chang, Y. H. Kim, J. Lee, S. Hofmann, B. Lüssem, L. Müller-Meskamp, M. C. Gather, K. Leo, and C.-C. Wu, “Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers,” Org. Electron. 15, 1028–1034 (2014).
[Crossref]

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

Muschaweck, J.

J. Muschaweck, “What’s in a ray set: moving towards a unified ray set format,” Proc. SPIE 8170, 81700 (2011).
[Crossref]

Ngai, P. Y.

P. Y. Ngai, “On near-field photometry,” J. Opt. Soc. Am. B 21(2), 129–136 (1987).

Peumans, P.

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

Rastello, M.

C. Gentile, M. Rastello, G. Rossi, and P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
[Crossref]

Rohrbeck, N.

M. López, K. Bredemeier, N. Rohrbeck, C. Véron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, 141–145 (2012).
[Crossref]

Rossi, G.

C. Gentile, M. Rastello, G. Rossi, and P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
[Crossref]

Rykowski, R. F.

R. F. Rykowski, “Spectral ray tracing from near field goniophotometer measurements,” Light. Eng. 19(1), 23–29 (2011).

I. Ashdown and R. F. Rykowski, “Making near-field photometry practical,” in IESNA Conference Proceedings, (Seattle, 1997), pp. 368–389.

Sachse, C.

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

Salleo, A.

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

Salsbury, M.

I. Ashdown and M. Salsbury, “A near-field goniospectroradiometer for LED measurements,” in International Optical Design Conference, G. G. Gregory, J. M. Howard, and R. J. Koshel, eds., (2007), pp. 634215–634226.

Sávoli, Zs.

B. Kránicz, Zs. Sávoli, and B. Hanák, “Optimisation of the spectral content of LED sources and spectral reconstruction using large sample database and principal component analysis,” in Proceedings of Lux Europa, (2013), pp.1–6.

Schmidt, F.

M. López, K. Bredemeier, N. Rohrbeck, C. Véron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, 141–145 (2012).
[Crossref]

Soardo, P.

C. Gentile, M. Rastello, G. Rossi, and P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
[Crossref]

Sperling, A.

M. López, K. Bredemeier, N. Rohrbeck, C. Véron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, 141–145 (2012).
[Crossref]

Stassen, L. P.

A. J. Knulst, R. Mooijweer, F. W. Jansen, L. P. Stassen, and J. Dankelman, “Indicating shortcomings in surgical lighting systems,” Minim. Invasive Ther. Allied Technol. 20(5), 267–275 (2010).
[Crossref] [PubMed]

Tack, N.

B. Geelen, N. Tack, and A. Lambrechts, “A snapshot multispectral imager with integrated tiled filters and optical duplication,” Proc. SPIE 8613, 861314 (2013).
[Crossref]

Véron, C.

M. López, K. Bredemeier, N. Rohrbeck, C. Véron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, 141–145 (2012).
[Crossref]

Wu, C.-C.

H.-W. Chang, Y. H. Kim, J. Lee, S. Hofmann, B. Lüssem, L. Müller-Meskamp, M. C. Gather, K. Leo, and C.-C. Wu, “Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers,” Org. Electron. 15, 1028–1034 (2014).
[Crossref]

Adv. Mater. (1)

W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, “Color in the corners: ITO-free white OLEDs with angular color stability,” Adv. Mater. 25, 4006–4013 (2013).
[Crossref] [PubMed]

J. Illum. Eng. Soc. (1)

I. Ashdown, “Near-field photometry: a new approach,” J. Illum. Eng. Soc. 22, 163–180 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

P. Y. Ngai, “On near-field photometry,” J. Opt. Soc. Am. B 21(2), 129–136 (1987).

Light. Eng. (1)

R. F. Rykowski, “Spectral ray tracing from near field goniophotometer measurements,” Light. Eng. 19(1), 23–29 (2011).

Light. Res. Technol. (4)

M. Andersen, “Validation of the performance of a new bidirectional video-goniophotometer,” Light. Res. Technol. 38, 295–311 (2006).
[Crossref]

A. Bergen, “A practical method of comparing luminous intensity distributions,” Light. Res. Technol. 44, 27–36, (2012).
[Crossref]

M. Chander, T. Chakraverty, and K. Joshi, “Goniophotometric calibration of tubular light sources in vertical and horizontal geometry,” Light. Res. Technol. 23, 89–90 (1991).
[Crossref]

C. Gentile, M. Rastello, G. Rossi, and P. Soardo, “Luminous flux measurement,” Light. Res. Technol. 20, 189–193 (1988).
[Crossref]

Metrologia (1)

M. López, K. Bredemeier, N. Rohrbeck, C. Véron, F. Schmidt, and A. Sperling, “LED near-field goniophotometer at PTB,” Metrologia 49, 141–145 (2012).
[Crossref]

Minim. Invasive Ther. Allied Technol. (1)

A. J. Knulst, R. Mooijweer, F. W. Jansen, L. P. Stassen, and J. Dankelman, “Indicating shortcomings in surgical lighting systems,” Minim. Invasive Ther. Allied Technol. 20(5), 267–275 (2010).
[Crossref] [PubMed]

Org. Electron. (1)

