Abstract

In this paper we excite bound long range stripe plasmon modes with a highly focused laser beam. We demonstrate highly confined plasmons propagating along a 50 µm long silver stripe 750 nm wide and 30 nm thick. Two excitation techniques were studied: focusing the laser spot onto the waveguide end and focusing the laser spot onto a silver grating. By comparing the intensity of the out-coupling photons at the end of the stripe for both grating and end excitation we are able to show that gratings provide an increase of a factor of two in the output intensity and thus out-coupling of plasmons excited by this technique are easier to detect. Authors expect that the outcome of this paper will prove beneficial for the development of passive nano-optical devices based on stripe waveguides, by providing insight into the different excitation techniques available and the advantages of each technique.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Grating couplers for (Bloch) long-range surface plasmons on metal stripe waveguides

Maryam Khodami and Pierre Berini
J. Opt. Soc. Am. B 36(7) 1921-1930 (2019)

Grating couplers fabricated by e-beam lithography for long-range surface plasmon waveguides embedded in a fluoropolymer

Zohreh Hirboodvash, Maryam Khodami, Norman R. Fong, Ewa Lisicka-Skrzek, Anthony Olivieri, Howard Northfield, R. Niall Tait, and Pierre Berini
Appl. Opt. 58(11) 2994-3002 (2019)

Grating couplers for broadside input and output coupling of long-range surface plasmons

Chengkun Chen and Pierre Berini
Opt. Express 18(8) 8006-8018 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [Crossref]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  3. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
    [Crossref]
  4. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
  5. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
    [Crossref]
  6. I. Breukelaar, P. Berini, and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides,” J. Opt. Soc. Am. A 23(8), 1971–1977 (2006).
    [Crossref] [PubMed]
  7. G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110(12), 123106 (2011).
    [Crossref]
  8. I. Salakhutdinov, J. S. Thakur, and K. Leosson, “Characterization of long-range surface plasmon-polariton in stripe waveguides using scanning near-field optical microscopy,” J. Appl. Phys. 102(12), 123110 (2007).
    [Crossref]
  9. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
    [Crossref]
  10. K. Vernon, D. Gómez, and T. Davis, “A compact interferometric sensor design using three waveguide coupling,” J. Appl. Phys. 106(10), 104306 (2009).
    [Crossref]
  11. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
    [Crossref]
  12. B. Wang and G. P. Wang, “Simulations of nanoscale interferometer and array focusing by metal heterowaveguides,” Opt. Express 13(26), 10558–10563 (2005).
    [Crossref] [PubMed]
  13. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007).
    [Crossref] [PubMed]
  14. J. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. Aussenegg, “Non–diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60(5), 663–669 (2002).
    [Crossref]
  15. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
    [Crossref]
  16. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
    [Crossref]
  17. C. Chen and P. Berini, “Grating couplers for broadside input and output coupling of long-range surface plasmons,” Opt. Express 18(8), 8006–8018 (2010).
    [Crossref] [PubMed]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier Science and Tech, 1985).
  19. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
    [Crossref]
  20. A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons,” Opt. Commun. 261(2), 291–295 (2006).
    [Crossref]
  21. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2011 (1)

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110(12), 123106 (2011).
[Crossref]

2010 (2)

2009 (2)

K. Vernon, D. Gómez, and T. Davis, “A compact interferometric sensor design using three waveguide coupling,” J. Appl. Phys. 106(10), 104306 (2009).
[Crossref]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).

2007 (3)

I. Salakhutdinov, J. S. Thakur, and K. Leosson, “Characterization of long-range surface plasmon-polariton in stripe waveguides using scanning near-field optical microscopy,” J. Appl. Phys. 102(12), 123110 (2007).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (3)

2002 (2)

J. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. Aussenegg, “Non–diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60(5), 663–669 (2002).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

2001 (2)

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[Crossref]

1999 (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Aussenegg, F.

J. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. Aussenegg, “Non–diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60(5), 663–669 (2002).
[Crossref]

Aussenegg, F. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[Crossref]

Barnes, W. L.

A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons,” Opt. Commun. 261(2), 291–295 (2006).
[Crossref]

Berini, P.

Boltasseva, A.

Bozhevolnyi, S. I.

Bracher, G.

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110(12), 123106 (2011).
[Crossref]

Breukelaar, I.

Brongersma, M. L.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[Crossref]

Buckley, R.

Charbonneau, R.

Chen, C.

Davis, T.

K. Vernon, D. Gómez, and T. Davis, “A compact interferometric sensor design using three waveguide coupling,” J. Appl. Phys. 106(10), 104306 (2009).
[Crossref]

Ditlbacher, H.

J. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. Aussenegg, “Non–diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60(5), 663–669 (2002).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[Crossref]

Fafard, S.

Felidj, N.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[Crossref]

Finley, J.

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110(12), 123106 (2011).
[Crossref]

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

Giannattasio, A.

A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons,” Opt. Commun. 261(2), 291–295 (2006).
[Crossref]

Gómez, D.

K. Vernon, D. Gómez, and T. Davis, “A compact interferometric sensor design using three waveguide coupling,” J. Appl. Phys. 106(10), 104306 (2009).
[Crossref]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Hooper, I. R.

A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons,” Opt. Commun. 261(2), 291–295 (2006).
[Crossref]

Jakubeit, C.

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110(12), 123106 (2011).
[Crossref]

Kaniber, M.