H.-W. Chang, Y. H. Kim, J. Lee, S. Hofmann, B. Lüssem, L. Müller-Meskamp, M. C. Gather, K. Leo, and C.-C. Wu, “Color-stable, ITO-free white organic light-emitting diodes with enhanced efficiency using solution-processed transparent electrodes and optical outcoupling layers,” Org. Electron. 15, 1028–1034 (2014).
[Crossref]

Proc. SPIE (2)

J. Muschaweck, “What’s in a ray set: moving towards a unified ray set format,” Proc. SPIE 8170, 81700 (2011).
[Crossref]

B. Geelen, N. Tack, and A. Lambrechts, “A snapshot multispectral imager with integrated tiled filters and optical duplication,” Proc. SPIE 8613, 861314 (2013).
[Crossref]

Other (7)

K. Bredemeier, “Ray data of LEDs and arc lamps,” in Proceedings of ISAL 2005 Symposium, (2005), pp.1030–1037.

B. Kránicz, Zs. Sávoli, and B. Hanák, “Optimisation of the spectral content of LED sources and spectral reconstruction using large sample database and principal component analysis,” in Proceedings of Lux Europa, (2013), pp.1–6.

IES, “Ray File Format for the Description of the Emission Property of Light Sources,” TM-25-13 (2013).

Illuminating Engineering Society of North America (IESNA), “LM-70-00: IESNA Approved guide to near-field photometry,” Technical Report (2005).

I. Ashdown and R. F. Rykowski, “Making near-field photometry practical,” in IESNA Conference Proceedings, (Seattle, 1997), pp. 368–389.

I. Ashdown and M. Salsbury, “A near-field goniospectroradiometer for LED measurements,” in International Optical Design Conference, G. G. Gregory, J. M. Howard, and R. J. Koshel, eds., (2007), pp. 634215–634226.

A. Field, “Exploratory factor analysis,” in Discovering Statistics Using SPSS, D. B. Wright, ed. (SAGE Publications, 2005), pp. 619–680.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 An OLED is used as device under test. It is mounted in a near-field goniophotometer equipped with an additional spectrometer to measure the angular dependency of the spectral irradiance.
Fig. 2
Fig. 2 (a) The spectral irradiance at a point P, due to this elementary source, will depend on the spectral radiance dLe,λ (rs, αs, βs) of the elementary source element dAs, (b) The detector at P is oriented towards the photometric center C of the OLED and all coordinates are expressed with respect to C. This is indicated by the overbar on the symbols.
Fig. 3
Fig. 3 Normalized average spectral irradiance Êe,λ (i) of the OLED, measured at various angles i from 0° to 80° in steps of 10°. For clarity, only three spectra are shown for angles at 0°, 40° and 80°.
Fig. 4
Fig. 4 (a) Measured spectral irradiances. (b) Applying PCA analysis to the measured set of spectral irradiances obtained for the OLED, a new set of spectral irradiances can be constructed. The resolution of these spectra is 5nm, which was taken as the resolution of the basis functions. (c) Using four base functions, the percentage error between the original spectral irradiances and the reconstructed ones, is less than 1%.
Fig. 5
Fig. 5 The absolute spectral irradiance at P is measured using a spectroradiometer (full black line) and compared to simulations using spectral ray tracing (dots). These results agree well, a mean error of 0.01 mW m−2 nm−1 is obtained.
Fig. 6
Fig. 6 (a) u′ and (b) v′ color coordinates on a task plane of 2m × 2m lying 50 cm below the OLED after tracing the 81 spectral ray files. (c) The black line in the u′v′-diagram displays these coordinates for the OLED. The color difference Δu′v′ = 0.080 ≫ 0.004, indicating it is clearly perceptible.
Fig. 7
Fig. 7 (a) u′ and (b) v′ color coordinates using only three colorimetric ray files. (c) Similar u′v′-color coordinates are calculated on a task plane as in Fig. 6.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E e , λ ( α ¯ i ) = E e , λ max ( α ¯ i ) E ^ e , λ ( α ¯ i ) ,
α ray = cos 1 ( p ^ n ^ ) .
( Φ ray ) e , λ ( α ¯ ) = k ( α ¯ ) E ^ e , λ ( α ¯ ) ,
E ^ e , λ ( α ¯ i ) = j c j ( α ¯ i ) f j ( λ ) .
Φ ray ( α ¯ ) = 683 × λ ( Φ ray ) λ ( α ¯ ) V ( λ ) Δ λ .
Φ ray ( α ¯ ) = 683 × λ k ( α ¯ ) E ^ e , λ ( α ¯ ) V ( λ ) Δ λ .
k ( α ¯ ) = Φ ray ( α ¯ ) 683 × λ E ^ e , λ ( α ¯ ) V ( λ ) Δ λ
( Φ ray ) e , λ ( α ¯ ) = Φ ray ( α ¯ ) E ^ e , λ ( α ¯ ) 683 × λ E ^ e , λ ( α ¯ ) V ( λ ) Δ λ .
[ X Y Z ] = 683 × λ E ^ e , λ ( r ) [ x ¯ ( λ ) y ¯ ( λ ) z ¯ ( λ ) ]
[ X ray Y ray Z ray ] ( α ¯ ) = 683 × λ ( Φ ray ) e , λ ( α ¯ ) [ x ¯ ( λ ) y ¯ ( λ ) z ¯ ( λ ) ] Δ λ

Metrics