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110(12), 123106 (2011).
[Crossref]

Kjaer, K.

Krenn, J.

J. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. Aussenegg, “Non–diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60(5), 663–669 (2002).
[Crossref]

Krenn, J. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[Crossref]

Lahoud, N.

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Lamprecht, B.

J. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. Aussenegg, “Non–diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60(5), 663–669 (2002).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[Crossref]

Larsen, M. S.

Leitner, A.

J. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. Aussenegg, “Non–diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60(5), 663–669 (2002).
[Crossref]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[Crossref]

Leosson, K.

I. Salakhutdinov, J. S. Thakur, and K. Leosson, “Characterization of long-range surface plasmon-polariton in stripe waveguides using scanning near-field optical microscopy,” J. Appl. Phys. 102(12), 123110 (2007).
[Crossref]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
[Crossref]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Mattiussi, G.

Nikolajsen, T.

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Salakhutdinov, I.

I. Salakhutdinov, J. S. Thakur, and K. Leosson, “Characterization of long-range surface plasmon-polariton in stripe waveguides using scanning near-field optical microscopy,” J. Appl. Phys. 102(12), 123110 (2007).
[Crossref]

Salerno, M.

J. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. Aussenegg, “Non–diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60(5), 663–669 (2002).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[Crossref]

Scales, C.

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

J. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. Aussenegg, “Non–diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60(5), 663–669 (2002).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[Crossref]

Schraml, K.

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110(12), 123106 (2011).
[Crossref]

Selker, M. D.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[Crossref]

Thakur, J. S.

I. Salakhutdinov, J. S. Thakur, and K. Leosson, “Characterization of long-range surface plasmon-polariton in stripe waveguides using scanning near-field optical microscopy,” J. Appl. Phys. 102(12), 123110 (2007).
[Crossref]

Vernon, K.

K. Vernon, D. Gómez, and T. Davis, “A compact interferometric sensor design using three waveguide coupling,” J. Appl. Phys. 106(10), 104306 (2009).
[Crossref]

Wang, B.

Wang, G. P.

Weeber, J. C.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[Crossref]

Zia, R.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[Crossref]

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).

Appl. Phys. Lett. (2)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79(1), 51–53 (2001).
[Crossref]

Europhys. Lett. (1)

J. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. Aussenegg, “Non–diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60(5), 663–669 (2002).
[Crossref]

J. Appl. Phys. (3)

K. Vernon, D. Gómez, and T. Davis, “A compact interferometric sensor design using three waveguide coupling,” J. Appl. Phys. 106(10), 104306 (2009).
[Crossref]

G. Bracher, K. Schraml, C. Jakubeit, M. Kaniber, and J. Finley, “Direct measurement of plasmon propagation lengths on lithographically defined metallic waveguides on GaAs,” J. Appl. Phys. 110(12), 123106 (2011).
[Crossref]

I. Salakhutdinov, J. S. Thakur, and K. Leosson, “Characterization of long-range surface plasmon-polariton in stripe waveguides using scanning near-field optical microscopy,” J. Appl. Phys. 102(12), 123110 (2007).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Opt. Commun. (2)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

A. Giannattasio, I. R. Hooper, and W. L. Barnes, “Dependence on surface profile in grating-assisted coupling of light to surface plasmon-polaritons,” Opt. Commun. 261(2), 291–295 (2006).
[Crossref]

Opt. Express (3)

Phys. Rev. B (2)

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001).
[Crossref]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier Science and Tech, 1985).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the coupling arrangements of the structures (not to scale): (a) Front-on schematic of sample (b) grating coupling (c) end coupling. Here star represents the laser spot. (d) SEM images of the three structures (width 750 nm, length 10 μm and thickness 30 nm).
Fig. 2
Fig. 2 (a) Wavenumber, (b) Propagation length of the LRSPP mode and their dependence on thickness.
Fig. 3
Fig. 3 |E| field plot of the LRSPP mode in a 30 nm thick, 750 nm wide waveguide on ITO coated glass.
Fig. 4
Fig. 4 Schematic diagram of the experimental set up. Objective with N/A 1.4.
Fig. 5
Fig. 5 Polar plots of out-coupling from (a) grating coupled stripe with grating on both side, (b) grating coupled stripe with grating on one end and (c) end coupled stripe without grating (d)end coupled stripe with grating on one end. Radial scale goes from 0 to 70 with 17.5 increments. (e) Series of CCD images of light scattering from the waveguide end 20 μm long stripe (i) grating coupled stripe with grating (ii) grating coupled stripe with grating one side (iii)end coupled stripe without grating (iv) end coupled stripe with one grating.
Fig. 6
Fig. 6 (a) Series of images obtained using CCD camera. Stripes with no grating for lengths of (i)5 µm, (ii) 10 µm, (iii) 20 µm, (iv) 30 µm and (v) 40 µm. (b) Out-coupling intensity vs stripe length with exponential fit for end coupled stripes.
Fig. 7
Fig. 7 (a) Series of images obtained using CCD camera. Stripes with grating either side for lengths of (i) 5 µm, (ii) 10 µm, (iii) - (vi) 50 µm with 10 µm step increment. (b) Out-coupling intensity vs stripe length with exponential fit for grating coupled stripes.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

β=ksinθ+ 2πm a
β= 2πm a
β= 2π a
P x ( x )= P S0 e 2α( x x 0 ) + P rad (x)
DoP= I max I min I max + I min
L p = I 0 e

Metrics